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THE FRIEDRICHS EXTENSION OF REGULAR
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Abstract. We increase the class of regular symmetric differential operators and find, explicitly,
the boundary conditions which determine the Friedrichs extension of each one of these symmetric
differential operators.

1. Introduction

Consider regular differential equations

My = λwy on I = (a,b), −∞ � a < b � ∞, λ ∈ C, 0 < w ∈ L1(I), (1.1)

where M is a symmetric differential expression, and boundary conditions

UYa,b = 0, U ∈ Ml,2n(C), (1.2)

where Ml,2n(C) denotes the l×2n matrices of complex numbers, l is an integer with
0 � l � 2n , and U ∈ Ml,2n(C) is a boundary condition matrix. Let

Y =

⎛⎜⎜⎜⎝
y[0]

y[1]

...
y[n−1]

⎞⎟⎟⎟⎠ , Ya,b = YR =
(

Y (a)
Y (b)

)
. (1.3)

DEFINITION 1.1. Let l be an integer 0 � l � 2n. Any l×2n matrix U ∈Ml,2n(C)
with rank l is called a boundary condition matrix and the equation

U YR = 0, (y ∈ Dmax) (1.4)

is called a boundary condition. For any such U we define an operator T (U) from
L2(J,w) into L2(J,w) by

D(T (U)) = {y ∈ Dmax : U YR = 0} (1.5)

T (U) y = Tmax y, y ∈ D(T (U)).
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When l = 0 we have U = 0 and T (U) = Tmax .
We study the operator realizations T

Tmin ⊂ T ⊆ T ∗ ⊂ Tmax (1.6)

of (1.1) and (1.2) in the Hilbert space H = L2(I,w). The quasi-derivatives y[r], Tmin,
Dmin, T, Tmax, Dmax will be defined below in Section 2.

In 1995 [13, 14] Möller-Zettl constructed symmetric expressions M using the
matrix E ∈ Mn(C)

E = ((−1)rδr,n+1−s)n
r,s=1

where δ is the Kronicker delta, and proved that the minimal operator realization Tmin

of the regular equation (1.1) with positive leading coefficient is bounded below.
In 2019 Bao-Sun-Hao-Zettl [1] introduced a class of skew-diagonal matrices C ∈

Mn(C) satisfying
C−1 = −C = C∗ (1.7)

and used these to construct symmetric differential expressions M = MQ , where Q is a
matrix function, to be defined in Section 2, satisfying

Q = −C−1Q∗C (1.8)

and used – the same matrices C – to characterize the boundary conditions (1.2) which
determine self-adjoint operator realizations T = T ∗ of (1.6). This class of matrices C
and their use in the construction of Q and M = MQ significantly increased the class of
symmetric differential equations (1.1). (The matrix E is a special case.)

In 2020 Wang-Zettl [26], used these same matrices C to characterize the boundary
conditions of the symmetric operators realizations T of (1.6). (See also the web page
www.ams.org/bookpages/surv-245 of the book ‘Ordinary Differential Operaotrs’
by these authors.)

In this paper we

1. Prove that the minimal operator Tmin of this much larger class of symmetric differential
expressions M is bounded below.

2. Given any symmetric operator realization T , Tmin ⊂ T ⊆ T ∗ ⊂ Tmax, of the larger
class of equations (1.1) we find the boundary conditions of its Friedrichs extension
TF explicitly. The self-adjoint operators are special case.

REMARK 1.2. The study of symmetric operators in Hilbert space has a long and
interesting history dating back about a hundred years. Next we briefly review this and
put it in context. Starting with the well known Von Neumann Theorem.

THEOREM 1.3. (Von Neumann) Let T be a closed densely defined symmetric
operator on a complex separable Hilbert space H , and let N+ and N− be the deficiency
spaces of T . Then we have

D(T ∗) = D(T )�N+ �N−
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An operator S is a closed symmetric extension of T if and only if there exist closed
subspaces F+ of N+ and F− of N− and an isometric mapping V of F+ onto F− such
that

D(S) = D(T )+{g+Vg : g ∈ F+}.
Furthermore, S is self-adjoint if and only if F+ = N+ and F− = N− .

Proof. See [5], Naimark [15], or Weidmann [25]. �
In his seminal 1933 paper Friedrichs [6] proved that every symmetric operator S

in a separable Hilbert space H, which is bounded below, has a self-adjoint extension
which has the same lower bound as S. This came to be known as the Friedrichs extension
which we denote by SF . His proof can be described as follows:

Let D(S) and D(S∗) denote the domains of S and S∗ , respectively. The domain
DF(S) of the Friedrichs extension SF of S consists of all y in D(S∗) for which there
exists a sequence ym in D(S) such that

1. ym → y in H as m → ∞,

2. S((ym− yl),ym − yl) → 0 as m, l → ∞.

Note that there is no boundary condition mentioned in this description of the
domain of SF .

In 1935 Friedrichs [7] proved that the Dirichlet boundary condition

y(a) = 0 = y(b)

determines the Friedrichs extension of

My = −y′′ +qy = λy on I = (a,b), −∞ < a < b < ∞.

In the books by Coddington-Levinson [4] and Dunford-Schwartz [5] a linear
differential expression

My = pny
(n) + pn−1y

(n−1) + · · ·+ p0y on I (1.9)

with pn �= 0 on I is defined to be symmetric if it is identical with

M+y = (−1)n(pny
(n))+ · · ·+ p0y on I (1.10)

i.e. if M+ = M. Clearly if we wish to “test” a given expression M for symmetry by
this definition we need to write M+ in the same form as M and then compare the
coefficients. To do this we must assume that the coefficients of M are sufficiently
smooth.

In [28] any formally self-adjoint differential operator My of order n can be
expressed in the form

My =
[ n
2 ]

∑
j=0

(−1) j(l jy
( j))( j) +

[ n−1
2 ]

∑
j=0

[(q jy
( j))( j+1)− (q jy

( j+1))( j)], (1.11)
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where l j are real-valued functions, and q j are complex-valued functions, [d] denotes
the greatest integer � d . Moreover, if the coefficients p j in (1.9) are all real, then the
complex second term in (1.11) vanishes. Hence, a real symmetric expression M given
by (1.9) with sufficiently smooth coefficients p j must be of even order (n = 2k, k � 1)
and have the form

My =
k

∑
j=0

(−1) j(l jy
( j))( j) (1.12)

with l j real, j = 0,1,2, . . . ,k .
Observe that if the coefficients l j, q j in (1.11) are not sufficiently differentiable,

then (1.11) cannot be reduced to the form (1.9). Nevertheless, as we will see below,
an analogue of (1.11) is symmetric without any differentiability conditions on the
coefficients. So if one wishes to consider general symmetric differential expressions
one is forced to use so-called quasi-differential forms. It turns out that there exist much
more general quasi-differential forms than those analogous to (1.11) or to (1.12) in the
real case.

