oerators
nd
atrices

Volume 16, Number 2 (2022), 279-297 doi:10.7153/0am-2022-16-22

DISTINGUISHED SUBSPACES OF TOPELITZ
OPERATORS ON N,-TYPE QUOTIENT MODULES

HONG ZOU AND TAO YU *

(Communicated by G. Misra)

Abstract. In this paper, we show that there always exists reducing subspace M for Sy, such
that the restriction of Sy,;) on M is unitarily equivalent to the Bergman shift when u/( ) isa
finite Blaschke product. Moreover, we will show that only if w(z) is a finite Blaschke product
can Sy, has distinguished reducing subspaces. We also give the form of these distinguished
reducing subspaces when y/(z) is a finite Blaschke product. Finally, we show that every non-
trivial minimal reducing subspace S of Sy, is orthogonal to the direct sum of all distinguished

zZ

subspaces when § is not a distinguished subspace of Sy .

1. Introduction

Let D? be the open unit bidisk in the 2-dimensional complex Euclidean space, and
let T? be the distinguished boundary of D?. Let L?(I'?) be the Lebesgue space and
H?(T'?) be the Hardy space over I'>. We denote by H*(T",) and H?*(T,) the Hardy
spaces on the unit circle I" in variables z and w, respectively. A function @(w) €
H?(D) is called inner if |@(w)| = 1 a.e. on T Let P be the orthogonal projection from
L*(I'?) onto H?(T'?). For each function y € L, we define the Toeplitz operator Ty, on
H*(I'?) by Ty f = P(yf) for f € H*(I'?). A closed subspace M of H?(T?) is called a
submodule if ;M C M and T,,M C M. There are many conclusions about submodules
of the Hardy space over I'? (see [9] and [11]-[13]). In H?(T'), A. Beurling [2] showed
an invariant subspace M of H?(T) has the form M = @H?(T') for some inner function
6. In H*(T?), the structure of submodules is complicated. If M is a submodule of
H*(I'?) and N=H*(I?)© M, then TN C N and T,;;N C N. We called N is a quotient
module of H?(T?) related to M.

A reducing subspace M for an operator 7' on Hilbert space H is a closed subspace
M of H such that TM C M and T*M C M. 1In [6], K. Guo et al show that only
a multiplication operator by a finite Blaschke product on the Bergman space has a
unique distinguished reduced subspace, that is, the restriction of the operator on this
reduced subspace is equivalent to the Bergman shift. In [10], S. Sun et al show that
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the multiplication operator on the Bergman space is unitarily equivalent to a weighted
unilateral shift operator of finite multiplicity if and only if its symbol is a constant
multiple of the N-th power of a Mobius transform.

For a subset E of H?(I'?), we denote by [E] the smallest submodule of H?(T'?)
containing E . Throughout this paper, let ¢ € H*(ID) be a non-constant inner function,
and Ny = H*(I?) ©[z— @(w)], a Ny -type quotient module. A quotient module has a
very rich structure [7, 8]. In fact, Ny can be identified with the tensor product of two
well-known classical spaces, namely, the quotient module H*(I") © ¢H?*(T") and the
Bergman space L2(ID). In [8], K. Izuchi and R. Yang have obtained that, if ¢ is an one
variable inner function, Ny, is essentially reduced if and only if ¢ is a finite Blaschke
product. For a quotient module N of H?(I'?) and a function y(z) € H*(D), we define
a operator Sy, on N by

where Py is the orthogonal projection from H?(I'?) onto N. In [6], the authors show
that Sy, acting on H*(I'?) & [z — w] has the distinguished reducing subspace if and
only if y(z) is a finite Blaschke product. Inspired by [6], in this paper, we extend their
conclusions from H?(T?) & [z— w] to the setting of the Ny -type quotient module.

In this paper, we will show that only if y(z) is a finite Blaschke product can Sy
on Ny has the distinguished subspace and completely described the form of those dis-
tinguished reducing subspaces when y(z) is a finite Blaschke product. The following
are our main results.

