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UNIT VECTORS IN FULL HILBERT C(Z)–MODULES
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(Communicated by N.-C. Wong)

Abstract. In this paper, we show that full Hilbert C(Z) -modules, where Z is a compact Haus-
dorff space may fail to have unit vectors. We also show that while real Hilbert CR(Z) -modules
may not have unit vectors, their complexifications as (complex) Hilbert C(Z) -modules may have
unit vectors. In particular, we prove that: (i) the unit vectors in full Hilbert C(Z) -modules are
precisely the extreme points of their unit balls; (ii) the extreme and the exposed points of the
unit ball of full Hilbert C(Z) -modules with unit vectors coincide as Z has a diffuse measure;
otherwise, their unit balls have no exposed points.

1. Introduction

A Hilbert C∗ -module M over a C∗ -algebra A (or a Hilbert A-module M ) is
a right A-module equipped with an A-valued inner product 〈·, ·〉 which is A-linear
in the second variable, fulfills 〈x,y〉 = 〈y,x〉∗ and is positive definite in the sense that
〈x,x〉 � 0 and 〈x,x〉 = 0 if and only if x = 0. Moreover, it is complete with respect to
the norm

‖x‖ =
√
‖〈x,x〉‖, (x ∈ M ).

The range ideal of a Hilbert A-module M is the closed two-sided ideal 〈M ,M 〉 :=
span{〈x,y〉 : x,y∈M } in A . A Hilbert A-module M is said to be full if 〈M ,M 〉= A .
The reader is referred to [8] and [11] for the general theory of Hilbert C∗ -modules.

An element x in a Hilbert C∗ -module over a unital C∗ -algebra with unit 1 is
called a unit vector if 〈x,x〉 = 1. Unit vectors in Hilbert C∗ -modules play a crucial
role in the construction of semigroups of endomorphisms from product systems (see
[15]). Only full Hilbert C∗ -modules may have unit vectors and they do not necessarily
exist in full Hilbert modules over arbitrary noncommutative unital C∗ -algebras (see
[15, Example 3.3]). In this paper, we show by an example that the same is true even in
full Hilbert modules over commutative unital C∗ -algebras. Indeed, we give a Hilbert
C(Z)-module which fails to have any unit vector (Example 1). We show in Example 2
that while real Hilbert CR(Z)-modules (introduced in [5]) may not have unit vectors,
their complexifications as (complex) Hilbert C(Z)-modules may have unit vectors. We,
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in particular, show that the unit vectors of full Hilbert C(Z)-modules are precisely the
extreme points of their unit balls (Proposition 1). In Proposition 2, we give a general
form of [14, Proposition 2] in the setting of Hilbert C(Z)-modules. We show that if Z
has a diffuse measure, then the extreme and the exposed points of the unit ball of full
Hilbert C(Z)-modules with unit vectors coincide; otherwise, their unit balls have no
exposed points.

2. Main results

Henceforth, we assume that Z is a compact Hausdorff space and C(Z) is the
commutative unital C∗ -algebra consisting of all complex-valued continuous functions
on Z . Also, we assume that the inner product of Hilbert spaces are linear in the second
variable and conjugate linear in the first variable.

A generalization of the Serre-Swan theorem [16] asserts that the category of Hilbert
C(Z)-modules is equivalent to the category of continuous fields of Hilbert spaces over
Z (see [4] and [17]). Let us give some basics about continuous fields of Hilbert spaces
over Z which will be needed in this note. For more information on the continuous field
of Banach spaces see [2] and [3, Remark 4.4, Proposition 4.8].

Let (Hz)z∈Z be a family of Hilbert spaces. A vector field over Z is a function
x defined on Z such that x(z) ∈ Hz for each z ∈ Z . Note that each vector field is an
element of ∏z∈Z Hz .

DEFINITION 1. A pair ((Hz)z∈Z ,Γ) , where (Hz)z∈Z is a family of Hilbert spaces
and Γ is a subset of ∏z∈Z Hz is said to be a continuous field of Hilbert spaces if it
satisfies the following properties:
(i) Γ is a complex linear subspace of

C(Z)−∏
z∈Z

Hz =
{

x ∈ ∏
z∈Z

Hz : [z �→ ‖x(z)‖] ∈C(Z)
}

;

(ii) For every z ∈ Z , the set {x(z)|x ∈ Γ} is equal to Hz ;
(iii) Let x ∈ ∏z∈Z Hz . If for every z ∈ Z and every ε > 0, there is an x′ ∈ Γ such that
‖x(z′)− x′(z′)‖ < ε , for all z′ in some neighborhood of z , then x ∈ Γ .