Very general quasi-differential forms, particularly symmetric ones based on the
matrix C = E , which contained in the recently discovered C in (1.7), were discovered
by Shin in 1938 [18, 19] and 1940 [20]. They were rediscovered, in a slightly different
but equivalent form, by Zettl in 1975 [29]. Special cases of these symmetric
quasi-differential forms have been used extensively by many authors, including Barrett
[3], Glazman [8], Hinton [9], Kogan and Rofe-Beketov [11], Naimark [15], Reid [17],
Stone [21], Weyl [24], Walker [23]. For other work on differential operators, see
Halperin [10], Naimark [15], Stone [21], Titchmarsh [22].

The development of the theory of symmetric differential operators in the books
by Naimark [15] and by Akhiezer-Glazman [8] is based on the real symmetric form
analogous to (1.12). Although these authors mention Shin’s more general symmetric
expressions they make no use of them in their books. (Perhaps because Shin’s claim that
there are only two deficiency indices for symmetric higher even order problems (n =
2k ), as is the case when k = 1, also holds when k > 1 is false.) In [29] Zettl showed
that the techniques used in the books of Naimark and Akhieser-Glazman, based largely
on the work of Glazman using Hilbert space methods, can be applied to the much larger
class of symmetric operators based on E. Recently Bao-Hao-Sun-Wang-Zettl have
shown that these Hilbert space methods can be applied to the larger class of symmetric
expressions generated by matrices C satisfying (1.7) used here.

For other methods of studying boundary value problems, including boundary
triplets, see the recent book “Boundary Value Problems, Weyl Functions, and
Differential Operators”, by Behrndt, Hassi, and De Snoo [2].

The organization of this paper is as follows: In Section 2 we review the
construction of the symmetric operators M = MQ where Q = −C−1Q∗C and the
characterization of their symmetric domains. In Section 3 we prove that the minimal
operator Tmin is bounded below; this extends the corresponding theorem for C = E
proved by Möller-Zettl in [14]. For any given symmetric operator T, Tmin ⊂ T ⊆ T ∗ ⊂
Tmax in (1.6) the boundary conditions determining its Friedrichs extensions are given
in Section 4 and examples of these extensions are given in Section 5.
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2. Symmetric operators

In this section we study the symmetric operator realizations T in (1.6). Let Mn(X)
denote the n× n matrices with elements from the set X for each n = 2,3,4, . . . , i.e.
Mn(X) = Mn,n(X) . For the complex number field C , we write Cn := Mn,1(C) which is
the n dimensional column vector space.

Let

Zn(I) := {(qr,s)n
r,s=1 ∈ Mn(L1(I)),

qr,r+1 �= 0 a.e. on I, q−1
r,r+1 ∈ L1(I), 1 � r � n−1,

qr,s = 0 a.e. on I, 2 � r+1 < s � n;

qr,s ∈ L1(I), s �= r+1, 1 � r � n−1} (2.1)

and C = (cr,s)1�r,s�n ∈ Mn(C) denotes any skew-diagonal complex matrix with the
following property:

C−1 = −C = C∗.

Let ACloc(I) denote the set of functions which are absolutely continuous on all compact
subintervals of I . For Q ∈ Zn(I) define the quasi-derivatives y[r] (0 � r � n) :

V0 := {y : I → C, y is measurable}, y[0] := y (y ∈V0),

Vr := {y ∈Vr−1 : y[r−1] ∈ ACloc(I)},
y[r] = q−1

r,r+1[(y
[r−1])′ −

r

∑
s=1

qr,sy
[s−1]] (y ∈Vr, r = 1,2, . . . ,n), (2.2)

where qn,n+1 = cn,1 . Finally we set

My = iny[n], y ∈Vn, i =
√−1. (2.3)

These expressions M = MQ are generated with Q and for the notation Vn we also use
the notations D(Q) and V (M) . Since the quasi-derivatives depend on Q , we sometimes

write y[r]
Q instead of y[r], r = 1,2, . . . ,n.

For the rest of this paper we assume that

Q = −C−1Q∗C, (2.4)

i.e.,
qr,s = cr,n+1−r qn+1−s,n+1−r cn+1−s,s, (2.5)

and call Q a C -symmetric matrix and M = MQ a C -symmetric quasi-differential or
just differential expression.

Consider the Hilbert space L2(I,w) with inner product (y,z)w =
∫ b
a yzwdx ,

‖y‖w = (y,y)
1
2
w and let

Dmax = {y ∈ L2(I,w) : y ∈ D(Q) and
1
w

My ∈ L2(I,w)}, (2.6)
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where w ∈ L1(I) is positive on I. We associate the maximal operator Tmax and the
minimal operator Tmin with the differential expression M = MQ and note that T ∗

max =
Tmin and Tmax = T ∗

min. Let Dmin denote the domain of Tmin and Dmax the domain of
Tmax . It is well known that the minimal operator Tmin is a densely defined symmetric
operator in the Hilbert space L2(I,w) , see [1].

For which matrices U is T = T (U) a symmetric operator in L2(I,w)? This
question is answered by the next Theorem. Let

U = (A B), A, B ∈ Mn(C), R = ACA∗−BCB∗, r = rank(R). (2.7)

THEOREM 2.1. Suppose M is a regular symmetric differential expression and U
is a boundary condition matrix with rank(U) = l , 0 � l � 2n. Then we have

1. If l < n, then T (U) is not symmetric.

2. If l = n, then T (U) is self-adjoint (and hence also symmetric) if and only if
r = 0.

3. Let l = n+ s, 0 < s � n. Then T (U) is symmetric if and only if r = 2s.

Proof. See Theorem 6 and Theorem 11 in [26]. �

3. Boundedness below of the symmetric operators

In this section we extend the Möller-Zettl [13, Theorem 7.2] result that symmetric
operators, with positive leading coefficient, generated by Q = CQ∗C where C = E
are bounded below and their Friedrichs extension has the same lower bound, to the
larger class of operators generated by Q = CQ∗C where C is a class of skew-diagonal
matrices satisfying (1.7).

Since equation (1.1) is regular it follows from the Von Neumann Theorem that
every symmetric operator T (U) is bounded below if the minimal operator Tmin is
bounded below and every T (U) is a finite dimensional extension of Tmin :

Tmin ⊆ T (U) ⊆ Tmax. (3.1)

Conseqently we can restrict our search to l × 2n boundary matrices U with n � l =
rank(U) � 2n.

THEOREM 3.1. Suppose the regular even order C-symmetric differential
equation (1.1) has the leading coefficient (−1)kck,k+1qk,k+1 > 0 a.e. on I . Then Tmin

is bounded below.

