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Abstract. Let H be a complex Hilbert space. We consider the interpolation problem: describe
the pair (W,L) of subspaces of H such that there is a reflection J on H satisfying J(W )⊆ L.
We show that two subspaces W,L have this interpolation property if and only if dim(W ∩L⊥) �
dim(L∩W⊥), which is equivalent to that there exists a conjugation C on H such that C(W)⊆
L. Moreover, we study the least upper bound of these interpolating reflections.

1. Introduction

Let H and K be separable complex Hilbert spaces, and B(H ,K ) be the set
of all bounded linear operators from H into K . An operator A ∈ B(H ) is called
positive, if A � 0, meaning 〈Ax,x〉� 0 for all x∈H , where 〈,〉 is the inner product of
H . Moreover, if P = P∗ = P2, then P is called an (orthogonal) projection. We denote
by P(H ) the set of all orthogonal projections on H . As usual, the operator order
(Loewner partial order) relation A � B between two self-adjoint operators is defined
as A− B � 0. An operator U ∈ B(H ,K ) is said to be unitary if U is invertible
with U−1 = U∗. The set of all unitary operators from H onto K is denoted by
U (H ,K ). For an operator T ∈ B(H ,K ),N(T ),R(T ) and R(T ) denote the null
space, the range of T, and the closure of R(T ), respectively.

An operator J ∈ B(H ) is said to be a reflection (or self-adjoint unitary operator)
if J = J∗ = J−1. In this case, J+ = I+J

2 and J− = I−J
2 are mutually annihilating or-

thogonal projections. If J is a non-scalar reflection, then an indefinite inner product is
defined by

[x,y] := 〈Jx,y〉 (x,y ∈ H )

and (H ,J) is called a Krein space ([1]). We denote by Re f (H ) the set of all reflec-
tions on H . A map C : H → H is called a conjugation if (a) C is anti-linear, i.e.
C(αx+ y) = αCx+Cy for all x,y ∈ H and α ∈ C, (b) C is invertible with C−1 = C
and (c) 〈Cx,Cy〉 = 〈y,x〉 for all x,y ∈ H . For U ∈ U (H ), if both of PU = UQ and
UP = QU hold, then U is called an intertwining operator of orthogonal projections P
and Q.
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It is well-known that orthogonal projections on a Hilbert space are essential in
operator theory (see [2–7, 10–11, 13–17] and therein references). Avron, Seiler and
Simon ([4]) obtained that if P,Q ∈ P(H ) with ‖ P−Q ‖< 1, then there exists an
intertwining operator for P and Q. A sufficient and necessary condition under which
there exists an intertwining operator of P and Q has been given in [17, Theorem 6].
More recently, Simon ([16]) by “supersymmetric” approach presented a more elegant
proof of [17, Theorem 6]. In particular, Dou et al. ([9]) and Böttcher et al. ([5]) have
characterized the set of all intertwining operator of orthogonal projections P and Q.
According to [9, Theorem 3.1] or [5, Theorem 5], an easy observation is that there exists
an intertwining operator of P and Q if and only if there exists a reflection J ∈ Re f (H )
with JPJ = Q (which is equivalent to J(R(P))= R(Q)). That is, there exists a reflection
J ∈ Re f (H ) with J(R(P)) = R(Q)) if and only if dim(R(P)∩N(Q)) = dim(N(P)∩
R(Q)). Also, Liu et al. ([12]) have given some sufficient and necessary conditions
for the existence of a conjugation C with C(R(P)) = R(Q). Moreover, Jorgensen and
Tian in [15] presented the reflection-positivity and structures of admissible reflection
between orthogonal projections.

