
Operators
and

Matrices

Volume 16, Number 2 (2022), 415–428 doi:10.7153/oam-2022-16-32

JORDAN {g,h}–DERIVATIONS OF UNITAL ALGEBRAS

DOMINIK BENKOVIČ AND MATEJA GRAŠIČ

(Communicated by L. Molnár)

Abstract. In this paper we study Jordan {g,h} -derivations of unital algebras. For algebras hav-
ing nontrivial idempotents we give the sufficient and necessary conditions that every Jordan
{g,h} -derivation is a {g,h} -derivation. We are particularly interested in the class of algebras
A having the property, that every Jordan {g,h} -derivation of A is a {g′,h′} -derivation for
some linear maps g′ and h′ .

1. Introduction

Throughout the paper R will be a commutative unital ring containing 1
2 and A

will be a unital algebra over R . As usual, with x ◦ y = xy + xy we denote the Jordan
product and with [x,y] = xy− yx the Lie product of elements x,y ∈ A .

Let g,h : A → A be linear maps. A linear map f : A → A is called a {g,h} -
derivation if

f (xy) = g(x)y+ xh(y) = h(x)y+ xg(y)

hold for all x,y ∈ A and is called a Jordan {g,h} -derivation if

f (x◦ y) = g(x)◦ y+ x◦ h(y)

holds for all x,y ∈ A . Clearly, each {g,h} -derivation is a Jordan {g,h} -derivation.
Also, every derivation f is an { f , f} -derivation and every Jordan derivation f is a
Jordan { f , f} -derivation. In 1957 Herstein [8] proved that every Jordan derivation
from a prime ring of characteristic not 2 into itself is a derivation. This result has been
extended to different rings and algebras in various directions (see e.g. [2, 3, 4, 6, 11, 12,
13] and references therein); one might very roughly summarize these results by saying
that proper Jordan derivations (i.e. those that are not derivations) from rings (algebras)
into themselves are rather rare and very special.

The notions of a {g,h} -derivation and a Jordan {g,h} -derivation were introduced
by Brešar [5], where he used them to obtain [5, Corollary 4.4], which states that ev-
ery Jordan derivation on the tensor product A ⊗B of a semiprime algebra A and
a commutative algebra B is a derivation. Let us point out, see [3, 6] for more de-
tails, that proper Jordan derivations on a semiprime algebra do not exist. Furthermore,
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even the tensor product of semiprime algebras is not necessarily a semiprime algebra.
The above mentioned result from Brešar follows from [5, Theorem 4.3] which states
that every Jordan {g,h} -derivation of a semiprime algebra A is a {g,h} -derivation.
Therefore, naturally, the question arises, what algebras A have the property that every
Jordan {g,h} -derivation of A is a {g,h} -derivation.

In this article we will consider two classes of algebras. We will study algebras A
having property (P1) or (P2), where:

(P1) Every Jordan {g,h} -derivation of A is a {g′,h′} -derivation for some linear
maps g′ and h′ .

(P2) Every Jordan {g,h} -derivation of A is a {g,h} -derivation.

Using these notations we know, as already mentioned before, that every semiprime
algebra A is an algebra with property (P2). Furthermore, Ghosh and Prakash [7, The-
orem 3.1] proved that every matrix algebra Mn (R) over a commutative ring R has
property (P2). Let us point out that the upper triangular matrix algebra Tn (R) does not
have property (P2). In [10, Theorem 3.1] Kong and Zhang characterised nest algebras
T (N ) on a complex separable Hilbert space H having property (P2). One of the re-
sults obtained in [10] states, that every Jordan {g,h} -derivation of a triangular algebra
A is a {g,h} -derivation if and only if g(1) or h(1) lies in the center of the algebra A .

Clearly, every algebra having property (P2) also has property (P1). A converse
of this claim does not hold. On an algebra A with the property (P2) every Jordan
derivation is a derivation. It turns out, see Remark 2.4, that this also holds for every
algebra A which has property (P1). In Remark 2.3 we point out that in an algebra A
with property (P2) only the central elements a ∈ A satisfy the identity [[x,y] ,a] = 0
for all x,y ∈ A . As it turns out, this is the property that characteristically distinguishes
between the classes of algebras having property (P2) and (P1). Theorem 3.1 namely
states:

An algebra A has property (P2) if and only if A has property (P1) and Z (A ) = {a∈
A ; [[A ,A ] ,a] = 0} .