Proof. This follows from the following Propositions 3.2–3.5. �
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PROPOSITION 3.2. For r = 1,2, . . . ,k , n = 2k and y ∈ Dmax , we have

(qn−r+1,n−r+2y
[n−r+1],cr,n−r+1y

[r−1])+ (qn−r,n−r+1y
[n−r],cn−r,r+1y

[r])

= cr,n−r+1y
[n−r]y[r−1] |ba −cr,n−r+1

(
r

∑
s=1

(y[n−r],qr,sy
[s−1])+

n−r+1

∑
s=1

(qn−r+1,sy
[s−1],y[r])

)

with

(y,z) =
∫ b

a
yzdx, y, z ∈ Dmax.

Proof. Since Q ∈ Zn(I) is C -symmetric, from (2.2) and (2.5) it follows that for
y ∈ Dmax we have

(qn−r+1,n−r+2y
[n−r+1],cr,n−r+1y

[r−1])+ (qn−r,n−r+1y
[n−r],cn−r,r+1y

[r])

= ((y[n−r])′ −
n−r+1

∑
s=1

qn−r+1,sy
[s−1],cr,n−r+1y

[r−1])+ (qn−r,n−r+1y
[n−r],cn−r,r+1y

[r])

= cr,n−r+1y
[n−r]y[r−1] |ba +(y[n−r],−cr,n−r+1(y[r−1])′ + cn−r,r+1qn−r,n−r+1y

[r])

− (
n−r+1

∑
s=1

qn−r+1,sy
[s−1],cr,n−r+1y

[r−1])

= cr,n−r+1y
[n−r]y[r−1] |ba +(y[n−r],cr,n−r+1[−(y[r−1])′ +qr,r+1y

[r]])

− (
n−r+1

∑
s=1

qn−r+1,sy
[s−1],cr,n−r+1y

[r−1])

= cr,n−r+1y
[n−r]y[r−1] |ba −cr,n−r+1

(
r

∑
s=1

(y[n−r],qr,sy
[s−1])+

n−r+1

∑
s=1

(qn−r+1,sy
[s−1],y[r−1])

)
.

�

PROPOSITION 3.3. For y ∈ Dmax and n = 2k , we have

(y[n],y)− (qk,k+1y
[k],ck,k+1y

[k])

=
k

∑
r=1

k

∑
s=1

(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])−

k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba .

Proof. Since c1,n c1,n = 1 and cn,1 = −c1,n , from Proposition 3.2 and (2.5) we
infer

(y[n],y)− (qk,k+1y
[k],ck,k+1y

[k]) = (cn,1y
[n],cn,1y)− (qk,k+1y

[k],ck,k+1y
[k])

= −
k

∑
r=1

(
(qn−r+1,n−r+2y

[n−r+1],cr,n−r+1y
[r−1])+ (qn−r,n−r+1y

[n−r],cn−r,r+1y
[r])

)
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=
k

∑
r=1

cr,n−r+1

(
r

∑
s=1

(y[n−r],qr,sy
[s−1])+

n−r+1

∑
s=1

(qn−r+1,sy
[s−1],y[r−1])

)

−
k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba

=
k

∑
r=1

r

∑
s=1

(cr,n−r+1qr,sy
[n−r],y[s−1])

+
k

∑
r=1

n−r+1

∑
s=1

(cr,n−r+1qn−r+1,sy
[s−1],y[r−1])−

k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba

=
n

∑
r=n−k+1

n−r+1

∑
s=1

(cn−r+1,rqn−r+1,sy
[r−1],y[s−1])

+
k

∑
r=1

n−r+1

∑
s=1

(cr,n−r+1qn−r+1,sy
[s−1],y[r−1])−

k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba

=
n

∑
r=k+1

n−r+1

∑
s=1

(cn−s+1,sqn−s+1,ry
[r−1],y[s−1])

+
k

∑
r=1

n−r+1

∑
s=1

(cr,n−r+1qn−r+1,sy
[s−1],y[r−1])−

k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba

=
n

∑
s=k+1

n−s+1

∑
r=1

(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])

+
k

∑
r=1

n−r+1

∑
s=1

(cr,n−r+1qn−r+1,sy
[s−1],y[r−1])−

k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba

=
k

∑
r=1

n−r+1

∑
s=k+1

(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])

+
k

∑
r=1

n−r+1

∑
s=1

(cr,n−r+1qn−r+1,sy
[s−1],y[r−1])−

k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba

=
k

∑
r=1

(
n−r+1

∑
s=k+1

−
n−r+1

∑
s=1

)
(cn−r+1,rqn−r+1,sy

[s−1],y[r−1])−
k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba

=
k

∑
r=1

k

∑
s=1

(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])−

k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba . �

PROPOSITION 3.4. For y ∈ Dmin and n = 2k , we have

(Tminy,y)w =
k

∑
r=1

k

∑
s=1

(−1)k(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])

+ (−1)k(qk,k+1y
[k],ck,k+1y

[k]).
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Proof. From Proposition 3.3 we infer

(Tminy,y)w = (MQy,y) = in(y[n],y)

=
k

∑
r=1

k

∑
s=1

(−1)k(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])

+ (−1)k(qk,k+1y
[k],ck,k+1y

[k])− (−1)k
k

∑
r=1

cr,n−r+1y
[n−r]y[r−1] |ba

=
k

∑
r=1

k

∑
s=1

(−1)k(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])+ (−1)k(qk,k+1y

[k],ck,k+1y
[k]).

Hence the stated identity follows. �

PROPOSITION 3.5. Let u(x) = (−1)kck,k+1qk,k+1. Assume that the regular
C-symmetric even order differential expression MQ generated by Q has a positive
leading coefficient, i.e., u(x) is positive a.e. :

(−1)kck,k+1qk,k+1 > 0 a.e.. (3.2)

Then minimal operator Tmin in L2(I,w) , associated with Q and the weight function w,
is bounded below. Moreover, every symmetric extension of Tmin is also bounded below.

