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ON THE SOLVABILITY OF GENERALIZED

SYLVESTER OPERATOR EQUATIONS

HUA WANG, XIAOLIN SUN AND JUNJIE HUANG ∗

Abstract. In this paper, some necessary and sufficient solvability conditions are established for
the generalized Sylvester operator equations AXB−CXD = E , AXB−CYD = E and AX +
YB+CZ = E on Hilbert spaces, respectively. Moreover, we give a solvability condition for the
∗ -Sylvester operator equation AX −X∗B = C , which holds for finite matrices due to Wimmer
(1994).
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[8] A. DMYTRYSHYN, B. KAGSTRÖM, Coupled Sylvester-type matrix equations and block diagonaliza-
tion, SIAM J. Matrix Anal. Appl. 36 (2015) 580–593.

[9] A. DMYTRYSHYN, V. FUTORNY, T. KLYMCHUK, et al., Generalization of Roth’s solvability criteria
to systems of matrix equations, Linear Algebra Appl. 527 (2017) 294–302.

[10] S. G. LEE, Q. P. VU, Simultaneous solutions of matrix equations and simultaneous equivalence of
matrices, Linear Algebra Appl. 437 (2012) 2325–2339.

[11] Y. H. LIU, Ranks of solutions of the linear matrix equation AX +YB = C , Comput. Math. Appl. 52
(2006) 861–872.

[12] V. OLSHEVSKY, Similarity of block diagonal and block triangular matrices, Integr. Equat. Oper. Th.
15 (1992) 853–863.

[13] C. R. PUTNAM, On normal operators in Hilbert space, Amer. J. Math. 73 (1951) 357–362.
[14] M. ROSENBLUM, The operator equation BX −XA = Q with selfadjoint A and B , Proc. Amer. Math.

Soc. 20 (1969) 115–120.
[15] W. E. ROTH, The equations AX −YB = C and AX −XB = C in matrices, Proc. Amer. Math. Soc. 3

(1952) 392–396.
[16] A. SCHWEINSBERG, The operator equation AX −XB = C with normal A and B , Pacific J. Math.

102 (1982) 447–453.
[17] Y. S. TONG, On the operator equation AXB−X = C , Chinese Ann. Math. Ser. A, 7 (1986) 327–337.

c© � � , Zagreb
Paper OaM-16-51

http://dx.doi.org/10.7153/oam-2022-16-51


698 H. WANG, X. SUN AND J. HUANG
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