Let us look from another perspective. We mentioned before that on algebras
with property (P1) there do not exist proper Jordan derivations. Could this property
be characteristic for algebras having property (P1)? In general this is not the case
(see Example following Theorem 3.1). But, if an algebra is unital and contains a
nontrivial idempotent, then under some conditions this property is indeed character-
istic. Let us assume that A has an idempotent p �= 0,1 and let q denote the idem-
potent 1− p . In this case A can be represented in the Peirce decomposition form
A = pA p+ pA q+ qA p+ qA q , where pA p and qA q are subalgebras with uni-
tary elements p and q , respectively, pA q is an (pA p,qA q)-bimodule and qA p is
an (qA q, pA p)-bimodule. We will assume that A satisfies

pxp · pA q = {0} = qA p · pxp ⇒ pxp = 0,

pA q ·qxq = {0} = qxq ·qA p ⇒ qxq = 0
(1)
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for all x∈A . Examples of such unital algebras are triangular algebras, matrix algebras,
and prime (hence in particular simple) algebras with nontrivial idempotents. Our main
result Theorem 3.3 states:

Let A be a unital algebra containing a nontrivial idempotent p satisfying (1). Then
A has property (P1) if and only if every Jordan derivation of A is a derivation.

Therefore, any triangular algebra A has property (P1) but does not necessarily
have property (P2) (see Corollary 4.3). From the main theorem it also follows that
every matrix algebra Mn (A) , n � 2, where A is a unital algebra, has property (P2)
(see Corollary 4.2).

In the second section we give basic remarks that will be used in the proofs of the
main theorems (Theorem 3.1, Theorem 3.3) presented in the third section. In the last
section we apply these results to unital algebras containing nontrivial idempotents.

2. Remarks on Jordan {g,h} -derivations

Let A be an algebra and let Z (A ) denote the center of A . It is known (see [5])
that every {g,h} -derivation f can be written as f (x) = λx+d (x) for all x∈A , where
d : A → A is a derivation and λ ∈ Z (A ) .

REMARK 2.1. A linear map f : A → A is a {g,h} -derivation and a {g′,h′} -
derivation if and only if g′ (x)− g(x) = h(x)− h′ (x) = ax for all x ∈ A , where a ∈
Z (A ) .

Proof. Let us assume that

f (xy) = g(x)y+ xh(y) = g′ (x)y+ xh′ (y)
= h(x)y+ xg(y) = h′ (x)y+ xg′ (y)

for all x,y ∈ A . Define G = g′ −g and H = h′ −h . Then the above identities can be
written as

G(x)y+ xH (y) = 0 = H (x)y+ xG(y) (2)

for all x,y ∈ A . Let a = G(1) . Substituting x = y = 1 in (2) we get H(1) = −G(1) =
−a . Now let us consecutively make the substitutions y = 1 and x = 1 in (2). We get

G(x) = xa and H (x) = −xa for all x ∈ A ,

H (y) = −ay and G(y) = ay for all y ∈ A .

Therefore a ∈ Z (A ) , G(x) = g′ (x)−g(x) = xa and H (x) = h′ (x)−h(x) = −ax for
all x ∈ A . The second implication is an easy calculation, so we omit it. �

REMARK 2.2. A linear map f : A → A is a Jordan {g,h} -derivation and a Jor-
dan {g′,h′} -derivation if and only if g′ (x)−g(x) = h(x)−h′ (x) = a◦x for all x ∈A ,
where a ∈ A is such that [[A ,A ] ,a] = 0.
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Proof. Let f be a Jordan {g,h} -derivation and a Jordan {g′,h′} -derivation. Then

f (x◦ y) = g(x)◦ y+ x◦ h(y) = g′ (x)◦ y+ x◦ h′(y)

for all x,y ∈ A . Now let G = g′ −g and H = h′ −h . Then the above identity can be
written as

G(x)◦ y+ x◦H (y) = 0 (3)

for all x,y ∈ A . Let a = 1
2G(1) . As in the proof of the previous proposition we make

the substitutions x = y = 1, getting 2G(1)+ 2H (1) = 0 and H (1) = −G(1) = −2a .
By letting y = 1 and then x = 1 in (3) we further have

2G(x) = −H (1)◦ x for all x ∈ A ,

2H (y) = −G(1)◦ y for all y ∈ A .