THEOREM 1.1. Let y be a Blaschke product of order N, There are reducing sub-
space M for Sy ;) such that Sy |m = M. In fact, M has only the following form

M = span{P,(y)e, :n >0} (D)

where Pi(y) = v/n+ Tey(y(2), w(@(w))) and e = hw) ¥E=4E0 h(w) € K2 (T,)

with ||h|| = 1. And {\/F\/— Yo form an orthonomal basis of M.

THEOREM 1.2. Let y € H”(DD). Then S\, acting on Ny has the distinguished
reducing subspace if and only if y is a finite Blaschke product.

Let My = span{P,(y)er : n > 0}, where e, = A4x(w )#,k:l,...,m

And we denote My =M, &M, & --- $ M,,. Then we have the following theorem.

THEOREM 1.3. Suppose that Q is a nontrivial minimal reducing subspace for
Sy(z)- If  is not a distinguished reducing subspace, then L is a subspace of Md‘.

The paper is organized as follows. In Section 2, we give some basic facts about
the space Ny and the operator Sy . In Section 3, we give the proof of Theorem 1.1 and
1.2. In Section 4, we will show that every nontrivial minimal reducing subspace Q of
Sy(z) Which is not distinguished reducing subspace is orthogonal to M.
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2. Preliminaries

In this section, we lay out some basic facts about the space N, and the operator
S.. And in this paper, we denote Bergman shift and H(T,,) © (w)H?(T,) by M, and
K5(T) respectively.

LEMMA 2.1.([8]) Let ¢(w) be a one variable non-constant inner function and
{MWw) :k=1,2,...,m} be an orthonormal basis of Ké (T'y) and

witwi a4+

ej(z,w) = NS (j=0,1,...). )
Let
Erj = M(w)ej(z, o(w)). 3)

Then {Eij:k=1,2,...,m;j=0,1,...} (m can be infinity) is an orthonormal basis
for Ny.

LEMMA 2.2. ([8]) There exists a unitary operator U
U: Ny — Kg(T'w) ® L3(DD)
Ek,j — ?Lk(w)\/ ]+ le

US,=(IeM,)U.
where I is an identity map on H*(T,,) © @(w)H*(T,).

such that

COROLLARY 2.3. (1). For each y(z) € H*(D), we have
USy() = (1@ My())U

(2). SZ‘N(p :S¢(W)|N¢.
(3). For each y(z) € H*(D), we have

Sy(a) Vg = Syig0m) Ny
(4). Since Ny is a backshift invariant subspace, then we have
T‘Z*‘N(P = S; and Tq:(w) |N(p = S(;(W)

Proof. We only need to prove (1).
For any y(z) = X gax2" € H*(D), we have

Sy Erj Eri) = (W) A (wej(z, 0 (w), li(w)ei(z, o (w)))

\/]TWZ{),Z W), 7 2'l( ) ( )17121> (4)

Ve W zoz (A (w), 2o (W) (w) ) (wr(2),27).
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Hence
j+1

SyEx i E )= ————
< v(z)Ek,j l’l> \/m\/m

a;—jifandonlyif [ =kandi— j > 0.

Then we have

m oo

Us Ekj—UZZ EkjaEllEll

—UE (0B j» Exi)Er.i

=

—U j+1 (5)
l 1
IZ, /—] it 1 iEk,i

= Jj+ 1(w) aozf—i—alzJH—|—...—|—a,,zj+"—|—...}

=i+ 1w y(2)z

= (I®MV,(Z))UEk7j. U

PROPOSITION 2.4. If f € HX(T?)\C(D?) and g € Ny, then
(f(zw),8(z,w)) = (f(@(w),w),g(0,w)).

Proof. Since f € C(ID?), then there are a sequence {g, } of polynomials of z and
w converging uniformly to f(z,w) on the closed bidisk. Thus it suffices to show

(W A (wej(z,0(w))) = (9(w)'w!, A (w)e; (0,0 (w)),

for all i,/,j € N, and k =1,2,...,m. So then the result follows from the following
equalities.