The aim of the present paper is to consider the interpolation problem for reflec-
tions between two projections P and Q. We mainly characterize the pairs (W,L) of
subspaces of H such that there is a reflection J ∈ Re f (H ) with J(W ) ⊆ L. The mo-
tivation to study this interpolation problem stems from the specific structures and de-
compositions of reflections which was been studied in [13,14]. Also, we want to know
whether there is some connection between the interpolation problem of reflections and
conjugations. In Section 2, we show that for the pairs (W,L) of subspaces, there is a
reflection J ∈ Re f (H ) with J(W ) ⊆ L if and only if dim(W ∩L⊥) � dim(L∩W⊥),
which is also equivalent to that there exists a conjugation C on H such that C(W )⊆ L.
Moreover, the supremum (with respect to the operator order) of the reflection J with
JPJ = Q and PJP � 0 (J is called reflection positivity) are presented for two orthogo-
nal projections P and Q. In Section 3, we mainly consider two example and a charac-
terization of reflections involving three orthogonal projections, which has been studied
in [15].

2. Interpolation property of reflections

To show our main results, we need the following lemma which is another form
of Halmos’ two projections theorem ([10]). Also, we use PL to denote the orthogonal
projection onto the closed subspace L.

LEMMA 1. ([8, Lemma 1] or [6, Theorem 1.2]) Let W and L be two closed
subspaces of H . Then PW and PL have the operator matrices

PW = I1⊕ I2⊕0I3⊕0I4⊕ I5⊕0I6 (2.1)

and

PL = I1⊕0I2⊕ I3⊕0I4⊕
(

Q0 Q
1
2
0 (I5 −Q0)

1
2 D

D∗Q
1
2
0 (I5−Q0)

1
2 D∗(I5−Q0)D

)
(2.2)
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with respect to the space decomposition H = ⊕6
i=1Hi , respectively, where H1 =W ∩

L, H2 = W ∩L⊥ , H3 = W⊥∩L, H4 = W⊥∩L⊥ , H5 = W � (H1 ⊕H2) and H6 =
H � (⊕5

j=1H j), Q0 is a positive contraction on H5, 0 and 1 are not eigenvalues
of Q0, D is a unitary from H6 onto H5 and Ii is the identity on the corresponding
subspace Hi for i = 1, . . . ,6.

The converse statement of the above lemma also holds.

LEMMA 2. Let H = ⊕6
i=1Hi and Ii is the identity on the corresponding sub-

space Hi for i = 1,2 · · · ,6. Suppose that P and Q have the operator matrices

P = I1⊕ I2⊕0I3⊕0I4⊕ I5⊕0I6 (2.3)

and

Q = I1⊕0I2⊕ I3⊕0I4⊕
(

Q0 Q
1
2
0 (I5−Q0)

1
2 D

D∗Q
1
2
0 (I5−Q0)

1
2 D∗(I5−Q0)D

)
. (2.4)

If Q0 is a positive contraction on H5, 0 and 1 are not eigenvalues of Q0 and D
is a unitary from H6 onto H5, then P,Q ∈ P(H ) with H1 = R(P)∩ R(Q) and
H2 = R(P)∩N(Q).

Proof. P,Q ∈ P(H ) are verified directly. It is obvious that

R(P) = H1 ⊕H2⊕H5

and

R(Q) = H1 ⊕H3⊕R

(
Q0 Q

1
2
0 (I5−Q0)

1
2 D

D∗Q
1
2
0 (I5−Q0)

1
2 D∗(I5−Q0)D

)
.

If x ∈ R(P)∩R(Q), we get that

x =

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

0
0
x5

0

⎞⎟⎟⎟⎟⎟⎟⎠= Qx =

⎛⎜⎜⎜⎜⎜⎜⎝

x1

0
0
0

Q0x5

D∗Q
1
2
0 (I5−Q0)

1
2 x5

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where xi ∈ Hi for i = 1,2,5. Thus x2 = 0 and x5 = 0, so R(P)∩R(Q) ⊆H1. Clearly,
H1 ⊆ R(P)∩ R(Q), which implies R(P)∩ R(Q) = H1. In a similar way, we have
H2 = R(P)∩N(Q). �

REMARK 1. We can also get from Lemma 2 that H3 = N(P) ∩ R(Q), H4 =
N(P)∩N(Q), H5 = R(P)� (H1⊕H2) and H6 = H � (⊕5

i=1Hi).
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LEMMA 3. Let W and L be two closed subspaces of H . If dim(W ∩ L⊥) �
dim(L∩W⊥), then there exists a closed subspace L0 ⊆ L such that dim(W ∩L⊥

0 ) =
dim(L0∩W⊥) and W ∩L = W ∩L0.