For any continuous field of Hilbert spaces ((Hz)z∈Z,Γ) , the space Γ can be con-
sidered as a Hilbert C(Z)-module equipped with the point-wise multiplication

(x · f )(z) = f (z)x(z),

and C(Z)-valued inner product

〈x,y〉(z) = 〈x(z),y(z)〉,
for all f ∈C(Z) , x,y∈Γ , and z∈ Z . Note that, by [2, 10.7.1], the function z �→ 〈x,y〉(z)
belongs to C(Z) . Moreover, Γ is a Banach space with the norm ‖x‖ = supz∈Z ‖x(z)‖ .
In general, every Hilbert C(Z)-module M is isomorphic to some continuous field
of Hilbert spaces ((Hz)z∈Z ,Γ) as Hilbert C(Z)-modules (see [3] and [17, Theorem
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3.12]). It is worth mentioning that a Hilbert C(Z)-module M is full if and only if
each Hilbert space Hz = {x(z) : x ∈ Γ} in the corresponding continuous field of Hilbert
spaces ({Hz}z∈Z,Γ) is nontrivial.

Note that C(Z) itself as a Hilbert C(Z)-module has unit vectors as well as Hilbert
C-modules (Hilbert spaces) have unit vectors while they are not identified with C(Z) ,
for any compact Hausdorff space Z . By the following example, we show that not every
full Hilbert C∗ -module over a commutative unital C∗ -algebra has unit vectors. For
n � 1, let Sn denote the n -sphere (or n -dimensional unit sphere) in euclidean space
Rn+1 .

EXAMPLE 1. Consider the real differentiable manifold S2 . According to a well-
known result of Borel and Serre, S2 admits an almost complex structure J , i.e., a linear
bundle morphism J of the tangent bundle T (S2) satisfying J2 = −Id . It is worth
mentioning that an explicit structure J can be constructed on S2 . To see this, consider
the sphere S2 as embedded into the imaginary part Im(H) of the quaternions H , i.e.,

S2 ∼= {z ∈ Im(H) : ‖z‖ = 1}.
A cross product × is defined on Im(H) relative to the standard orientation determined
by the basic quaternions i, j and k (namely, i2 = j2 = k2 = i jk = −1) as

u× v �→ Im(uv) =
1
2
(uv− vu),

where uv and vu are the quaternion products of u and v . Now, define J ∈ End(T (S2))
as

Jz(v) := z× v,

where z ∈ S2 , v ∈ Tz(S2) ⊂ Im(H) . Then, J is an almost complex structure on S2 , that
is,

J2
z = −IdTz(S2),

for all z ∈ S2 (see [7, Proposition 2.1], and see also [6, Comments, p. 112] for S6 ).
Note that z× v = zv as z ⊥ v and an easy application of three dimensional case of the
Binet-Cauchy identity yields

〈Jz(u),Jz(v)〉R3 = 〈u,v〉
R3 ,

for all z∈ S2, and u,v∈Tz(S2) . Moreover, each tangent space Tz(S2) can be considered
as a complex vector space if we define complex scalar multiplication as

(a+ ib)v �→ av+bJz(v).

Now, for each z ∈ S2 , define a functional 〈·, ·〉z : Tz(S2)×Tz(S2) → C as

〈u,(a+ ib)v〉z = 〈u,av+bJz(v)〉z := (a+ ib)〈u,v〉R3 ,

for all u,v ∈ Tz(S2) and a,b ∈ R . We have

〈Jz(u),Jz(v)〉z = 〈u,v〉R3 ,
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for all z ∈ S2, and u,v ∈ Tz(S2) . In particular, 〈·, ·〉z is a complex inner product on
Tz(S2) .