Proof. For y ∈ Dmin , from Proposition 3.4 we have

|(Tminy,y)w − (y[k],y[k])u|

= |
k

∑
r=1

k

∑
s=1

(−1)k(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])|

�
k

∑
r=1

k

∑
s=1

|(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])|. (3.3)

For Q ∈ Zn(I) , let Qk = (qr,s)k
r,s=1 whose columns are the first k columns of Q =

Qn with components in first k rows. Then D(T̃min) ⊂ D(Tmin) ⊂ D(Tmax) ⊂ D(T̃max) ,
where T̃min and T̃max denote the minimal and maximal operator associated with Qk

in Hilbert space L2(I,u) , respectively, i.e. T̃maxy = T̃ ∗
miny = ik 1

u y[k]
Qk

= ik 1
u ck,1qk,k+1y

[k]
Q

(here y[k]
Q = y[k] ). By using [12, Theorem 1] we obtain that for any δ1 > 0 there exists

a K(δ1) > 0 such that for all y ∈ D(T̃max) and r = 1,2, . . . ,k,

‖y[r−1]‖∞ � δ1(T̃maxy, T̃maxy)
1
2
u +K(δ1)(y,y)

1
2
w . (3.4)

Moreover an application of [12, Corollary 2] yields that for any δ2 > 0 there exists a
K(δ2) > 0 such that for r, s = 1,2, . . . ,k, we have

‖cn−r+1,rqn−r+1,sy
[s−1]‖1 � δ2‖T̃maxy‖u +K(δ2)‖y‖w,
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where ‖ · ‖1 =
∫ b
a | · |dx . Combined with (3.4) for any δ3 > 0 we have

|(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])| � [δ3(y[k],y[k])

1
2
u +K(δ3)(y,y)

1
2
w ]2.

Hence together with (3.3) we infer that for each δ > 0, there exists a K(δ ) > 0 such
that

|(Tminy,y)w − (y[k],y[k])u| � δ (y[k],y[k])u +K(δ )(y,y)w.

Therefore for δ = 1 we have

(Tminy,y)w � −K(δ )(y,y)w,

i.e., Tmin is bounded below. Then it follows from the Von Neumann Theorem that every
symmetric extension of Tmin is also bounded below. �

REMARK 3.6. The statement that regular symmetric differential operators with
positive leading coefficient are bounded below was proved by Möller-Zettl [14, Lemma
3.1], [13, Theorem 7.2] for the class of operators generated by E = ((−1)rδr,n+1−s)n

r,s=1
and Q = EQ∗E . In this paper we have shown that for the larger class of skew-diagonal
matrices C and the corresponding Q satisfying

Q = CQ∗C, C−1 = −C = C∗, (3.5)

the symmetric operators M = MQ are bounded below.

4. The Friedrichs extension of symmetric operators

In this section, for each symmetric differential operator, we find the boundary
condition which determine its Friedrichs extension. If T (U) defined by (1.5) satisfies

rank(UGU∗) = 2(l−n), n < l � 2n,

with

G = (−1)k
(

C 0
0 −C

)
, (4.1)

then M = MQ generates symmetric operators T . Suppose MQ has a positive leading
coefficient that (3.2) is satisfied.

Now we introduce some notation and several Lemmas before starting our main
results.

Write
U := VJ, V = (V1 V2) , Vj ∈ Ml,n(C), j = 1,2, (4.2)

in (1.5), and set
Ĝ = JGJ, (4.3)

with

J =

⎛⎜⎜⎝
Ik 0 0 0
0 0 Ik 0
0 Ik 0 0
0 0 0 Ik

⎞⎟⎟⎠ ∈ M2n(C),
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where Ik denotes the k× k identity matrix. Also N (V ) denotes the null space of the
matrix V and R(V ) denotes the range of the matrix V.

For y ∈ Dmax let

Yk =

⎛⎜⎝ y[0]

...
y[k−1]

⎞⎟⎠ , Ŷk =

⎛⎜⎝ y[k]

...
y[n−1]

⎞⎟⎠ , (4.4)

and

Ŷa,b =

⎛⎜⎜⎝
Yk(a)
Yk(b)
Ŷk(a)
Ŷk(b)

⎞⎟⎟⎠ .

Note that

(−1)kC = (−1)k
(

0 Ĉk

−Ĉ∗
k 0

)
with Ĉk = (cr,k+s)k

r,s=1 is a skew-diagonal unitary matrix, that is,

cr,k+scr,k+s = 1, for r+ s = k+1, 1 � r � k; (4.5)

cr,k+s = 0, otherwise.

Hence from (4.3) we have

Ĝ = (−1)k
(

0 G1

−G∗
1 0

)
with

G1 =
(

Ĉk 0
0 −Ĉk

)
.

REMARK 4.1. Here Ĝ satisfies

Ĝ−1 = −Ĝ = Ĝ∗.

LEMMA 4.2. Suppose n � l � 2n. Then the operator T which is defined on

D(T ) =
{
y ∈ Dmax : VŶa,b = 0, V ∈ Ml,2n(C)

}
, (4.6)

is a symmetric operator with l dimensional restriction of Tmax if and only if there exists
a matrix N ∈ M(2n−l),2n(C) satisfying

rank(N) = 2n− l, NĜN∗ = 0, (4.7)

and V is a complete solution of the matrix equation

NV ∗ = 0, (4.8)
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i.e., V satisfies the equation (4.8) with rank(V )= l. Moreover, the domain of its adjoint
operator T ∗ is characterized by

D(T ∗) =
{
y ∈ Dmax : NĜŶa,b = 0

}
, (4.9)

where Ĝ ∈ M2n(C) is defined as (4.3) .

Proof. First let us assume that N ∈ M(2n−l),2n(C) satisfies (4.7) and (4.8). We
show that T defined on (4.6) is symmetric. Note that T (U) = T (VJ) with U = VJ
and JN (U) = N (V ) , from [26, Lemma 14] and Theorem 2.1 we only need to prove
N (V ) ⊂ R(ĜV ∗) , i.e.,

Ẑ∗
a,bĜŶa,b = 0

for all y, z ∈ D(T ) with

Ŷa,b =

⎛⎜⎜⎝
Yk(a)
Yk(b)
Ŷk(a)
Ŷk(b)

⎞⎟⎟⎠ , Ẑa,b =

⎛⎜⎜⎝
Zk(a)
Zk(b)
Ẑk(a)
Ẑk(b)

⎞⎟⎟⎠ .

If y, z ∈ D(T ), in view of (4.8) there exists a column vector �c∈ C
2n−l such that Ẑa,b =

N∗�c and a column vector �̂c ∈ C2n−l such that Ŷa,b = N∗�̂c . This yields

Ẑ∗
a,bĜŶa,b =�c∗(NĜN∗)�̂c = 0. (4.10)

Since V is a complete solution of matrix equation (4.8), it follows that rank(V ) = l.
From Theorem 1.3 we also see that T is a l dimensional restriction of the maximal
operator Tmax. Clearly the converse also holds. In fact, if T which is defined on (4.6) is
symmetric, then from Theorem 2.1 we obtain that rank(UGU∗) = 2(l−n), n � l � 2n,
with U = VJ . Combined with Naimark Patching Lemma [26, Lemma 6] and (4.10)
there exists a matrix N ∈ M(2n−l),2n(C) such that (4.7) is satisfied. Moreover (4.8) also
holds.