Proof. Suppose that Hi is same to Lemma 1 for i = 1,2, · · ·6. Then Lemma 1
implies that PW and PL have the operator matrices

PW = I1⊕ I2⊕0I3⊕0I4⊕ I5⊕0I6 (2.5)

and

PL = I1⊕0I2⊕ I3⊕0I4⊕
(

Q0 Q
1
2
0 (I5 −Q0)

1
2 D

D∗Q
1
2
0 (I5−Q0)

1
2 D∗(I5−Q0)D

)
(2.6)

with respect to the space decomposition H = ⊕6
i=1Hi.

Since dim(W ∩L⊥) � dim(L∩W⊥), it follows dimH2 � dimH3. Then the sub-
space H3 can be divide into H3 = H

′
3 ⊕H

′′
3 , where dimH

′
3 = dimH2. Let H̃i = Hi

for i = 1,2,5,6, H̃3 = H
′

3 , and H̃4 = H
′′

3 ⊕H4. So we have a new space decom-

position H = ⊕6
i=1H̃i. Define the operator S with respect to the space decomposition

H = ⊕6
i=1H̃i as the form

S := I1⊕0I2⊕ I
′
3⊕0I

′
4⊕
(

Q0 Q
1
2
0 (I5 −Q0)

1
2 D

D∗Q
1
2
0 (I5 −Q0)

1
2 D∗(I5−Q0)D

)
.

It is easy to see that S ∈ P(H ) with S � PL. Setting L0 := R(S), we get that L0 ⊆ L.
Then Lemma 2 yields that

dim(W ∩L⊥
0 ) = dimH2 = dimH

′
3 = dim(L0∩W⊥)

and W ∩L = H1 = H̃1 = W ∩L0. �

LEMMA 4. ([12, Theorem 1.7]) Let W and L be two closed subspaces of H .
Then there exists a conjugation C on H such that C(W ) = L if and only if dim(W ∩
L⊥) = dim(L∩W⊥).

The following theorem is one of the main results of this section.

THEOREM 1. Let W and L be two closed subspaces of H . Then the following
statements are equivalent:

(a) There exists a J ∈ Re f (H ) such that J(W ) ⊆ L,
(b) dim(W ∩L⊥) � dim(L∩W⊥),
(c) There exists a conjugation C on H such that C(W ) ⊆ L.

Proof. (a) ⇒ (b). For the self-adjoint unitary operator J, we get that J(W⊥) =
J(W )⊥. Indeed, for all x∈W and y∈W⊥, we have 〈Jx,Jy〉= 〈x,y〉= 0. Thus J(W )⊆
J(W⊥)⊥ and J(W⊥)⊆ J(W )⊥, so J(W⊥) = J(W )⊥. Since J(W )⊆ L, it follows L⊥ ⊆
J(W )⊥ = J(W⊥). Then

dim(W ∩L⊥) = dim(J(W ∩L⊥)) = dim(J(W )∩ J(L⊥)) � dim(L∩W⊥).
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(b) ⇒ (c). By Lemma 3, there exists L0 ⊆ L such that dim(W ∩L⊥
0 ) = dim(L0 ∩

W⊥). Then we conclude from Lemma 4 that there exists a conjugation C on H with
C(W ) = L0, so C(W ) ⊆ L.

(c) ⇒ (b). If L1 := C(W ) ⊆ L, then by Lemma 4 again, we have dim(W ∩L⊥
1 ) =

dim(L1∩W⊥), which yields

dim(W ∩L⊥) � dim(W ∩L⊥
1 ) = dim(L1∩W⊥) � dim(L∩W⊥).