Let M consist of all continuous sections of the tangent bundle T (S2)→ S2 , i.e, all
continuous vector fields x : S2 →R3 such that 〈x(z),z〉R3 = 0, for all z∈ S2 . Now, con-
sidering the complex scalar multiplication and the complex inner product 〈·, ·〉z defined
as above on each tangent space Tz(S2) , M equipped with the module action

(x · f )(z) := f (z)x(z)

and C(S2)-valued inner product

〈x,y〉(z) := 〈x(z),y(z)〉z,

for all f ∈C(S2) , x,y∈M and z∈ S2 , is a full (complex) Hilbert C(S2)-module. But,
M has no unit vector. Indeed, suppose on the contrary that M has a unit vector x0 .
Then,

〈x0,x0〉(z) = 〈x0(z),x0(z)〉z = 〈x0(z),x0(z)〉R3 = 1,

for all z ∈ S2 . This implies that x0(z) 
= 0, for all z ∈ S2 which is a contradiction by
the hairy ball theorem which states that there is no non-vanishing continuous tangent
vector field on even-dimensional unit spheres.

Real Hilbert C∗ -modules are the same as complex Hilbert C∗ -modules except
that the underlying field is R (For the definition of real C∗ -algebras and real Hilbert
C∗ -modules see [9] and [5], respectively). The next example gives a class of full real
Hilbert CR(Z)-modules without unit vectors, where CR(Z) denotes the real C∗ -algebra
consisting of all continuous real-valued functions on Z . It also shows that while real
Hilbert CR(Z)-modules may not have unit vectors, their complexification as (complex)
Hilbert C(Z)-modules may have unit vectors. In particular, unlike the full Hilbert
C(S2)-module given in Example 1 which lacks any unit vector, the Hilbert C(S2)-
module given below possesses unit vectors.

EXAMPLE 2. Let Z = Sn and M be the (real) vector space consisting of all con-
tinuous tangent vector fields x : Z → Rn+1 , i.e., all continuous vector fields x : Z →
Rn+1 such that 〈x(z),z〉

Rn+1 = 0, for all z ∈ Z . Given x ∈ M and f ∈ CR(Z) , x · f
defined as z �→ f (z)x(z) is an element of M . Moreover, M equipped with a CR(Z)-
valued inner product (x,y) �→ 〈x,y〉 defined as z �→ 〈x(z),y(z)〉

Rn+1 has the structure of
a full real Hilbert CR(Z)-module (for real Hilbert C∗ -modules, see [5]).

(i) Let n be even. Then, M does not have any unit vector. In fact, suppose
on the contrary that M has a unit vector x . Then, x(z) 
= 0 for all z ∈ Z , which is
a contradiction by the hairy ball theorem. Consequently, M as a real Hilbert CR(Z)-
module has no unit vector. Now, consider the complex Hilbert module Mc := M + iM
over complex C∗ -algebra C(Z) = CR(Z) + iCR(Z) in which the module action and
C(Z)-valued inner product is defined as

(x+ iy)( f + ig) := (x · f − y ·g)+ i(x ·g+ y · f )
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and
〈x+ iy,u+ iv〉 := 〈x,u〉+ 〈y,v〉+ i(〈y,u〉− 〈x,v〉),

respectively, for all f ,g ∈CR(Z) and x,y,u,v ∈ M (see [5, Proposition 2.5]). Choose
x,y ∈ M with no common zero on Z , for example,

x(z1,z2, · · · ,zn,zn+1) = (−z2,z1,−z4,z3, · · · ,−zn,zn−1,0)

and
y(z1,z2, · · · ,zn,zn+1) = (0,−z3,z2,−z5,z4, · · · ,−zn+1,zn).

Define

x0(z) :=
1√

‖x(z)‖2 +‖y(z)‖2
x(z)

and

y0(z) :=
1√

‖x(z)‖2 +‖y(z)‖2
y(z),

where z ∈ Z . We have

〈x0 + iy0,x0 + iy0〉(z) = 〈x0,x0〉(z)+ 〈y0,y0〉(z) = 1,

for all z ∈ Z . That is, x0 + iy0 is a unit vector of the complexified Hilbert C(Z)-module
Mc of M .

(ii) Let n be odd, say n = 2k−1. Then, x̃ : Z → Rn+1 defined as

(z1,z2, · · · ,z2k−1,z2k) �→ (−z2,z1, · · · ,−z2k,z2k−1)

is a nowhere vanishing continuous tangent vector field on Sn which is also a unit vector
in M . In particular, 1√

2
x̃ + i 1√

2
x̃ is a unit vector in the complexified Hilbert C(Z)-

module Mc of M .