@, Ae(w)ej(z, p(w))) = (W', Z17%( w)ej(z,9(w)))
<W T ( )ej(z (W))>
=(p(w ) Ae(w)ej(z, @

PROPOSITION 2.5. If h(z,w) € H*(T?) and h € Ny = [z—@(w)], then h(¢(w),w)
=0 forall weD.
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Proof. Let w€ D, then foreach f(z,w) € (z— @(w))H?*(T?), we have f(@(w),w)
= 0. For each h € N$ = [z— @(w)] = (z— @(w))H?(T'?), there exists a sequence
{gn} C H*(T?) such that || h— (z— @(w))gn ||*— 0 as n — oo.

Therefore

0= ((z=@W))gn,ka(W)ko(o) (2)) = (B, ka(W)ke(q) (2)) = h(@ (), )

asn—oo, foreach xeD. 0O

PROPOSITION 2.6. Suppose y(w) € H*(D), then we have y(z) — y(@(w)) €
=)

Proof. Suppose y(w) =X ja,z" € H*(D). Itis clear that y(z) — y(@(w)) €
H*(I'?). Forevery Ey j € Ny, k=1,...,m, j=0,1,..., we have

(W(2) —w(oW)),Erj) = (w(z) — w(ow)), \/jl_i_—llk(w)Z{:Ozi(p(w)j*i>
— oW W o))
1 / i j—i
~ oo lW(e () ) o (w) ) o
= \/%Zf;oaim
B J%<27=Oan‘P(W>"’lk(W)<P(w)~" )

=0.

This completes the proof. [l

3. The distinguished reducing subspace

In this section we will show that there always exists reducing subspace M for Sy,
such that the restriction of Sy,,) on M is unitarily equivalent to the Bergman shift when
y(z) is a finite Blaschke product. Moreover, we will give the concrete forms of these
reduced subspaces. At last, we will prove Sy, acting on Ny has the distinguished
reducing subspace if and only if v is a finite Blaschke product.

PROPOSITION 3.1. Foreach f(z,w) € H*(T?), f isin Ny if and only if there is
a function f(z,w) in ® ®Ké () such that
f(za W) — f((P(W)a W)

TE) =0 0)

®)

Sor two points z and w with z # @(w) in the unit disk.
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Proof. Since {Eyj:k=1,...,m; j=0,1,...} is an orthonormal basis of N, then
for each f € Ny, we can write

HMx

k;Ek/ Z, W)

Let f(z,w) =3I, DI %lk(w)zﬁl . Then the equation (8) holds. Also we have

2N m“kjlwmakjlw 212

o m |ak;"2 '

= ——(j+2)
pIpyEs ©)
o m 5

SZEE‘akA
Jj=0k=1

=2IIf11?

Hence f(z,w) in D ®K3,(1"W).
Conversely, if f(z,w) = W for some f(z,w) in © @Ky(Ty). Let
J?(&W) =20 ZT=oakj7Lk(W)Zj where ||fsz®® S XU+ l)“lkj|2 < +eo. Then

ST oYty arjd(w)z = X7 o XLy arjda(w) o (w)!

flem = o0
< m i —o(w)
= Z,lg,lak,/lk(W)Ziz_ ﬁw; (10)

\/_ak,Ek, 1

I
TMs T
TM=

and || fll7. = L 25 \J'\|akj\2 ||fsz®© Foo. O
THEOREM 3.2. Let f be a nonzero functionin Ny, W(z) is a function in H* (D).
If (w(z) + y(@(w)))f € Ny, then

oy VA~ w(000)
f(Z,W)— h( ) Z_(P(W)

)

where ¢ is a constant and h(w) € Ké(l"w) with ||h]| = 1.

Proof. Since f € Ny and (y(z) + y(@(w)))f € Ny, by Theorem 2.1, we have

]?(Z7W) _f(qo(w)7w)
z—o(w)

flz,w) =
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for some f(z,w) = X1 Fi(2)A(w) €D ®Kg(Ty), and

g(sz) — g(¢(w)7w)
z—o(w)

(w(z) +y(eWw)))f(zw) =

for some g(z,w) =X Gk(2) (W) €D ®Ké(l"w). Therefore

flew) = 3 BB )
k;l (1
= ka(Z7W)
k=1
where fi(z,w) = WM(W)’ and
(W) + wlom)fzw) = 3, FD=GO) 5 ()
i—1 Z (P( )
m (12)
= zgk(sz)
k=1

where gi(z,w) = WM{(W). Then we have

(w(2) +wlow)f(zw) = ki (W(2) + w(oW))fi(z,w).
=1

Next we want to prove (y(z) + y(@(w)))fi(z,w) = gk(z,w). Since g and f; are in
N, and