(b) ⇒ (a). Since dim(W ∩ L⊥) � dim(L∩W⊥), it follows dimH2 � dimH3,
where Hi is the same as in Lemma 1. With respect to the space decomposition H =
⊕6

i=1Hi, we define an operator J as the form

J = I1⊕
(

0 V ∗
V I3−VV ∗

)
⊕ I4⊕

(
Q

1
2
0 (I5−Q0)

1
2 D

D∗(I5−Q0)
1
2 −D∗Q

1
2
0 D

)
,

where V is a isometry operator from H2 into H3, D and Q0 are the same as in Lemma
1. By a direct calculation, we know that J = J∗ = J−1. It is easy to calculate that

JPW = I1⊕
(

0 0
V 0

)
⊕0⊕

(
Q

1
2
0 0

D∗(I5−Q0)
1
2 0

)
and

PLJPW = I1⊕
(

0 0
V 0

)
⊕0⊕

(
Q0Q

1
2
0 +Q

1
2
0 (I5−Q0)

1
2 DD∗(I5−Q0)

1
2 0

D∗Q
1
2
0 (I5−Q0)

1
2 Q

1
2
0 +D∗(I5−Q0)DD∗(I5−Q0)

1
2 0

)
.

Obviously,

Q0Q
1
2
0 +Q

1
2
0 (I5−Q0)

1
2 DD∗(I5−Q0)

1
2 Q

1
2
0 = Q

1
2
0

and

D∗Q
1
2
0 (I5−Q0)

1
2 Q

1
2
0 +D∗(I5−Q0)DD∗(I5−Q0)

1
2 = D∗(I5−Q0)

1
2 ,

so PLJPW = JPW , which yields J(W ) ⊆ L. �

LEMMA 5. ([9, Theorem 3.1] or [5, Theorem 5]) Let P,Q ∈ P(H ) with opera-
tor matrices (2.1) and (2.2), respectively. Then there exists a unitary U ∈ U (H ) such
that PU =UQ and UP = QU if and only if dimR(P)∩N (Q) = dimN (P)∩R(Q).
In this case,

{U ∈ U (H ) : PU = UQ and UP = QU}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U1⊕

(
0 C2

C3 0

)
⊕U4⊕

(
Q

1
2
0 (I5−Q0)

1
2 D

D∗(I5−Q0)
1
2 −D∗Q

1
2
0 D

)(
U0 0
0 D∗U0D

)
:

U1 ∈ U (H1), C2 ∈ U (H3,H2), C3 ∈ U (H2,H3),
U4 ∈ U (H4), U0 ∈ U (H 5), U0Q0 = Q0U0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

By Theorem 1, if W and L are closed subspaces of H , then there exists a reflec-
tion J such that J(W ) = L if and only if dim(W ∩L⊥) = dim(L∩W⊥). Moreover, we
have the following.
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PROPOSITION 1. Let P,Q∈P(H ) and J ∈ Re f (H ). Then the following state-
ments are equivalent:

(a) JPJ = Q,
(b) JP = QJP and JQ = PJQ,
(c)

J = J1 ⊕
(

0 V
V ∗ 0

)
⊕ J4⊕

⎛⎝ Q
1
2
0 J5 (I5 −Q0)

1
2 J5D

D∗(I5−Q0)
1
2 J5 −D∗Q

1
2
0 J5D

⎞⎠ . (2.7)

with respect to the space decomposition H = ⊕6
i=1Hi, where Hi (i = 1,2, · · ·6) , Q0

and D are the same as Lemma 2 and Remark 1, Ji ∈ Re f (Hi) for i = 1,4,5 with
Q0J5 = J5Q0 and V ∈ U (H3,H2).

Proof. (a) ⇐⇒ (b) is clear.
(a)⇐⇒ (c). Since J ∈ Re f (H ), it follows that JPJ = Q if and only if J ∈ {U ∈

U (H ) : PU = UQ and UP = QU}. Then Lemma 5 and the fact of J = J∗ imply that
JPJ = Q is equivalent to J has the matrix form (2.7). �

COROLLARY 1. Let W and L be two closed subspaces of H with dim(W ∩
L⊥) � dim(L∩W⊥). If F := {L0 ⊆ L : dim(W ∩L⊥

0 ) = dim(L0∩W⊥)}, then

{J ∈ Re f (H ) : J(W ) ⊆ L}

=
⋃

L0∈F
{J1⊕

(
0 V

V ∗ 0

)
⊕ J4⊕

(
Q

1
2
0 J5 (I5−Q0)

1
2 J5D

D∗(I5−Q0)
1
2 J5 −D∗Q

1
2
0 J5D

)
: Ji ∈ Re f (Hi)

for i = 1,4,5 with Q0J5 = J5Q0 and V ∈ U (H3,H2)},
where Q0 and D is the same as in Lemma 1, H1 = W ∩ L0, H2 = W ∩ L⊥

0 , H3 =
W⊥∩L0, H4 = W⊥∩L⊥

0 , H5 = W � (H1⊕H2), and H6 = H � (⊕5
i=1Hi).