Therefore, G(x) = g′ (x)−g(x)= a◦x and H (x)= h′ (x)−h(x)=−a◦x for all x∈A .
Using this in (3) we get

y◦ (x◦ a)− x◦ (y◦ a) = 0

for all x,y ∈ A . Knowing that [[x,y] ,a] = x ◦ (y◦ a)− y ◦ (x◦ a) we have proven that
a satisfies the identity [[x,y] ,a] = 0 for all x,y ∈ A . The second implication can be
verified by a direct computation. �

REMARK 2.3. Let A be an algebra with property (P2). Then

Z (A ) = {a ∈ A ; [[A ,A ] ,a] = 0}.

Proof. It suffices to prove that every a ∈ A satisfying [[x,y] ,a] = 0 for all x,y ∈
A lies in Z(A ) . Let f be a {g,h} -derivation. Then f is a Jordan {g,h} -derivation
and by Remark 2.2 f is also a Jordan {g′,h′} -derivation, where g′ (x)−g(x) = h(x)−
h′ (x) = a ◦ x for all x ∈ A . From this it follows, since A has property (P2), that f
is a {g′,h′} -derivation. Remark 2.1 further tells us that there exists λ ∈ Z(A ) such
that g′ (x)−g(x) = h(x)−h′ (x) = λx for all x ∈ A . We have come to a ◦ x = λx for
all x ∈ A . By putting x = 1 in this identity we have 2a = λ ∈ Z(A ) and therefore
a ∈ Z(A ) . �

REMARK 2.4. Let A be an algebra with property (P1). Then every Jordan deriva-
tion of A is a derivation.

Proof. Let f be a Jordan derivation of A . Then f is also a Jordan { f , f} -
derivation. Since A satisfies (P1), there exist linear maps g,h : A →A such that f is
a {g,h} -derivation. Therefore f is of the form f (x) = λx+d(x) , where d : A → A
is a derivation and λ ∈ Z(A ). The following holds

f (x◦ y) = f (x)◦ y+ x◦ f (y)
λ (x◦ y)+d(x◦ y) = (λx+d(x))◦ y+ x◦ (λy+d(y))

= 2λ (x◦ y)+d(x)◦ y+ x◦ d(y)
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for all x,y ∈ A . Since d is (also) a Jordan derivation, it follows that λ (x◦ y) = 0 for
all x,y ∈ A . Letting x = y = 1, we get 2λ = 0. Therefore λ = 0 and f = d is a
derivation. �

3. Main Theorem

Let A be an algebra with property (P2). Then A also has property (P1) and by
Remark 2.3 it follows that only the central elements of A satisfy identity [[A ,A ] ,a] =
0. The question arises whether these two properties are characteristic properties for
algebras satisfying (P2)? Our first result states that this is so:

THEOREM 3.1. An algebra A has property (P2) if and only if A is an algebra
with property (P1) and Z (A ) = {a ∈ A ; [[A ,A ] ,a] = 0} .

Proof. It suffices to prove the ’right to left’ implication. Let f be a Jordan {g,h} -
derivation. By assumption there exist linear maps g′,h′ : A → A such that f is a
{g′,h′} -derivation. Using Remark 2.2 it follows that g′ (x)−g(x) = h(x)−h′ (x) = a◦x
for all x ∈ A , where a ∈ A is such that [[x,y] ,a] = 0 for all x,y ∈ A . Using the
assumption this gives that a ∈ Z(A ) and therefore g′ (x)−g(x) = h(x)−h′ (x) = 2ax
for all x∈A . Since 2a∈ Z(A ) , by Remark 2.1 it follows that f is a {g,h} -derivation.
We have thereby proven that A has property (P2). �

So now we know that algebras A containing a noncentral element a satisfying
[[A ,A ] ,a] = 0 do not have property (P2). Do these algebras have property (P1)? This
can not be expected in general. See the following Example. Let us assume that A is an
algebra with property (P1). By Remark 2.4 we know that every Jordan derivation of A
is also a derivation. Is the contrary true? Again, this is not the case in general. There
exist algebras having the property that every Jordan derivation is a derivation and not
having property (P1). The following example was constructed using Brešar’s example
[5, Example 2.1]:

EXAMPLE 3.2. Let

A =

⎧⎨
⎩

⎛
⎝μ t s

μ r
μ

⎞
⎠ ;μ ,t,r,s ∈ R

⎫⎬
⎭ .