(V@) + y(o0) (i)~ Flp(w) )

(w(z) + (o)) fi(z,w) =

2= p(w)
for each i # j, we have gi(z,w) L gj(z,w) and gi(z,w) L fj(z,w). Since Fi(z) =
So aﬁz" €® forevery k=1,..., m, we have
=), " —ow)"
(W= A v T =2 00
m—1n—1
=2 YAw@2emw)" T Aw), w(2)Z o(w)" T A;(w)) (13)
t=0 s=0
m—1n—1

= Z(,) z(,)W(Z)Z“}V/(Z)Z’ )(Ai(w), @(w)™ T A(w)) = 0.
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Let W(z) = 3o bn2" with 3 |b,|*> < +eo. Then
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=0.
Similarly,

(W (@) fi(z,w), w(@(w))fj(z,w)) = 0.

So we can get, from the above discussion,

((w(z) + y(eW))fi(z,w), (w(z) + y(QW)))fi(z,w))

= (y(@)fi(z,w), w(@(W))fj(z,w)) + (w(o(
=0,

w

NAi(z,w),

v(2)fj(zw))

(14)

15)

(16)

(18)
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and
(gi(z,w), (W(2) + w(ow)))fj(z,w))
= <gi(sz)7 W(Z)fj (Z7W)> + <gi va)7 W(¢(W)))fj (Z7W)> (19)
=2(gi(z,w), ¥(2) fj(z,w))
=0.
Hence
(v(@) +w(eW)))fi(z,w) = gk(z,w)
T z—e(w) T
and F F
filew) = BDZIOW) 5 () @1

z—o(w)
In following we discuss it in two cases. Firstly we assume y/(0) = 0. Letting z tend to
¢©(w) in the equations (21) and (8), respectively, we get

fe(@(w),w) = K (@(w) A (w),

and
2y (9(w))fe(@(w),w) = G (@(w)) A (w).

Hence

2y (@(w)Fi((w)) = Gi(o(w)). (22)
Letting z=0 in (21) and (8), we have

v(e(w)E(e(w)) = Gr(@(w))- (23)
Taking derivatives at two sides of (23), we get

v (@(w))Fi(9(w)) + w(@(w) F(9(w)) = Gi(o(w)). (24)

Then by (22) and (24) we have

v(ew)F(e(w)) = ¥ (9(w)) Fie(@(w))-

Ci/kLé)))/ =0 (w)

and so, since @ is a non-constant inner function,

Hence

Fi(2) = ay(2)
for some constant «;. Hence

Ji(z,w) = ax Z—o(w)
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and
Flw) = ch(w) YR =¥ (@W)

z—o(w)
_ Zz;laklk(w) _ m
where h(w) = TS el and ¢ = || X0 axle(w)]) -
If y(0) # 0, since (y(z) — w(0) + y(@(w)) — w(0))f = (v(2) + y(eWw)))f -
2y(0)f € Ny and f € Ny, then, through the above discussion, we can conclude

f(z,w) = ch(w) ¥(2) —y(0) — y(e(w)) + y(0)

z—(w)
= ch(w)w (25)
z—ow)

This completes the proof. [

PROPOSITION 3.3. Suppose  is a nonconstant finite Blaschke product, and f(z,w)

= ch(w)%&f;wn for some constant ¢ and h(w) € K(%,(FW) with ||h|| = 1. Then, for

each 1> 1,
Vi+1e(y(2), y(@(w)))f € No.

Proof. By Theorem 3.2, let f(z,w) = ch(w) % , where c¢ is constant and

h(w) € K (Ty) with [|h[| = 1. Then, foreach [ > 1,

VIT Te(w(z), y(9(w)f = ch(w) "’@H;: l’.fffff DV e ny.