Proof. Since dim(W ∩L⊥) � dim(L∩W⊥), it follows from Lemma 3 that F �= /0.
Let J ∈ {J ∈ Re f (H ) : J(W ) ⊆ L}. Setting L0 = J(W ), we conclude that L0 ⊆ L

and dim(W ∩L⊥
0 ) = dim(L0 ∩W⊥), so L0 ∈ F . Moreover, Proposition 1 implies that

the inclusion ⊆ holds. Another inclusion ⊇ is obvious. �

The following two corollaries give the simpler conditions under which there exists
a J ∈Re f (H ) with J(W )⊆ L for two closed subspaces W and L which satisfy certain
conditions.

COROLLARY 2. Let W and L be two closed subspaces of H . If dimW < +∞,
then there exists a J ∈ Re f (H ) with J(W ) ⊆ L if and only if dimW � dimL.

Proof. Necessity is clear. Sufficiency. Suppose that Hi is the same as Lemma 1
for i = 1,2, · · ·6. Then dimW < +∞ implies dimHi < +∞ for i = 1,2,5, so dimH6 =
dimH5 < +∞.

Case 1. If dimL = +∞, then equation (2.2) implies dimH3 = +∞, so dimH2 �
dimH3. Thus we conclude from Theorem 1 that there exists a J ∈ Re f (H ) with
J(W ) ⊆ L.
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Case 2. If dimL < +∞, then equation (2.2) induces

dimL = dimH1 +dimH3 +dimR

(
Q0 Q

1
2
0 (I5−Q0)

1
2 D

D∗Q
1
2
0 (I5−Q0)

1
2 D∗(I5 −Q0)D

)
.

It is easy to see that V =

(
Q

1
2
0

D∗(I5−Q0)
1
2

)
: H5 → R(VV ∗) is a unitary operator. Thus

dimR

(
Q0 Q

1
2
0 (I5−Q0)

1
2 D

D∗Q
1
2
0 (I5−Q0)

1
2 D∗(I5−Q0)D

)
= dimR(VV ∗) = dimH5,

so
dimL = dimH1 +dimH3 +dimH5. (2.8)

Since
dimW = dimH1 +dimH2 +dimH5, (2.9)

we have

dim(W ∩L⊥)−dim(L∩W⊥) = dimH2 −dimH3 = dimW −dimL � 0.

Hence, J(W ) ⊆ L follows from Theorem 1. �

COROLLARY 3. Let W and L be two closed subspaces of H . If W ⊆ L⊥, then
there exists a J ∈ Re f (H ) with J(W ) ⊆ L if and only if dimW � dimL.

Proof. Sufficiency. Since W ⊆ L⊥, it follows L⊆W⊥, so dim(W ∩L⊥)= dimW �
dimL = dim(W⊥ ∩L). Thus J(W ) ⊆ L follows from Theorem 1. Necessity is obvi-
ous. �

For unit vectors x,y ∈ H , it is well known that there is a unitary operator U ∈
B(H ) with Ux = y. The following corollary gives an equivalent condition for the
existence of a reflection J with Jx = y.

COROLLARY 4. Let x,y ∈ H be unit vectors. Then there exists a reflection J
with Jx = y if and only if 〈x,y〉 = 〈y,x〉.