Next we prove that (4.9) holds. Note that

Dmin ⊆ D(T ) ⊆ D(T ∗) ⊆ Dmax,

since T is a l dimensional restriction of the maximal operator Tmax, this shows that the
deficiency index of T is (l−n) and, therefore, T ∗ is a 2n− l dimensional restriction
of the maximal operator Tmax. On the other hand, we obtain

0 = (Ty,z)w − (y,T ∗z)w = Z∗
a,bGYa,b = Ẑ∗

a,bĜŶa,b,

where y ∈D(T ) and z ∈D(T ∗). It should be noted that, for any �c ∈ C2n−l , there exists
a function y ∈ D(T ) such that Ŷa,b = N∗�c. It leads to (NĜ∗)Ẑ∗

a,b = 0 if z ∈ D(T ∗).
By the fact rank(NĜ∗) = 2n− l, we know that the dimension of the space solutions of
equation (NĜ∗)Ẑ∗

a,b = 0 is l. Therefore, combined with Ĝ∗ =−Ĝ , we obtain that (4.9)
holds. The proof is complete. �
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We decompose N = (N1 N2) with matrices N1, N2 ∈ M(2n−l),n(C) . Then

NĜ = (−1)k(−N2G
∗
1 N1G1).

Since D(T )⊂D(T ∗). This implies that NĜ can be represented by a linear combination
of row vectors of V. By the elementary matrix transformation of rows, we can rewrite
V as

V = (−1)k
(

V11 V12

−N2G∗
1 N1G1

)
, (4.11)

where V11, V12 ∈ M(2l−2n),n(C) .

LEMMA 4.3. Let T be a symmetric operator as stated in Lemma 4.2 . Then V
can be represented as (4.11) with

rank(V12) = l−n.

REMARK 4.4. Let rank(N1) = r1(� (2n− l)) , by the above Lemma, there exists
a nonsingular matrix P of order l so that the matrix V, defined by (4.11), also can be
represented as follows.

V = P−1

⎛⎜⎜⎝
V̂11 V̂12

V̂21 0
−N̂12G∗

1 0
−N̂22G∗

1 N̂21G1

⎞⎟⎟⎠ , (4.12)

where V̂rs ∈ M(l−n),n(C), r, s = 1,2 and rank(V̂21) = rank(V̂12) = l − n . In the
following proof we use the notation “ −→ ” to denote this multiplication process, eg.
(4.13).

Proof. For N = (N1 N2) with N1, N2 ∈ M(2n−l),n(C) being given, if rank(N1) =
r1(� (2n− l)) , and B ∈ M(n−r1),n(C) is a complete solution of the matrix equation
N1B∗ = 0, it is easy to see that rank(B) = n− r1 . Since V is a complete solution
of matrix equation NV ∗ = 0, it follows that the row vectors of (B 0) can be linear
expressed by the row vectors of V. This implies that there exists a matrix (Ṽ11 Ṽ12) and
a nonsingular matrix of order l such that

V −→
(

Ṽ11 Ṽ12

B 0

)
, (4.13)

with 0 ∈ M(n−r1),n and rank(Ṽ11) = rank(Ṽ12) = l−n+ r1 .
On the other hand, in view of rank(N1) = r1 , we obtain by the elementary matrix

transformation of rows that

N −→
(

0 N̂12

N̂21 N̂22

)
= (N1 N2),
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where rank(N̂12) = 2n− l − r1 , N̂21, N̂22 ∈ Mr1,n(C), 0 is a (2n− l − r1)× n zero
matrix. Moreover, it is easy to see that

(−N2G
∗
1 N1G1) =

(−N̂12G∗
1 0

−N̂22G∗
1 N̂21G1

)
.

Since NĜN∗ = 0 and rank(N̂21) = r1, we get that the row vectors of (−N̂12G∗
1 0) and

(−N̂22G∗
1 N̂21G1) can be linear expressed by the row vectors of (B 0) and (Ṽ11 Ṽ12)

in (4.13), respectively. This together with (4.11) and (4.13) yields (4.12), where
rank(V̂12) = l−n . This also shows that rank(V̂21) = l−n . The proof is complete. �

LEMMA 4.5. For y ∈ Dmax and n = 2k , we have

(Tmaxy,y)w =
k

∑
r=1

k

∑
s=1

(−1)k(cn−r+1,rqn−r+1,sy
[s−1],y[r−1])

+ (−1)k(qk,k+1y
[k],ck,k+1y

[k])+ (Y ∗
k (a) Y ∗

k (b))G1

(
Ŷk(a)
Ŷk(b)

)
.

Proof. From Proposition 3.3 we obtain this identity immediately. �

LEMMA 4.6. Let T be a symmetric operator as stated in Lemma 4.2 . Then there
exists a constant matrix H ∈ Mn(C) such that for y ∈ D(T ) we have

(Y ∗
k (a) Y ∗

k (b))G1

(
Ŷk(a)
Ŷk(b)

)
= (Y ∗

k (a) Y ∗
k (b))H

(
Yk(a)
Yk(b)

)
. (4.14)

Proof. From the proof of Lemma 4.2, we have

D(T ) =
{

y ∈ Dmax : Ŷa,b = N∗�c, �c ∈ C
2n−l

}
.

We decompose N = (N1 N2) with N1, N2 ∈ M(2n−l),n(C) . Then(
Yk(a)
Yk(b)

)
= N∗

1�c,

(
Ŷk(a)
Ŷk(b)

)
= N∗

2�c.

This implies that

(Y ∗
k (a) Y ∗

k (b))G1

(
Ŷk(a)
Ŷk(b)

)
=�c∗(N1G1N

∗
2 )�c. (4.15)

We prove (4.14) holds throughout the following two cases.
Case 1. rank(N1) = 2n− l. In this case, since (2n− l) � n, it follows that (N1N∗

1 )

is nonsingular and left multiplying

(
Yk(a)
Yk(b)

)
= N∗

1�c by (N1N∗
1 )−1N1 gives

�c = (N1N
∗
1 )−1N1

(
Yk(a)
Yk(b)

)
.
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This together with (4.15) shows that (4.14) remains true when

H = ((N1N
∗
1 )−1N1)∗(N1G1N

∗
2 )(N1N

∗
1 )−1N1.