PROPOSITION 3.4. Let y(z) be an inner function satisfying v@)-viow)) o 2 (T?),
then

—op(w)

v(z) —vwiew)) 212
——— = [ y(g)H*(I').
PO L ()
Proof. Let h(z,w) = %W. For any polynomial p(z,w), we have
(h(z,rw), y(2)p(z,w))

= ((v(2) —w(p(rw))) i 2 p(rw)" w(2)p(z,w))
n=0 (26)

I
M s

O[<<P(rW)”lV(Z),Z"“ w(@)p(z,w)) — (@(rw)" y(e(rw)), 2" () p(z.w)))

I
<1

This implies that h(z,rw) L @(z)H*(T'?). Since h(z,rw) converges to h(z,w) in the
norm of H*(T?) as r — 1~. Hence h(z,w) L w(z)H?*(T?), thatis, h(z,w) € kerTy..
This completes the proof. [l
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From the above proposition and Tu’;(z) Ny = Tl;( o(w)) N, » We also can get

v(z) —v(e(w)

2 /12
R LR

v(@)—v(e(w)) 212
when W ceH (F )

PROPOSITION 3.5. Suppose y(z) is an inner function and h(w) € Ké (T'y) with
||h|| = 1. Then e, = h(w)l’/(z)+(($)(w)) is in H*(T'?) if and only if v is a finite Blaschke

-
product. Moreover; ||e;||> = N, the order of y.

Proof. 1If y(z) = {=% is a Blaschke product of order 1, by h(w) € Ké(l“w) with
||z|| = 1, then

2
e = [ o) V=YL
l—a2 1—|af? (27)
et s

If y=vyjys...yn =y f is afinite Blaschke product, then

o= P o)
&)= Flow) ne-wew) Y
=h(w)yi(z )z—(p(w) +h(w)f(e(w)) — o) .
Since, by Proposition 3.4,
(s LEL=LO0D) g VW10 )
Ly fQ ) L m@ o)\ @9)
= (o0 TEZLO oy, ML= 0D )
=0,
we have
s g LA L@ v = (000 [
el = ey FELZLEOD gy L=
o 7@ = Flo) | Vi) — v (ow) |
=[P + oot Y
o £ = Fl000) |
= ||h(w) = o(w) +1.
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By induction, we therefore have ||e;*> =
If y(z) is a Blaschke product of infinite order. Then, similar to the above discus-
sion, we have ||ej|| = .
If y(z) is a general inner function which is not a finite Blaschke product, by
Frostman’s Theorem [5, p. 75], there exists a A € D such that W( )4

1-2y(z)’
A+B(z)
14+AB(z)

v —v(o0) _ | B(z)— Blo(r)
<o) (2= 9(w)(1+ AB(2) (1+ 2B(g(w))

Since A € D, itis clear that h(w)w € H*(T?) if and only if 2(w )W €

H?(T'?). Hence ey, is not in H?(I'?) in this case. [J

denoted by

and

B(z), is an infinite Blaschke product. Then y(z) =

THEOREM 3.6. Suppose W be a Blaschke product of order N. Then there are
reducing subspaces M for Sy such that Su/(z)‘ M = M,. Moreover, each M has the
following form

M = span{P,(y)e, :n >0} 31

where Py(y) = /n+ Lea(y(2), y(9(w))) and e = h(w) Y=L p(w) € K2(T,)

with ||h|| = 1. And {m\e/h— Yo form an orthonomal basis of M.

Proof. For each h(w) € H*(T',,) © @(w)H*(T,,) with |[h]| =1, let

v(z) — w(e(w)

z=¢(w)
and M = span{P,(y)e, : n > 0} . By Theorem 3.3, we have P,(y)e;, € Ny, and then
M is a closed subspace of Ny . For each n > 0,

Sy Pa(W)en = Py (W(R) Py (W)en)
_n+1l

en = h(w)

1 n
= 5P Went P (Wlen— Py, (W(@(w) e
el 1 \ (32)
= et i, (g Pa(we - wiet) )
_n+1
—) w1 (W)en.

The last equation is obtained by P, | (y)e, — w(@(w))" e, € [z2— @(w)].