Proof. Sufficiency. Let M and N be subspaces spanned by vectors x and y,
respectively. It is easy to check that dim(M ∩N⊥) = dim(N ∩M⊥), so Theorem 1
implies that there exists a reflection J′ with J′x = eiθ y. If 〈x,y〉= 〈y,x〉, then 〈x,y〉 is a
real number. Moreover, eiθ 〈y,x〉 = 〈J′x,x〉 is also a real number, which yields eiθ = 1
or eiθ = −1. Thus J′x = y or J′x = −y. In the second case, we set J = −J′. Necessity
is clear. �

The following result describes the partial order of a class of special orthogonal
projections, which is used in the proof of Theorem 2.
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PROPOSITION 2. Let H and K be Hilbert spaces with dimH = dimK . If

V ∈ U (K ,H ) and PV :=
( I

2
V
2

V∗
2

I
2

)
: H ⊕K , then

(a) PV ∈ P(H ⊕K ) with P⊥
V = P−V , where P⊥

V := I−PV .
(b) If P ∈ P(H ⊕K ), then P � PV if and only if

P =
( P1

2
P1V
2

V∗P1
2

V∗P1V
2

)
: H ⊕K , where P1 ∈ P(H ). (2.10)

(c) If Q ∈ P(H ⊕K ), then PV � Q if and only if

Q =

(
I− Q1

2
Q1V

2
V∗Q1

2 I− V∗Q1V
2

)
: H ⊕K , where Q1 ∈ P(H ).

Proof. (a) is obvious.
(b) Sufficiency is clear. Necessity. Assume

P =
(

A11 A12

A∗
12 A22

)
: H ⊕K ,

where A11 and A22 are positive contraction operators. Since 0 � P � PV , we have

PP⊥
V =

(
A11 A12

A∗
12 A22

)( I
2

−V
2−V∗

2
I
2

)
= 0,

so a direct calculation yields{
A11
2 − A12V

∗
2 = 0 1©

−A∗
12V
2 + A22

2 = 0 2©

From 1© and 2©, we get that A11 = A12V ∗ and A22 = A∗
12V. Furthermore, P2 = P

implies that
(A12V

∗)2 +A12A
∗
12 = A12V

∗. (2.11)

This coupled with the fact that A11 = A12V ∗ = VA∗
12 � 0 gives 2(A12V ∗)2 = A12V ∗.

Setting P1 := 2A12V ∗, we conclude that P2
1 = P1 and (2.10) holds as desired.

(c) If Q ∈ P(H ⊕K ) and PV � Q, then Q⊥ � P⊥
V =

( I
2

−V
2−V∗

2
I
2

)
. It follows

from (b) that

Q⊥ =

(
Q1
2 −Q1V

2
−V∗Q1

2
V∗Q1V

2

)
: H ⊕K , where Q1 ∈ P(H ).

Therefore, PV � Q if and only if

Q =

(
I− Q1

2
Q1V

2
V∗Q1

2 I− V∗Q1V
2

)
: H ⊕K , where Q1 ∈ P(H ). �



AN INTERPOLATION PROPERTY OF REFLECTIONS INVOLVING ORTHOGONAL PROJECTIONS 273

We denote
F (P,Q) := {J : JPJ = Q, J ∈ Re f (H )}

and
F̃ (P,Q) := {J : J ∈ F (P,Q) and PJP � 0}.

Let /0 �= Γ ⊆ P(H ). We also denote by ∨
E∈Γ

E ∈ P(H ) the supremum of all projec-

tions in Γ. That is, R( ∨
E∈Γ

E) = ∨{ ∪
E∈Γ

R(E)}.
Another main result of this section is the following.

THEOREM 2. Let P,Q ∈ P(H ) with dim(R(P)∩N(Q)) = dim(N(P)∩R(Q)).
Then

(a) sup{J : J ∈ F (P,Q)} = I.

(b) sup{J : J ∈ F̃ (P,Q)} = I1⊕ I2⊕ I3⊕ I4⊕
(

Q
1
2
0 (I5−Q0)

1
2 D

D∗(I5−Q0)
1
2 −D∗Q

1
2
0 D

)
.

(c) max{J : J ∈ F̃ (P,Q)} exists if and only if dim(R(P)∩N(Q)) = dim(N(P)∩
R(Q)) = 0.

Proof. (a) It is conclude from Proposition 1 that J ∈ F (P,Q) if and only if

J = J1 ⊕
(

0 V
V ∗ 0

)
⊕ J4⊕

⎛⎝ Q
1
2
0 J5 (I5 −Q0)

1
2 J5D

D∗(I5−Q0)
1
2 J5 −D∗Q

1
2
0 J5D

⎞⎠ .