Case 2. rank(N1) = r1 < 2n− l. In this case, according to the proof of Lemma
4.3, there exists an (2n− l)× (2n− l) nonsingular matrix P so that

PN1 =
(

0
N̂21

)
, PN2 =

(
N̂12

N̂22

)
, (4.16)

where N̂21, N̂22 ∈ Mr1,n(C) and 0, N̂12 ∈ M(2n−l−r1),n(C). Without loss of generality,
we assume N1 and N2 have the forms of the right hand side of (4.16). For any y∈D(T ),

there exists a column vector �c =
(

�c1

�c2

)
∈ C2n−l satisfying

(
Yk(a)
Yk(b)

)
= (0 N̂∗

21)
(

�c1

�c2

)
= N̂∗

21�c2,(
Ŷk(a)
Ŷk(b)

)
= (N̂∗

12 N̂∗
22)

(
�c1

�c2

)
= N̂∗

12�c1 + N̂∗
22�c2,

where �c1 ∈ C(2n−l−r1) and �c2 ∈ Cr1 . Similar to the argument in Case 1, we get

�c2 = (N̂21N̂
∗
21)

−1N̂21

(
Yk(a)
Yk(b)

)
. (4.17)

Note that from (4.7) and (4.16) we have

0 = NĜN∗

= (−1)k
(

0 N̂12

N̂21 N̂22

)(
0 G1

−G∗
1 0

)(
0 N̂∗

21
N̂∗

12 N̂∗
22

)
= (−1)k

(
0 −N̂12G∗

1N
∗
21

N̂21G1N̂∗
12 −N̂22G∗

1N̂
∗
21 + N̂21G1N̂∗

22

)
,

which implies N12G∗
1N

∗
21 = 0. Furthermore, together with (4.16) we infer

N2G
∗
1N

∗
1 =

(
N̂12

N̂22

)
G∗

1(0 N̂∗
21)

=
(

0 N̂12G∗
1N

∗
21

0 N̂22G∗
1N̂

∗
21

)
=

(
0 0
0 N̂22G∗

1N̂
∗
21

)
.

Therefore, we infer

�c∗(N1G1N
∗
2 )�c = (�c∗1 �c∗2)

(
0 0
0 N̂21G1N̂∗

22

)(
�c1

�c2

)
=�c∗2(N̂21G1N̂

∗
22)�c2.



228 Q. BAO, G. WEI AND A. ZETTL

This, together with (4.15) and (4.17), shows that (4.14) remains true when

H = ((N̂21N̂
∗
21)

−1N̂21)∗(N̂21G1N̂
∗
22)(N̂21N̂

∗
21)

−1N̂21.

The proof is complete. �

Now we state our main Theorems:

THEOREM 4.7. Let the notations and assumptions be as in Proposition 3.5 and
assume that T defined by

D(T ) =
{
y ∈ Dmax : VŶa,b = 0, V ∈ Ml,2n(C)

}
, n < l � 2n, (4.18)

is a symmetric extension of Tmin . Then V can be rewritten as

V =

⎛⎜⎜⎝
V̂11 V̂12

V̂21 0
−N̂12G∗

1 0
−N̂22G∗

1 N̂21G1

⎞⎟⎟⎠ , V̂rs ∈ M(l−n),n(C), r, s = 1,2 (4.19)

with rank(V̂21) = rank(V̂12) = l − n, n < l � 2n and N̂21, N̂22 ∈ Mr1,n(C) with
rank(N̂21) = r1 = rank(N̂22), r1 � 2n− l . Here 0 is a (2n− l − r1)× n zero matrix
and N̂12 ∈ M(2n−l−r1),n(C) in (4.12) . Then T is bounded below and the Friedrichs
extension TF of T is defined on the domain

D(TF) =
{

y ∈ D(T ∗) : V̂21

(
Yk(a)
Yk(b)

)
= 0

}
(4.20)

=
{

y ∈ Dmax : V̂21

(
Yk(a)
Yk(b)

)
= 0, NĜŶa,b = 0

}
, (4.21)

where N ∈ M(2n−l),2n(C) is a complete solution of the matrix equation

NV ∗ = 0,

and satisfies NĜN∗ = 0.

Proof. It is obvious that (4.19) follows from Lemma 4.3 and Remark 4.4.
Moreover from Proposition 3.5 we infer that T defined on (4.18) is bounded below.
Now we define an operator Ts with D(Ts) :

D(Ts) =
{

y ∈ D(T ∗) : V̂21

(
Yk(a)
Yk(b)

)
= 0

}
.

Here V̂21 ∈ M(l−n),n(C) is a submatrix of (4.19) satisfying

rank(V̂21) = l−n, n < l � 2n.
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Denote by

A = (−1)k
(

V̂21 0
−N2G∗

1 N1G1

)
,

where N = (N1 N2) satisfies (4.7) and (4.8), then

D(Ts) =
{

y ∈ Dmax : A

(
Yk(a)
Yk(b)

)
= 0

}
.

It is easy to ensure that D(T ) ⊂ D(Ts) ⊂ D(Tmax) ⊂ D(T̃max) , where T̃max is defined as
in the proof of Proposition 3.5. Since NV ∗ = 0, it follows from (4.19) that N1V̂ ∗

21 = 0.
Furthermore, by Lemma 4.2 and Lemma 4.3 we infer rank(A) = n , also combined with
G1G∗

1 = In we have

AĜA∗ =
(

V̂21 0
−N2G∗

1 N1G1

)(
0 G1

−G∗
1 0

)(
V̂ ∗

21 −G1N∗
2

0 G∗
1N

∗
1

)
=

(
0 V̂21G1

−N1G1G∗
1 −N2G∗

1G1

)(
V̂ ∗

21 −G1N∗
2

0 G∗
1N

∗
1

)
=

(
0 V̂21G1G∗

1N
∗
1

−N1G1G∗
1V̂

∗
21 N1G1G∗

1G1N∗
2 −N2G∗

1G1G∗
1N

∗
1

)
=

(
0 V̂21N∗

1
−N1V̂ ∗

21 NĜN∗

)
= 0.

Thus combined with [1, Theorem 1.1] we know that the operator Ts is a self-adjoint
extension of T which is defined on (4.18).

On the other hand, we prove that Ts is the Friedrichs extension of T. Let y∈D(T ) .
From the proof of Proposition 3.5 combined with Lemma 4.5 and Lemma 4.6 we obtain
that for each ε > 0, there is a K(ε) > 0 such that

(Ty,y)w � ε(y[k],y[k])u +K(ε)(y,y)w

and thus it yields
‖y[k](x)‖2

u � C0((T +K)y,y)w, (4.22)

for all y ∈ D(T ), where K = K(ε) and C0 is a positive constant.
According to Lemma 4.5 and Lemma 4.6 we also infer that there exists a constant

K0 such that

(Ty,y)w � (y[k],y[k])u +K0

k−1

∑
r=0

(y[r],y[r])

for all y ∈ D(T ). Moreover we have

k−1

∑
r=0

(y[r],y[r]) � C1((T +K1)y,y)w, (4.23)

where K1 = K1(ε) and C1 is a positive constant.
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Now suppose y ∈ D(TF). Then we see that y ∈ D(T ∗) and there exists a sequence
{ym} ⊂ D(T ) such that

ym → y in L2(I,w), (4.24)

and
(T (ym − yl),ym − yl)w → 0, (4.25)

as m, l → ∞. Applying (4.22) to (ym − yl) instead of y, and together with (4.24) and