Since Sy, en =T, en =0 and, foreach n > 1, Sy Pi(W)en = B, (W)ey, we

have M is a reducing subspace of Sy,(,). Since ||P’( Jen||* = (n+1)|len]|? = (n+ 1)N

and (P(y)en, P, (w)ey) =0 forall n# m, then {22 }0 form an orthonomal basis

\/7
of M. Since Sy \/F\e} =/t I:;ZIT(\)F . then M is a reducing subspace for S,

such that Sy, M =M.
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Suppose that M is a reducing subspace of Sy, and Sy, |m = M, we will show
that M has the form of (20). Since Sv/(z)| M = M, i.e. there exist an orthonomal basis

{F,}t of M such that
n+1
Sy =1/ 5370

Observe Py, (¥(2) + W(@(w)))Fo = Sy () Fo + Sy(p(w)Fo = V2F1 . Then

1P, (W (2) + w(o(w)))Foll* = 2.

We also have

1(w(z) + w(p(w)Fl)?
— YRl + (W (@O ol + Ty gy Fo Fo) + (Tt T For Fo) - (33)
—2.

Thus (y(z) +y(@(w)))Fy € Ny. Then by Theorem 2.2, we have

for some constant ¢ and some function h(w) € H*(T,) © @(w)H?(T,,) with ||h|| =1,
and so e, € M;. Then by propositon 3.3, for each [ > 0, we have P/(y)e, = (I +
I)Siy(z)eh € M. Therefore

My =span{P.(y)e:n>0} C M.

By previous discussion, we know that My is a reducing subspace of Sy, | =M, . But
M, is irreducible. Therefore we conclude My = M. This completes the proof. [J

THEOREM 3.7. Suppose y € H*(D). Then Sy, acting on Ny has the distin-
guished reducing subspace if and only if y is a finite Blaschke product.

Proof. We only need to prove that if Sy, has the distinguished reducing subspace,
then v is a finite Blaschke product.

Assume Sy, has the distinguished reducing subspace M such that Sy =M, . i.e.
there exist a unitary operator U : M — L2(D) such that U*M.U = Sy |y . Let K}' be
the reproducing kernel of M for A = (A1,2,) € D*. Then ||K}!||?> # 0 except for at
most a countable set about variable A; . Since

[(SyKY KY) | = (wK)! Ky

(34)
= lw()llIK

and ||Sy|| = [[M.|| = 1, we have that [y(4;)] < 1 except for at most a countable set,
and so |yl < 1.
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Set e, = U*el,, where €,(z) = v/n+ 17" for n=0,1,.... Then

S;,(Z)eo =U*M}Uey =U"M}e; =0

and Tl;((p(w))eo = Tll*}eo = S*V,eo =0. By Corollary 3.2 (3), we have
1Py, (w(z) + w(@(w)))eol|* = 128y e0l?
= 4| U*M.Ueo|?
"ML )
= 4[| M.e |
=2.
and

1(w(2) + y(ew)))eol?
= [lw(@)eol* + W (@(w))eol* + (Ty () Ty o)) €0+ €0) + (Ti(pin)) Tz €0:€0)  (36)
=2.
Hence
(w(2) +w(p(w)))eo € No.
It follows from Theorem 3.2 that

for some constant ¢ and some function i(w) € H*(T,) © @(w)H?*(T,,) with ||A]| = 1.
Since

1(w(2) + w(@w)))eol* =2
and ||y||. < 1, then we have || y(z)eo||> =1 and

lw(@eol = lleol = [, (1) = Dleodmz =0.

Thus |y(z)| =1 almost all on the unit circle and y is an inner function. Proposition
3.5 therefore implies that v is a finite Blaschke product. This completes the proof. [

4. Minimal reducing subspaces

In this section we will show that every nontrivial minimal reducing subspace € of
Sy(z) is orthogonal to the subspace My if €2 is not a distinguished reducing subspace,
where M) is the union of all distinguished reducing subspaces.

Let Lo = kerTl;(Z) N kerTl;( o(w)) NNy, where y is a finite Blaschke product.

LEMMA 4.1. If M is a nontrivial reducing subspace for S, ;), then the wander-
ing subspace of M is contained in L.
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Proof. Let M be a nontrivial reducing subspace for Sy, . Since

* ok QX

Tz = Ty ot INe =Sy
For eac.h g eEMo ‘?W(Z)M’ it is easy to see that TJ/‘(Z)g = Tl;(qj(w))g = S:;/(z)g =0, and
then g is in Ly. This completes the proof. [J

LEMMA 4.2. If v is a nonconstant finite Blaschke product and M is a reducing
subspace for Sy, then S:;,(Z)M =M.

