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UNIT VECTORS IN FULL HILBERT C(Z)–MODULES

ZAHRA HASSANPOUR-YAKHDANI AND KOUROSH NOUROUZI ∗

Abstract. In this paper, we show that full Hilbert C(Z) -modules, where Z is a compact Haus-
dorff space may fail to have unit vectors. We also show that while real Hilbert CR(Z) -modules
may not have unit vectors, their complexifications as (complex) Hilbert C(Z) -modules may have
unit vectors. In particular, we prove that: (i) the unit vectors in full Hilbert C(Z) -modules are
precisely the extreme points of their unit balls; (ii) the extreme and the exposed points of the
unit ball of full Hilbert C(Z) -modules with unit vectors coincide as Z has a diffuse measure;
otherwise, their unit balls have no exposed points.
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