Obviously, A is a subalgebra of the upper triangular matrix algebra T3(R) . Each
element x ∈ A can be represented in the form x = μ1+ te12 + se13 + re23 where ei j

are matrix units. Note that A is a noncommutative algebra satisfying the polynomial
identity [[X ,Y ] ,Z] and that the center of A consists of all elements: λ = μ1+ se13 ,
where μ ,s ∈ R . Let us define linear maps f ,g : A →A by f (x) = 2μe12 and h(x) =
re13 for all x ∈ A . A direct calculation gives

f (x◦ y) = f (x)◦ y+ x◦ h(y)
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for all x,y ∈A . The map f is therefore a Jordan { f ,h} -derivation. Let us assume that
f is a {g′,h′} -derivation for some linear maps g′,h′ . Then f is of the form f (x) =
λx+d(x) , where d : A → A is a derivation and λ ∈ Z(A ) . This is in contradiction
with f (1) = 2e12 /∈ Z (A ) and f (1) = λ ∈ Z (A ) . The algebra A therefore does not
have the property (P1). But, see [5, Example 2.1], every Jordan derivation of A is a
derivation.

Notice, that the algebra in the example does not contain nontrivial idempotents.
Our main theorem gives a characterization of algebras having property (P1) in the spe-
cial case when an algebra is unital and contains a nontrivial idempotent p satisfying
(1).

THEOREM 3.3. Let A be a unital algebra containing a nontrivial idempotent p
satisfying (1). Then A has property (P1) if and only if every Jordan derivation of A
is a derivation.

Before proving Theorem 3.3 some auxiliary results are needed. Let A = pA p+
pA q+ qA p+ qA q be a unital algebra containing a nontrivial idempotent p , which
satisfies (1). Every element x ∈ A can be represented in the form

x = pxp+ pxq+qxp+qxq= a+m+n+b, (4)

where a ∈ pA p , m ∈ pA q , n ∈ qA p and b ∈ qA q . Let us point out, see [1, Propo-
sition 2.1], that the center of A consists of all elements of the form λ ∈ pA p+qA q
satisfying [λ ,m] = [λ ,n] = 0 for all m ∈ pA q,n ∈ qA p . Also the following holds:

REMARK 3.4. Let x ∈ A . If [x, pA q] = 0 and [x,qA p] = 0, then pxp+qxq ∈
Z (A ) .

Let f be a Jordan {g,h} -derivation. Set a = 1
2g(1) and b = 1

2h(1) . Since
f (x◦ y) = g(x)◦ y+ x◦ h(y) for all x,y ∈ A it follows that

g(x) = f (x)−b◦ x and h(x) = f (x)−a ◦ x (5)

for all x ∈ A . This gives us an important identity:

f (x◦ y) = f (x)◦ y+ x◦ f (y)− x◦ (y◦ a)− y◦ (x◦b) (6)

for all x,y∈A . Our goal is to give the form of elements a and b . Our first observation,
that was used already by Brešar in the proof of [5, Lemma 4.1], is the following:

LEMMA 3.5. The element a− b satisfies the identity [[x,y] ,a−b] = 0 for all
x,y ∈ A .

Next, the following holds for the element a+b :
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LEMMA 3.6. Let e be an idempotent of A . Then

λ = a+b ∈ eA e+(1− e)A (1− e).

Moreover [λ ,e] = 0 .

Proof. Substituting x = y = e in (6) we have

2 f (e) = f (e)◦ e+ e◦ f (e)− e◦ (e◦ (a+b))
= 2 f (e)e+2e f (e)− eλ −2eλe−λe.

Multiplying this identity by e from the left side and by 1−e from the right side, we get
eλ (1−e) = 0. Similarly, multiplying the above identity from the left side by 1−e and
from the right side by e , we get (1− e)λe = 0. Therefore λ = eλe+(1− e)λ (1− e)
is of the desired form and obviously also [λ ,e] = 0 holds. �

LEMMA 3.7. The elements a and b are of the form a = α + γ and b = β − γ ,
where α,β ∈ Z (A ) and γ ∈ pA q + qA p is such that [[x,y] ,γ] = 0 holds for all
x,y ∈ A .