(4.25) show that y[k]
m converge uniformly on interval I to some continuous function zk

in L2(I,u) . For r = 0,1,2, . . . ,k−1, from (4.23) there are continuous functions zr such

that y[r]
m → zr in L∞(I) ⊂ L2(I,u) . For r = 0 we also have ym → y in L2(I,w) which

implies that we may assume y = z0. Moreover, the sequence(
Ykm(a)
Ykm(b)

)
=

(
y[0]
m (a) · · · y[k−1]

m (a) y[0]
m (b) · · · y[k−1]

m (b)
)T

is convergent in Cn . That is, there is a unique column vector �β ∈ Cn satisfying

lim
m→∞

(
Ykm(a)
Ykm(b)

)
= �β = (z0(a) · · · zk−1(a) z0(b) · · · zk−1(b))T .

For a fixed t ∈ I , let
φk(·,t) = (φk,r,s(·,t))k

r,s=1

be the fundamental matrix of Y ′
k = QkYk with φk(t,t) = Ik, Qk = (qr,s)k

r,s=1 . Here Qk is
defined as in the proof of Proposition 3.5. Note that

y[r]
Qk

= y[r]
Q , r = 0,1, . . . ,k−1,

y[k]
Qk

= ck,1qk,k+1y
[k]
Q .

Combined with [26, Corollary 1] and [13, Corollary 2.7] we have for α ∈ I and r =
0,1, . . . ,k−1,

y[r]
m (x) =

k

∑
s=1

φk,r+1,s(x,α)y[s−1]
m (α)+

∫ x

α
φk,r+1,k(x, t)ck,1qk,k+1(t)y

[k]
m (t)dt,

with Ykm(α) =�cm , for �cm ∈ Ck, m ∈ N , and by taking limits we obtain

zr(x) =
k

∑
s=1

φk,r+1,s(x,α)zs−1(α)+
∫ x

α
φk,r+1,k(x, t)ck,1qk,k+1(t)zk(t)dt.

In particular, for r = 0, y = z0 is the unique solution of the initial value problem

y[k]
Qk

= ck,1qk,k+1zk, y[r](a) = zr(a), r = 0,1, . . . ,k−1.
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And for r = 1, . . . ,k−1, we have y[r] = zr . In particular, since a is the left endpoint of
I and b is the right endpoint of I , we have

y[r](a) = lim
m→∞

y[r]
m (a) = zr(a), y[r](b) = lim

m→∞
y[r]
m (b) = zr(b).

Hence we get

�β =
(

Yk(a)
Yk(b)

)
.

Furthermore, since ym belong to D(T ) ⊂ D(T̃max), it follows that

V

⎛⎜⎜⎝
Ykm(a)
Ykm(b)
Ŷkm(a)
Ŷkm(b)

⎞⎟⎟⎠ = 0.

This implies

0 = (V̂21 0)

⎛⎜⎜⎝
Ykm(a)
Ykm(b)
Ŷkm(a)
Ŷkm(b)

⎞⎟⎟⎠ = V̂21

(
Ykm(a)
Ykm(b)

)
→ V̂21

(
Yk(a)
Yk(b)

)
.

The fact that V̂21

(
Yk(a)
Yk(b)

)
= 0 shows y∈D(Ts) and thus D(TF)⊂D(Ts). On the other

hand, we have proved that D(Ts) is the domain of a self-adjoint extension Ts of T.
Consequently, the self-adjointness of TF leads to Ts = TF . The proof is complete. �

THEOREM 4.8. Let the assumptions be as in Theorem 4.7 and let the symmetric
operator T be given by (4.18) . Then the domain D(TF) of its Friedrichs extension TF

is characterized by

D(TF) =
{

y ∈ D(Tmax) : Ŷa,b ∈ R(ĜV ∗),
(

Yk(a)
Yk(b)

)
∈ G1V

∗
2 (N (VĜV ∗))

}
, (4.26)

where V2 is given by (4.2) .

Proof. Observe that V =UJ = (V1 V2) and JGU∗(N (UGU∗)) = ĜV ∗(N (VĜV ∗)) ,
(4.26) is obtained easily from property (7) in [26, Lemma 14] combined with the proof
of Theorem 4.7. �

REMARK 4.9. Under the assumptions of Theorem 4.8 we also have

D(TF) =
{

y ∈ D(Tmax) : Ŷa,b ∈ R(ĜV ∗),
(

Yk(a)
Yk(b)

)
∈V−1

1 R(V2)
}

.
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REMARK 4.10. Let C = E = ((−1)rδr,n+1−s)n
r,s=1 in Theorem 4.8 and Remark

4.9, i.e.,

Ĝ =
(

0 G1

−G∗
1 0

)
with

G1 = (−1)k
(−Ek 0

0 Ek

)
, 2k = n,

then we obtain the Möller-Zettl results in [14] as a special case. Moreover in this case
if l = 2n in (4.18), we obtain the Friedrichs extension of the minimal operator in [13,
Theorem 8.1]. Also Niessen-Zettl [16, Theorem 2.1] found a special case for this E
and a certain matrix Q .

REMARK 4.11. It is clear that the characterization of the Friedrichs extension in
Theorem 4.7 and Theorem 4.8 should be equivalent to each other. However Theorem
4.7 is more explicit than the result in Theorem 4.8. For a better understanding of our
main results we give some simple examples for the special case n = 2, 4 in the next
section.

5. Examples

In this section we consider the Friedrichs extension TF of the symmetric operator
T for some special cases. Throughout this section the minimal operator Tmin is bounded
below and thus its symmetric extensions are also bounded below.

We start to consider the Friedrichs extension TF for regular Sturm-Liouville
differential operators. In this case, n = 2 in (1.1) and (1.2). Assume that

Ty = w−1(−(p1y
′)′ + p0y) (5.1)

on I. Here the coefficients w, p0, p1 all are real valued functions satisfying

1
p1

, p0, w ∈ L1(I), and p1, w > 0 a.e. on I.

It is obvious that (5.1) generates a minimal operator Tmin and a maximal operator Tmax

with domains Dmin and Dmax , respectively. The symmetric operator realizations T of
(1.1) in the Hilbert space L2(I,w) satisfy

Tmin ⊂ T = T ∗ ⊂ Tmax,

these operators T differ from each other only by their domains.
Let the operator T defined by

D(T ) =
{
y ∈ Dmax : VŶa,b = 0, rank(V ) = 3, V ∈ M3,4(C)

}
(5.2)
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be a symmetric operator (not minimal) with 3 dimensional restriction of Tmax , where

Ŷa,b =

⎛⎜⎜⎝
y(a)
y(b)

(py′)(a)
(py′)(b)

⎞⎟⎟⎠ .