For all J ∈ F (P,Q), define the projection

P̃J :=
I + J

2
=

I1 + J1

2
⊕
( I2

2
V
2

V ∗
2

I3
2

)
⊕ I4 + J4

2
⊕

⎛⎜⎝ I5+Q
1
2
0 J5

2
(I5−Q0)

1
2 J5D

2

D∗(I5−Q0)
1
2 J5

2
I6−D∗Q

1
2
0 J5D

2

⎞⎟⎠ .

Then ∨
J∈F (P,Q)

P̃J = I1⊕ I2⊕ I3⊕ I4⊕ I5⊕ I6.

Indeed, if J ∈ F (P,Q), then −J ∈ F (P,Q) and P̃−J = P̃⊥
J . This means that both P̃J

and P̃⊥
J are in

∨
J∈F (P,Q)

P̃J. Hence,

sup{J | J ∈ F (P,Q)} = 2 ∨
J∈F (P,Q)

P̃J − I = I.

(b) It is easy to see that if J ∈ F (P,Q), then PJP � 0 iff QJQ � 0, which is
equivalent to J5 = I5. Thus

∨
J∈F̃ (P,Q)

P̃J = I1⊕ I2⊕ I3⊕ I4⊕

⎛⎜⎝ I5+Q
1
2
0

2
(I5−Q0)

1
2 D

2

D∗(I5−Q0)
1
2

2
I6−D∗Q

1
2
0 D

2

⎞⎟⎠ ,
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so

sup{J | J ∈ F̃ (P,Q)} = 2 ∨
J∈F̃ (P,Q)

P̃J − I

= I1⊕ I2⊕ I3⊕ I4⊕
(

Q
1
2
0 (I5−Q0)

1
2 D

D∗(I5−Q0)
1
2 −D∗Q

1
2
0 D

)
.

(c) It follows from (b) that max{J : J ∈ F̃ (P,Q)} exists if and only if

I1⊕ I2⊕ I3⊕ I4⊕
(

Q
1
2
0 (I5 −Q0)

1
2 D

D∗(I5−Q0)
1
2 −D∗Q

1
2
0 D

)
∈ F̃ (P,Q). (2.12)

By Proposition 1, (2.12) is equivalent to dim(R(P)∩N(Q)) = dim(N(P)∩R(Q)) =
0. �

3. Some examples and applications

In [15], some interpolation relations of the three orthogonal projections and a re-
flection were considered. Here, we use the same notations as that in [15]. That is,
ε := (E0,E±),

R(ε) := {J ∈ Re f (H ) : E−JE+ = JE+} (3.1)

and

R0(ε) := {J ∈ Re f (H ) : JE0 = E0,E−JE+ = JE+,E+JE− = JE−}, (3.2)

where E0, E+ and E− are orthogonal projections. Then Theorem 1 implies that R(ε) �=
/0 if and only if dim(R(E+)∩N(E−)) � dim(R(E−)∩N(E+)). However, the condition
for R0(ε) �= /0 was not given in [15]. As an application, we present a characterization
of R0(ε) �= /0.

THEOREM 3. Let ε = (E0,E±) and R0(ε) be as above. Then R0(ε) �= /0 if and

only if dim(R(E+)∩N(E−)) = dim(N(E+)∩ R(E−)) and R(E0) ⊆ M1 ⊕ R

(
V
I3

)
⊕

M4 ⊕R

(
(I5 +Q

1
2
0 J5)

1
2

D∗J5(I5−Q
1
2
0 J5)

1
2

)
, where M1 ⊆ H1 and M4 ⊆ H4 are two closed sub-

spaces, V is a unitary operator from H3 onto H2, J5 ∈ Re f (H5) with J5Q0 = Q0J5.