Proof. Let p be a nontrivial idempotent of A . Decomposing A using this
idempotent we can write the elements a,b as in (4): a = a1 + m1 + n1 + b1 and
b = a2 +m2 +n2 +b2 . Since p is an idempotent, by Lemma 3.6 we get

0 = p(a+b)q = paq+ pbq = m1 +m2 and

0 = q(a+b) p = qap+qbp = n1 +n2.

Let us set γ = m1 + n1 = −m2 − n2 ∈ pA q + qA p . Further, let α = a1 + b1 and
β = a2+b2 . Then a = α +γ and b = β −γ . Note that p+m and p+n are idempotents
for all m ∈ pA q , n ∈ qA p . Next, let λ = a+ b = α + β . By Lemma 3.6 we know
that [λ , p+m] = 0 and [λ , p+n] = 0. Since also [λ , p] = 0, we have

[λ ,m] = [λ , p+m]− [λ , p] = 0 and

[λ ,n] = [λ , p+n]− [λ , p] = 0

for all m∈ pA q , n∈ qA p . Since λ = α +β ∈ pA p+qA q and because [λ , pA q] =
0 and [λ ,qA p] = 0, Remark 3.4 tells us that α + β ∈ Z (A ) .

Next we will prove that also the element α −β is central. Using Lemma 3.5 we
first observe that the element a− b = α −β + 2γ satisfies [[x,y] ,α −β +2γ] = 0 for
all x,y ∈ A . Substitutions x = p, y = m and x = n , y = p in this identity give us

[m,α −β +2γ] = 0 and [n,α −β +2γ] = 0

for all m ∈ pA q , n ∈ qA p . Since α −β ∈ pA p+qA q and 2γ ∈ pA q+qA p , by
Remark 3.4 we know that α −β ∈ Z (A ) . Therefore [[x,y] ,2γ] = 0 for all x,y ∈ A
and consequently the element γ satisfies [[A ,A ] ,γ] = 0.
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We have thereby proven that both elements α + β and α −β lie in the center of
A , therefore also α and β are central elements and the proof is completed. �

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. By Remark 2.4, we only have to prove that if every Jordan
derivation of A is a derivation, then A has property (P1). Let f be a Jordan {g,h} -
derivation. By Lemma 3.7 we know that a= α +γ and b = β −γ , where α,β ∈Z (A ) .
Therefore, setting λ = α + β and using the identity [[x,y] ,γ] = x◦ (y◦ γ)− y◦ (x◦ γ) ,
(6) can be rewritten as

f (x◦ y) = f (x)◦ y+ x◦ f (y)−2(α + β )(x◦ y)− x◦ (y◦ γ)+ y◦ (x◦ γ)
= f (x)◦ y+ x◦ f (y)−2λ (x◦ y)− [[x,y] ,γ] .

Since [[A ,A ] ,γ] = 0, we further have

f (x◦ y) = f (x)◦ y+ x◦ f (y)−2λ (x◦ y) .

Subtracting 2λ (x◦ y) on both sides of this identity and using the fact that λ ∈ Z (A ) ,
we further have

f (x◦ y)−2λ (x◦ y) = ( f (x)−2λx)◦ y+ x◦ ( f (y)−2λy)

for all x,y ∈ A . Now set d(x) = f (x)− 2λx for all x ∈ A . Since d (x◦ y) = d (x) ◦
y+ x◦ d (x) holds for all x,y ∈ A , the map d is a Jordan derivation. By assumption it
follows that d is also a derivation. So we have f (x) = 2λx+d(x) = (α + β )◦ x+d(x)
for all x ∈ A . Using (5) we further see that the maps g and h are of the form

g(x) = f (x)−b◦ x = α ◦ x+d(x)+ γ ◦ x and

h(x) = f (x)−a ◦ x = β ◦ x+d(x)− γ ◦ x

for all x ∈ A .
Finally, let us prove that f is a {g′,h′} -derivation, where g′(x) = α ◦x+d(x) and

h′(x) = β ◦ x+d(x) for all x ∈ A . Knowing that α,β ∈ Z (A ) and d is a derivation,
on the one hand we have

f (xy) = (α + β )◦ (xy)+d(xy)
= (α ◦ (xy)+d(x)y)+ (β ◦ (xy)+ xd(y))
= (α ◦ x+d(x))y+ x(β ◦ y+d(y))
= g′(x)y+ xh′(y)

for all x,y ∈ A and on the other hand

f (xy) = (β ◦ (xy)+d(x)y)+ (α ◦ (xy)+ xd(y))
= (β ◦ x+d(x))y+ x(α ◦ y+d(y))
= h′(x)y+ xg′(x)

for all x,y ∈ A . The map f is therefore a {g′,h′} -derivation. �
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4. Applications

In this section we will present some applications of Theorem 3.1 and Theorem
3.3 to some special classes of unital algebras. Notice, that every simple unital algebra
containing a nontrivial idempotent and every unital prime algebra containing a non-
trivial idempotent satisfy (1). These are examples of unital semiprime algebras which
have property (P2) as Brešar [5] proved. We will focus on applications in matrix and
triangular algebras.