Then by Lemma 4.2 there exists a matrix N = (a1 a2 a3 a4) ∈ M1,4(C) satisfying
rank(N) = 1 and NF4N∗ = 0, where

F4 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , (5.3)

and V ∈ M3,4(C) is a complete solution of matrix equation NV ∗ = 0. Moreover from
Lemma 4.3 it follows that V in (5.2) has the form

V =

⎛⎝ b11 b12 0 0
b21 b22 b23 b24

−a3 a4 a1 −a2

⎞⎠ , brs ∈ C (5.4)

with

a1b11 + a2b12 = 0,

a1b21 + a2b22 + a3b23 + a4b24 = 0,

a1a3− a2a4− a3a1 + a2a4 = 0.

Then from Theorem 4.7 we obtain the following Corollary:

COROLLARY 5.1. Let T be a symmetric operator defined by (5.1)–(5.4) , which
is a 3 dimensional restriction of Tmax. Then the boundary conditions of its Friedrichs
extension TF are characterized by

b11y(a)+b12y(b) = 0,

−a3y(a)+a4y(b)+a1(py′)(a)−a2(py′)(b) = 0.

}
(5.5)

Obviously these are equivalent to

D(TF) =

⎧⎪⎪⎨⎪⎪⎩y ∈ Dmax : V̂21

(
y(a)
y(b)

)
= 0, NF4

⎛⎜⎜⎝
y(a)
y(b)

(py′)(a)
(py′)(b)

⎞⎟⎟⎠ = 0

⎫⎪⎪⎬⎪⎪⎭ ,

where V̂21 = (b11 b12) .
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It is easy to see that if both b11 and b12 in (5.5) are not vanishing, then the
boundary conditions involve coupled self-adjoint conditions. We give an example for
this case.

EXAMPLE 5.1. Let N = (−2 1 −5+ i −7−2i). Then T defined by (5.2) with

V =

⎛⎝ 1 2 0 0
0 5+ i 1 0

5− i −7−2i −2 −1

⎞⎠
is a symmetric operator with 3 dimensional restriction of the maximal operator Tmax.
By using Corollary 5.1, the boundary conditions of its Friedrichs extension are:

y(a)+2y(b) = 0,

(5− i)y(a)+ (−7−2i)y(b)−2(py′)(a)− (py′)(b) = 0.

}
(5.6)

By a simple calculation, we obtain that the canonical form of (5.6) is the real
coupled self-adjoint boundary conditions:(

y(b)
(py′)(b)

)
= K

(
y(a)

(py′)(a)

)
with K =

(− 1
2 0

3
2 −2

)
.

Next we consider the case n = 4. Assume that M has the familiar form

My = [(p2y
′′)′ − (p1y

′)]′ + p0y = λwy on I, (5.7)

where the coefficients w, p j for j = 0,1,2 all are real valued functions defined on the
interval I satisfying

1
p2

, p1, p0, w ∈ L1(I), and p2, w > 0, a.e. on I.

For a given matrix N ∈ M(8−l),8(C) satisfying

rank(N) = 8− l, NF8N
∗ = 0, 4 � l � 8, (5.8)

where

F8 =
(

0 Ĵ4

−Ĵ4 0

)
with Ĵ4 =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞⎟⎟⎠ .

If V ∈ Ml,8(C) is a complete solution of the matrix equation NV ∗ = 0, then by
Lemma 4.2 T generated by (5.7) is a symmetric operator with l dimensional restriction
of Tmax . The domain of T is equivalent to

D(T ) =
{
y ∈ Dmax : VŶa,b = 0

}
, (5.9)
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with the boundary matrix

V =

⎛⎝ V̂11 V̂12

V̂21 0
−N2Ĵ4 N1Ĵ4

⎞⎠ , V̂rs ∈ M(l−4),8(C), r, s = 1,2 (5.10)

with rank(V̂12) = rank(V̂21) = l−4 for 4 � l � 8, and

Ŷa,b =
(
y[0](a) y[1](a) y[0](b) y[1](b) y[2](a) y[3](a) y[2](b) y[3](b)

)T
.

Here
y[0] = y, y[1] = y′, y[2] = p2(y[1])′, y[3] = p1y

[1] − (y[2])′.

By Lemma 4.2 we also have

D(T ∗) =
{
y ∈ Dmax : NF8Ŷa,b = 0

}
. (5.11)

Combined with Theorem 4.7 we infer:

COROLLARY 5.2. Let 4 < l � 8 . Assume that T defined by (5.9) is a symmetric
operator with l dimensional restriction of the maximal operator Tmax. Then the
boundary conditions of its Friedrichs extensions TF can be characterized by

V̂21

⎛⎜⎜⎝
y[0](a)
y[1](a)
y[0](b)
y[1](b)

⎞⎟⎟⎠ = 0,

(−N2Ĵ4 N1Ĵ4
)
Ŷa,b = 0.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5.12)

Here V̂21 is a submatrix of (5.10) .

In the following, we give an example for Sturm-Liouville operator of order four.

EXAMPLE 5.2. Let

N =
(−2 −2 −2 −2 −2 −2 5 5
−3 −3 −3 −3 −3 −3 5 10

)
and

V =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 2 1 2 3 2 2
2 2 5 5 −2 −2 2 2
3 3 10 5 −3 −3 3 3

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.13)

Observe that N satisfies (5.8) and V is a complete solution of matrix equation NV ∗ = 0.
The operator Ty = 1

wMy , where My is defined by (5.7), is a symmetric operator with 6
dimensional restriction of Tmax with the domain

D(T ) =
{
y ∈ Dmax : VŶa,b = 0

}
,
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where V is denoted by (5.13). Furthermore according to (5.11) we obtain that

D(T ∗) =
{

y ∈ Dmax :

(
2 2 5 5 −2 −2 2 2
3 3 10 5 −3 −3 3 3

)
Ŷa,b = 0

}
.

Then using Corollary 5.2 we obtain

V̂21 =
(

1 0 −1 0
0 1 −1 0

)
.

Thus the Friedrichs extension TF of T is characterized by the following mixed
boundary conditions

y(a)− y(b) = 0,

y[1](a)− y(b) = 0,

2y(a)+2y[1](a)+5y(b)+5y[1](b)−2y[2](a)−2y[3](a)+2y[2](b)+2y[3](b) = 0,

3y(a)+3y[1](a)+10y(b)+5y[1](b)−3y[2](a)−3y[3](a)+3y[2](b)+3y[3](b) = 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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