Proof. Note that y(z) is a Blaschke product with finite order, the multiplicity
operator My, on Lg(ID) is a Fredholm operator and My, Lz (D) = L3 (D). Since Sy,(,) on
N is unitarily equivalent to / @ M,y on K(%(FW) ® L2(D), then
Since M is a reducing subspace for Sy, we have

* —
StyyM =M.
This completes the proof. [l

) Let ky =5pan{y' ()y*(¢(w))Np : [,k > 0}, and Ly = kerTs . NkerTy .\ N
V/.

PROPOSITION 4.3. Suppose M is a reducing subspace for Sy,(,), For a given g in

the wandering subspace of M, there are a unique family of functions {di,_k} CLyOly
such that

(i) P{(w(2), w(@W)))g+ 2o P (w(2), w(p(w)))dy * isin M, for each 1 >0,
(ii) Py, [P (w(2), w(@(w)))ds]is in M for each k> 1 and | > 0.
Proof. For a given g € M © Sy, ;)M , first we will use mathematical induction to

construct a family of functions {d*}.

By Lemma 4.1 and g € Lo, then Ty [(y(z) + w(@(w))g] = Ty, [(W(2) +
y(p(w))g] = g. By Lemma 4.2, there is a unique function g € M © Ly such that

Ty08 = Ty(pom)& = Sy€ = &
This gives
Tyol8— (W) +v(ew)))gl =g —g=0

and
Tyioow 18 — (W(2) + w(p(w)))g] =g —g=0.

Letting dy = g — (w(z) + w(@(w))). then d; € kerTy  NkerTy ., and

Pl(y(2), y(9(w))g +dg = (w(z) + y(o(w))g +d; =g € M.
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Because both ¢ and g are in M, we have that d; € k, and hence d} € £y,.
Next we show that d { is orthogonal to Ly. Let f € Ly, then we have

(dg. f) = (&~ (w(2) +y(o(w)))s. 1)
= (&) = ((v(@) +wlew)))s.f)

. . 37
(8:(Ty) + Tyom) )

=0—
0.
This gives that dg € £, 6 Lo.

Assume that for n < [, there are a family of functions {d5};_, € £,,& Ly such
that

n—1
P(y(2), w(¢(W>>)g+l;oPé(w(z>, wo(w)))d; " e M.

Let G = Py(y(2), w(@(w))8 + ZZoP(w(2), y(@(w)))d;*. By Lemma 4.2 again,
there is a unique function G € M & Ly such that

Sy)G = Ty() G = Ty(p()) G = Sy(pw)G = G-
Let F =P, (y(2), w(9(w)))g+ Xi_i P(w(z), w(p(w)))dit'~*, since
T2 o (PO W00 ) = T [PLOW (D W0 (9) ] = Py (w(2), w(o ()
for each f € £y and k > 1, then
Ty F = Tyem)F = G-

(G =F) =Ty
ﬂkerT( ()"

Thus T*( )
d"+1 € kerT* V)
Noting G is orthogonal to Ly, we have that for each f € Ly,

(it f) =(G.f)— (F.f)
= (P (W), wlow))g. f) — X (Pi(w), wlew)dy ™7, f)  (38)

k=1

(G-F)=G—G=0. So letting d’*! =G —F, then

=0.
to get that dj ™! € £, 6 L. Hence
Py (W), w(ow))g+ X PHw(2), wlew)dy ' +dit' = Gem.
k=1

This gives a family of function {dg} € Ly © Ly, satisfying property (i).
Lastly to finish the proof we need only to show that property (ii) holds. Since

28y ()8 = P, (PL(w(2), y(@(w)))g)
=Py, (P{(y(2), w(@(w))g +dy) — Py, d; (39)
=P{(y(2), w(@(w)))g+dy — Py, d;.
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we have Py, d} = P{(y(z), y(@(w)))g+d; —2Sy 8 €M.
Noting that (dy — Py, dg) € Niy and [z— @(w)] is an invariant subspace for analytic
Toeplitz operators, we have that
[Py (w(2), (@(W)))(dg — Py, dg)] € Ny ,
and so Py, [Py (W(2), W(9(w)(d! — Py,d1)] =0. Then

Py, [Pl (w(2), w(@(w))dg )] = Pr, (P 1 (w(2), w(9(w))) Py dy)]

_7¢l—1 1
= lSll/(Z)PN'I’dg eM.