Let Id([A ,A ]) denote the ideal of an algebra A which is generated by all com-
mutators of A .

PROPOSITION 4.1. Let A be a unital algebra containing a nontrivial idempotent
p satisfying (1). Suppose that Id([pA p, pA p]) = pA p or Id([qA q,qA q]) = qA q.
Then A has property (P2).

Proof. From [2, Proposition 3.3 and Theorem 4.1] it follows that every Jordan
derivation of A is a derivation. Therefore A is an algebra with property (P1). By
Theorem 3.1 we have to prove that Z (A ) = {a ∈ A ; [[A ,A ] ,a] = {0}} .

Let us assume that Id([pA p, pA p]) = pA p . The case, when Id([qA q,qA q]) =
qA q is treated analogously. Let x0 ∈ A satisfy [[x,y] ,x0] = 0 for all x,y ∈ A .
Decomposing A using idempotent p we can write element x0 in the form (4) as:
x0 = a0 + m0 + n0 + b0 . Now let x = e and y = m ∈ pA q . Then the above identity
yields [m,x0] = 0. So [pA q,x0] = 0. Similarly, letting x = n ∈ qA p and y = e in the
above identity, we have [n,x0] = 0 and consequently [qA p,x0] = 0. Using Remark 3.4
we deduce that a0 + b0 ∈ Z (A ) . Therefore [[x,y] ,m0 +n0] = 0 for all x,y ∈ A and,
in particular, for arbitrary elements a1,a2 ∈ pA p we have

0 = [[a1,a2] ,m0 +n0] = [a1,a2]m0−n0 [a1,a2] .

So [pA p, pA p]m0 = {0} = n0 [pA p, pA p] . Using this, since

a1 [a2,a3a4]m0 = a1a3 [a2,a4]m0 +a1 [a2,a3]a4m0

for all a1,a2,a3,a4 ∈ pA p , we get

0 = a1 [a2,a3]a4m0.

Therefore we can deduce that Id([pA p, pA p])m0 = {0} . By assumption we know that
Id([pA p, pA p]) = pA p , so pm0 = m0 = 0. Similarly it can be shown that n0 = 0.
Therefore x0 = a0 +b0 ∈ Z (A ) . �

Matrix algebras

Let A = Mn (A) , n � 2, be a matrix algebra, where A is a unital algebra. Let{
ei j|i, j = 1,2, . . . ,n

}
be the system of matrix units of A and let 1 be the identity of

A . Let us denote the idempotent p = e11 and q = 1− e11. In this case A and p
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satisfy (1). Note that the subalgebra pA p is isomorphic to A and qA q is isomorphic
to the matrix algebra Mn−1 (A) . Clearly, (pA p,qA q)-bimodule pA q∼= M1×(n−1) (A)
is faithful as a left pA p -module and as a right qA q -module. Recall, that the ideal
generated by all commutators of Mn (A) coincides with Mn (A) . Assume that a is an
arbitrary matrix in Mn (A) . Since aeii = [aeii,ei j]e ji for all i �= j and a = ae11 + . . .+
aenn we see that even the right ideal generated by all commutators of Mn (A) coincides
with Mn (A) .

COROLLARY 4.2. The matrix algebra Mn (A) , n � 2 , has property (P2).

Proof. Let n � 3. Let us decompose the algebra Mn (A) using the idempotent
p = e11. Then the algebra qA q is isomorphic to the matrix algebra Mn−1 (A) . Since
Id([Mn−1 (A) ,Mn−1 (A)]) = Mn−1 (A) the result follows from Proposition 4.1.