Our next two results reveal the role that unit vectors in full Hilbert C(Z)-modules
may play in determining the extremal structure of their unit balls. Let us recall two
concepts: A point x in a convex set C of a normed space E is called an extreme
point if for every y,z ∈ C , the equation x = λy+(1−λ )z with λ ∈ [0,1] implies that
x = y = z . A point x ∈ C is called an exposed point if there exists a bounded R-linear
functional f : E → R , called exposing functional of C at x , such that f (x) > f (y) , for
all y ∈ C \ {x}). Any exposed point of C is an extreme point of C but in general the
converse need not be true.

The following result relates the existence of unit vectors in full Hilbert C(Z)-
modules to the extreme points in their unit balls. It shows that full Hilbert C(Z)-
modules without extreme points of their unit ball are exactly those without unit vectors.
For the special case of the C∗ -algebra C(Z) see, e.g., [13, Lemma] and [1, Corollary].

PROPOSITION 1. Let M be a full Hilbert C(Z)-module. Then, x ∈ M is a unit
vector if and only if x is an extreme point of the unit ball of M .
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Proof. Suppose that ((Hz)z∈Z ,Γ) is the continuous field of Hilbert spaces corre-
sponding to M . We show that an element x is an extreme point of the unit ball Γ1

of the C(Z)-module Γ if and only if x is a unit vector. Suppose that x ∈ Γ1 is a unit
vector, i.e., 〈x,x〉 = 1. It is enough to look only at x = 1

2y + 1
2w , for some vectors

y,w ∈ Γ1 . Choose z0 ∈ Z arbitrarily. We have x(z0) = 1
2y(z0)+ 1

2w(z0) , and therefore
‖y(z0)+w(z0)‖ = 2‖x(z0)‖ = 2. This implies that ‖y(z0)‖ = ‖w(z0)‖ = ‖x(z0)‖ = 1.
Since the vector x(z0) is an extreme point of the unit ball of the Hilbert space Hz0 , we
have x(z0) = y(z0) = w(z0) . That z0 was arbitrary yields that x = y = w .

Conversely, suppose that x ∈ Γ1 is not a unit vector. Hence, ‖x(z0)‖ < 1 for
some z0 ∈ Z . We have two cases: (i) x(z0) = 0. Let ε ∈ (0, 1

2) . By the continuity of
the function z �→ ‖x(z)‖ at z0 , there is some open subset Uz0 containing z0 such that
‖x(z)‖ < ε , for all z ∈Uz0 . And, by Urysohn’s lemma, there is f ∈C(Z) such that

‖ f‖ = 1, f (z0) = 1, f |UC
z0

= 0.

Moreover, since M is full, there is some y0 ∈ Γ such that y0(z0) 
= 0, and ‖y0‖ < 1
2 .

Now, consider the equation

x =
1
2
(x+ y0 · f )+

1
2
(x− y0 · f ).

It is straightforward to see that x+ y0 · f 
= x− y0 · f and both x+ y0 · f and x− y0 · f
belong to Γ1 . This implies that x is not an extreme point of Γ1 . (ii) x(z0) 
= 0. Choose
ε ∈ (0,1) such that ‖x(z0)‖ < 1

1+ε . Again, by the continuity of the map z �→ ‖x(z)‖
there is some open subset Uz0 containing z0 such that

‖x(z)‖ <
1

1+ ε
(z ∈Uz0).

Also, let V be an open subset of Z containing z0 such that V ⊂V ⊂Uz0 . By Urysohn’s
lemma there exists f0 ∈ C(Z) such that ‖ f0‖ = 1, f0|V = 1, and f0|Uc

z0
= 0. Putting

f = ε f0 +1, we have ‖ f‖ � 1+ ε and f |V = 1+ ε , f |Uc
z0

= 1. Consider

x = x · f + x · (1− f ) = (1− 1
1+ ε

)x · f +
1

1+ ε
(x · f +(1+ ε)x · (1− f )).

Let y1 = x · f and y2 = x · f +(1+ ε)x · (1− f ) . Since x(z0) 
= 0, we have y1 
= y2 . In
addition, y1,y2 ∈ Γ1 . In fact, ‖y1(z)‖ = ‖ f (z)x(z)‖ � 1 as z ∈Uz0 . Also, if z ∈Uc

z0 ,
we have ‖y1(z)‖ � 1. Hence, ‖y1‖ � 1. Similarly, if z ∈Uz0 , then

‖y2(z)‖ � |1+ ε(1− f (z))|‖x(z)‖ = |1− ε2 f0(z)|‖x(z)‖ <
1+ ε2

1+ ε
< 1.