Proof. For all J ∈ Re f (H ), it is clear that E−JE+ = JE+ and E+JE− = JE− if
and only if JE+J = E−, which is equivalent to J(R(E+)) = R(E−). By Proposition 1,
there exists a J ∈ Re f (H ) with JE+J = E− if and only if

dim(R(E+)∩N(E−)) = dim(R(E−)∩N(E+)).
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Furthermore, JE0 = E0 is equivalent to

R(E0) ⊆ R

(
I + J

2

)
. (3.3)

Considering that J has form (2.7), we have

I + J
2

= P1⊕
( I1

2
V
2

V∗
2

I3
2

)
⊕P4⊕

⎛⎜⎝ I5+Q
1
2
0 J5

2
(I5−Q0)

1
2 J5D

2

D∗(I5−Q0)
1
2 J5

2
I6−D∗Q

1
2
0 J5D

2

⎞⎟⎠ ,

which implies

R

(
I + J

2

)
= M1 ⊕ R

(
V
I3

)
⊕M4⊕ R

(
(I5 +Q

1
2
0 J5)

1
2

D∗J5(I5−Q
1
2
0 J5)

1
2

)
,

so R(E0) ⊆ M1⊕R

(
V
I3

)
⊕M4⊕R

(
(I5 +Q

1
2
0 J5)

1
2

D∗J5(I5 −Q
1
2
0 J5)

1
2

)
as desired. �

The following example follows from [15, Theorem 7.2], which gives the equiva-
lent condition for E+E0E− = E+E−. Here, we use the example to describe the specific
forms of R0(ε).

EXAMPLE 1. Let C ∈B(H ,K ) be a contraction. Suppose that E+ and E− are
orthogonal projections with R(E+) = Graph(C) and R(E−) = Graph(−C), respec-
tively. If

E0 =
(

I 0
0 0

)
: H ⊕K , (3.4)

then

R0(ε) =
{(

I 0
0 J22

)
: J22 ∈ Re f (K ) with C∗J22 = −C∗

}
.

Indeed, it is clear that

R(E+) = Graph(C) = {x+Cx : x ∈ H }
and

R(E−) = Graph(−C) = {x−Cx : x ∈ H }.
Then a direct calculation implies that E+ and E− with respect to space decomposition
H ⊕K have the operator matrix form

E+ =
(

(I +C∗C)−1 (I +C∗C)−1C∗
C(I +C∗C)−1 C(I +C∗C)−1C∗

)
and

E− =
(

(I +C∗C)−1 −(I +C∗C)−1C∗
−C(I +C∗C)−1 C(I +C∗C)−1C∗

)
,
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respectively. Let J ∈ R0(ε). Then JE0 = E0 if and only if J =
(

I 0
0 J22

)
, where J22 ∈

Re f (K ). In this case, the equation JE+J = E− is equivalent to C∗J22 +C∗ = 0.
Let ε := (E0,E±) as above. In [15], the sets

SOS(J) := {(E0,E±) | E+JE+ � 0},
ε(Markov) := {(E0,E±) | E+E0E− = E+E−}

and
S (ε) := {J ∈ Re f (H ) : E−JE+ = JE+,JE0 = E0J}

are also defined. In the following, we give an example to illustrate
⋂

J∈S (ε)
SOS(J) �

ε(Markov). Thus, there is a gap in [15, Theorem 6.4].

EXAMPLE 2. Let E+ =
(

I 0
0 0

)
: H ⊕H , E− =

(
0 0
0 I

)
: H ⊕H , and E0 =( I

2
U
2

U∗
2

I
2

)
: H ⊕H , where U ∈ B(H ) is a unitary operator. Let J ∈ Re f (H ⊕H ).

Then a direct calculation implies that equations E−JE+ = JE+ and JE0 = E0J are

equivalent to J =
(

0 J1U
U∗J1 0

)
, where J1 ∈ Re f (H ). That is

S (ε) =
{(

0 J1U
U∗J1 0

)
,J1 ∈ Re f (H )

}
.

It is easy to check that E+JE+ = 0 for any J ∈S (ε) and E+E0E− �= E+E−. Thus ε =
(E0,E±) ∈ ⋂

J∈S (ε)
SOS(J), whereas ε = (E0,E±) /∈ ε(Markov). So

⋂
J∈S (ε)

SOS(J) �

ε(Markov).
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