Now let n = 2. From classical results of Jacobson and Rickart [9, Theorems 7 and
22] it follows that every Jordan derivation of Mn (A) is a derivation. Regarding Theorem
3.1, Theorem 3.3 and the examples mentioned following (1) the proof will be completed
if we show that only central elements a from M2 (A) satisfy the identity [[x,y] ,a] = 0.
Therefore, let a = ∑2

i, j=1 ai jei j , ai j ∈ A , satisfy this identity for all x,y ∈M2 (A) . Since

0 = [[e11,e12] ,a] = [e12,a] = a21e11 +(a22−a11)e12−a21e22,

0 = [[e21,e11] ,a] = [e21,a] = −a12e11 +(a11−a22)e21 +a12e22,

we see, that a12 = a21 = 0 and a11 = a22 . Therefore a = a0 (e11 + e22) = a01 for some
a0 ∈ A . Let a1 ∈ A be an arbitrary element. Since

0 = [[a1e11,e12] ,a] = [a1e12,a01] = [a1,a0]e12

it follows that a0 ∈ Z(A) . We have proven that a ∈ Z(A) ·1 = Z(M2 (A)) . �

Triangular algebras

In case A is a unital algebra containing a nontrivial idempotent p such that
qA p = {0} and that the bimodule pA q is faithful as a left pA p -module and also
as a right qA q -module, then A is a triangular algebra. The most important examples
of triangular algebras are upper triangular matrix algebras Tn(A) , block upper triangu-
lar matrix algebras Bn(A) over a unital algebra A and also nest algebras T (N ) , where
N is a nest in a Hilbert space H . Zhang and Yu [13] gave a proof that every Jordan
derivation of a triangular algebra is a derivation. Using this and Theorems 3.1 and 3.3
we obtain:

COROLLARY 4.3. For any triangular algebra A the following hold:

(i) A has property (P1),

(ii) A has property (P2) if and only if Z (A ) = {a ∈ A ; [[A ,A ] ,a] = 0} .
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Upper triangular matrix algebra. Let A be a unital algebra. By Tn (A) we denote
the algebra of all n× n upper triangular matrices with entries in A . For n � 2 the
algebra Tn (A) can be represented as a triangular algebra of the form

Tn (A) =
(

A M1×(n−1) (A)
Tn−1 (A)

)
.

Hence Tn (A) is an algebra with property (P1). Note, that Tn (A) is generated as an
ideal by its commutators if and only if A is an algebra generated as an ideal by its
commutators. Hence from Proposition 4.1 it follows:

COROLLARY 4.4. Let A be a unital algebra satisfying Id([A,A]) = A. Then
Tn (A) , n � 2 , has property (P2).

COROLLARY 4.5. Let A be a unital commutative algebra. Then the upper trian-
gular matrix algebra Tn (A) , n � 2 , does not have property (P2).

Proof. Note that the center of Tn (A) does not contain the matrix unit e1n , but
the identity [[x,y] ,e1n] = 0 holds for all x,y ∈ Tn (A) . Hence the result follows from
Corollary 4.3(ii). �

Block upper triangular matrix algebras. Let A be a unital algebra. Let n � 2,
m � 1 be positive integers and let (k1,k2, . . . ,km) be a vector of positive integers such
that k1 + k2 + . . . + km = n . The block upper triangular matrix algebra Bn (A) is a
subalgebra of the matrix algebra Mn (A) of the form

Bn (A) =

⎛
⎜⎜⎜⎝

Mk1 (A) Mk1×k2 (A) · · · Mk1×km (A)
0 Mk2 (A) · · · Mk2×km (A)
...

...
. . .

...
0 0 · · · Mkm (A)

⎞
⎟⎟⎟⎠ .

If m = 1, then Bn (A) = Mn (A) is an algebra with property (P2). If m � 2 and ki = 1
for i = 1,2, . . . ,m , then the algebra Bn (A) is simply the upper triangular matrix algebra
Tn (A) , and so Corollary 4.4 and Corollary 4.5 apply.

When Bn (A) �= Mn (A) then the algebra Bn (A) is a triangular algebra and therefore
has property (P1). Notice that the decomposition of algebra Bn (A) using idempotent p
need not satisfy (1). Let us give an example.

EXAMPLE 4.6. Let A be a unital algebra and consider the block upper triangular
matrix algebra

A = B4 (A) =

⎛
⎜⎜⎝

A A A A
0 A A A
0 A A A
0 0 0 A

⎞
⎟⎟⎠ .