And, if z ∈Uc
z0 , ‖y2(z)‖ � ‖x(z)‖ � 1. Therefore, ‖y2‖ � 1. Consequently, x is not

an extreme point of Γ1 . �
In the following, we give a general form of [14, Proposition 2] (and [12, Corollary

1]) in the setting of Hilbert C(Z)-modules. By a diffuse measure μ on Z we mean a
nonnegative measure μ such that μ(V ) > 0, for all nonempty open subset V of Z (see
[14] and examples therein).
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PROPOSITION 2. Let M be a full Hilbert C(Z)-module with unit vectors. If
there is no diffuse measure on Z , then the unit ball M1 of M has no exposed points.
Otherwise, Ext(M1) = Exp(M1) .

Proof. Suppose that there is no diffuse measure on Z . Also, suppose on the con-
trary that y ∈ Exp(M1) , i.e., y is an exposed point of M1 . Hence, there is a bounded
linear functional L : M → C such that

ReL(y) > ReL(x) (x ∈ M1 \ {y}).
Define a functional L̃ : C(Z) → C as

L̃( f ) = L(y · f ) ( f ∈C(Z)).

It is clear that L̃ is a linear functional. Also, L̃ is bounded. In fact,

|L̃( f )| = |L(y · f )| � ‖L‖‖y · f‖� ‖L‖‖ f‖‖y‖,
for all f ∈ C(Z) . Now, let g ∈ C(Z)1 \ {1} . Since y is an extreme point of M1 , by
Proposition 1, y(z) 
= 0 for all z ∈ Z . This implies that y · g 
= y . Moreover, since
‖y ·g‖� 1, we have

Re L̃(g) = ReL(y ·g) < ReL(y) = Re L̃(1).

That is, 1 is an exposed point of C(Z)1 which contradicts [14, Proposition 2].
On the other hand, suppose that there is a diffuse measure μ on Z with μ(Z) = 1.

Let Γ be the continuous field of Hilbert spaces on Z which is isomorphic to M . Again,
by Proposition 1, Ext(Γ1) 
= /0 . Let y ∈ Ext(Γ1) and define a functional fy : Γ → C as

fy(x) =
∫

Z
〈y,x〉dμ (x ∈ Γ).

It is clear that fy is linear. Note that ‖〈y,x〉‖ = supz∈Z |〈y(z),x(z)〉| � 1, for all x ∈ Γ1 .
We have

| fy(x)| =
∣∣∣∣
∫

Z
〈y,x〉dμ

∣∣∣∣ �
∫

Z
‖〈y,x〉‖dμ � 1 (x ∈ Γ1).

Hence, fy is a bounded linear functional. Since y is a unit vector, we have fy(y) = 1.
We show that fy is an exposing functional, i.e.,

Re fy(x) < Re fy(y) = 1, (x ∈ Γ1 \ {y}).
Let x ∈ Γ1 \ {y} . There is some z0 ∈ Z such that x(z0) 
= y(z0) . We show that
〈y(z0),x(z0)〉 
= 1. Suppose on the contrary that

〈y(z0),x(z0)〉 = 〈y(z0),y(z0)〉 = 1. (1)

By the Cauchy-Schwartz inequality,

1 = 〈y(z0),x(z0)〉 � ‖y(z0)‖‖x(z0)‖ � 1. (2)
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Consequently, there is some λ ∈ C such that x(z0) = λy(z0) . Moreover, by the equa-
tion 1, since 〈y(z0),x(z0)〉 = 〈y(z0),λy(z0)〉 = 1, we have λ = 1. This contradicts
y(z0) 
= x(z0) . Therefore, Re 〈y(z0),x(z0)〉 < 1. Now, by the continuity of the map

z �→ Re(〈y(z),x(z)〉)
there is some open set Uz0 containing z0 such that Re 〈y(z),x(z)〉 < 1, for all z ∈Uz0 .
Moreover, since μ is a diffuse measure, μ(Uz0) > 0. Thus, Re fy(x) =

∫
Z Re〈y,x〉dμ <

1. �
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