Assume that Py, [P/ (y(z), w(@(w)))di] € M for k <n and any [ > 0. To finish the
proof by induction we need only to show that

P, [P'(w(2), w(@))dy "] € M,

(40)

forany [ > 0. Since
(n+2)873 ¢ = Py [Pl (w(2), w(@(w))g]

= Py Bt (W) w(o(0))e + 3, B, wlo(w)ds ) “n
k=0

Py d™ By [3 P w(2). w(p()dr
k=1

Thus Py,dy ™" = Pr, [Py (w(2), w(@(w)))g + i P (W (2), w(ow)))dy ' 4] = (n+
2)81 g — Py (1 PLUW (), W)t 1),
By property (i) we have

Py, [Pr 1 (w(2), w(@(w)))g + E PLy(z), w(pw))d; ' e M.
k=0

The induction hypothesis gives that the last term is in M and the second term
belongs to M, since g € M and M is a reducing subspace for Sy(,). So Py, dz,’“ eEM.

Therefore we conclude
Py, [P/ (w(z), w(@(w)))dy ] = Py, [P (w(2), w(@(w))) Py, dy '] “)
= 1+ 1)S},) (Pn,dy ') € M.

This completes the proof. [

In particular, Ny, is a reducing subspace of Sy,(;). By Theorem 4.3 we immediately
get the following theorem.

PROPOSITION 4.4. For a given g € Ly, there are a unique family of functions
{d¥} c Ly © Ly such that

-1

P/(w(2), w(o(w))s + I;)PIQ(W(Z% w(p(w))dy ™ € Ny

foreach 1 > 1.



296 H.ZOoU AND T. YU

The next theorem we will show that every nontrivial minimal reducing subspace
Q of Sy, is orthogonal to My if € is not in the form of Theorem 3.6.

THEOREM 4.5. Suppose that  is a nontrivial minimal reducing subspace for
Sy(z)- If Q is not distinguished reducing subspace then Q is a subspace of Mol.

Proof. By Lemma 4.1, there is a function g € QN Ly such that g = f+ A for
some function f = ¥}" | Mkex € MoNLy and h € My N Loy, where A, k=1,...,m, are
constant. By proposition 3.3, P{(y(z), y(¢(w)))g +d; € Q. Here d; is the function
constructed in proposition 4.3. Let

N 1

Since P/(y(z),y(@(w)))f € Ny, we obtain
Pi(y(2), y(e(w)))
2

Syo)f = I

Here

G =Sy Sy (T4 W]~ 5 (F +1)

(S*() of — f>+S* ()h—g
:S*< Syih—3h
—{S* [Py (PL(y(2), w(@(w))h+dj — )] — h} “3)

= E{S*l,/(z) [P (w(2), y(@(w)h+dy] — S*W(Z)PNwdﬁ)] —h}
1
= S =Sy Pyyd) — 1)
1 *

The sixth equality holds because that P|(y(z), y(@(w)))h +d} € Ny, the seventh
equality follows from that d,i € £y ©Ly. We claim that G # 0, if this is not true,
we would have %S*W(Z)PN(Pd,i = 0. This gives that Py,d; € Lo, and

0= <PN¢dh»dh>

= (Pyody, Pl (y(2), y(@(w)))h+d})

= (d}, P{(y(2), w(@(W))h+dy) (44)
<dhvdh>

:|| dh H2
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This gives that d} = 0. Thus we have that P|(y(z), y(¢(w)))h € Ny. By theorem
3.2, h € My. This contradicts that 2 € My . By proposition 4.3, Py,d; € My and so

1 ox 1
G =185 Py,d.
This implies that G € QN M. We conclude that QN My = Q, since Q is mini-
mal. Hence Q is a subspace of MOL. U
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