426 D. BENKOVIČ AND M. GRAŠIČ

Does the algebra A have property (P2)? Let us decompose A using the idempotent
p = e22 + e33 : A = pA p+ pA q+qA p+qA q , where q = e11 + e44 . Since

pA p =

⎛
⎜⎜⎝

0 0 0 0
0 A A 0
0 A A 0
0 0 0 0

⎞
⎟⎟⎠ ∼= M2 (A) ,

we have Id([pA p, pA p]) = pA p . One might think to use Proposition 4.1. But, as we
will see, this decomposition of the algebra A does not satisfy (1). Note that

pA q =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 A
0 0 0 A
0 0 0 0

⎞
⎟⎟⎠ and qA p =

⎛
⎜⎜⎝

0 A A 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

For e14 ∈ qA q we have pA q · e14 = {0} = e14 ·qA p . Therefore Proposition 4.1 can
not be applied.

The algebra A does not have property (P2) if the algebra A in commutative. Note
that the algebra A contains a noncentral element e14 satisfying [[A ,A ] ,e14] = 0. On
the other hand, if the algebra A satisfyies Id([A,A]) = A , then A has property (P2).
This follows from the following proposition.

COROLLARY 4.7. Let Bn (A) , n � 2 , be a block upper triangular matrix algebra.

(i) If k1 � 2 or km � 2 , then Bn (A) has property (P2).

(ii) If k1 = km = 1 and

(a) Id([A,A]) = A, then Bn (A) has property (P2).

(b) A is commutative, then Bn (A) does not have property (P2).

Proof. (i) If m = 1 and k1 � 2, then Bn (A) = Mk1 (A) is an algebra with property
(P2).

Let m� 2 and let us assume that k1 � 2. For the case km � 2 the proof is similar. If
we choose the idempotent p = e11 + . . .+ek1k1 and q = 1− p , then A = Bn (A) can be
represented as a triangular algebra of the form A = pA p+ pA q+qA q . In this case
A and p satisfy (1). Let us recall that every matrix algebra Mk (A) , k � 2, coincides
with the ideal generated by all commutators of Mk (A) . Since pA p∼= Mk1 (A) , we have
Id([pA p, pA p]) = pA p and so, by Proposition 4.1, A has property (P2).

(ii) Let k1 = km = 1 and Id([A,A]) = A . Again, if we choose the idempotent
p = e11 , then A = Bn (A) is a triangular algebra where pA p ∼= A . Consequently, by
Proposition 4.1, A has property (P2).

In the last case, when A is a unital commutative algebra and Bn (A) is a block
upper triangular algebra with k1 = km = 1, the identity [[x,y] ,e1n] = 0 holds for all



JORDAN {g,h} -DERIVATIONS OF UNITAL ALGEBRAS 427

x,y ∈ Bn (A) . Since the center of Bn (A) does not contain the matrix unit e1n , the result
follows from Corollary 4.3(ii). �

Let us point out that every block upper triangular matrix algebra Bn (C) over the
field of complex numbers is isomorphic to some nest algebra over a finite dimensional
Hilbert space H .

Nest algebras. Let H be a complex Hilbert space and B (H) the algebra of all
bounded linear operators on H . A nest is a chain N of closed subspaces of H contain-
ing {0} and H , which is closed under arbitrary intersections and closed linear spans.
The nest algebra associated to N is the algebra

T (N ) = {T ∈ B (H) | T (N) ⊆ N for all N ∈ N } .

A nest N is called trivial if N = {0,H} . In this case T (N ) = B (H) has property
(P2). Namely, B (H) is a prime algebra. If N is a nontrivial nest, then T (N ) is
a triangular algebra. Namely, if N ∈ N \{0,H} and e is the orthonormal projection
onto N , then T (N ) = T (N )e+ eT (N ) f + f T (N ) , where f = 1− e denotes the
orthonormal projection onto N⊥ . Both subalgebras T (N )e and f T (N ) are also
nest algebras and the center of each of them coincides with C · 1. Clearly, every nest
algebra T (N ) has property (P1). An algebra T (N ) has property (P2) if and only
if only central elements a satisfy the identity [[x,y] ,a] = 0 for all x,y ∈ T (N ) . So
when is this the case? The answer to this question was given recently by Kong and
Zhang [10, Theorem 3.1]. Let us present the result as a corollary:

COROLLARY 4.8. Let N be a nest of a complex separable Hilbert space H .
T (N ) has property (P2) if and only if dim0+ �= 1 or dimH⊥− �= 1 .
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