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A PSEUDOSPECTRAL MAPPING THEOREM FOR OPERATOR PENCILS

KRISHNA KUMAR G. AND JUDY AUGUSTINE

(Communicated by J. Ball)

Abstract. Let X be a complex Banach space and BL(X) is the Banach algebra of all bounded
linear operators on X. For A,B € BL(X), n € Z., and € > 0, we define the (n,¢)-pseudo-
spectrum of linear operator pencil (A,B) as
7
>e! } .

Here 0(A,B) denotes the spectrum of the linear operator pencil (A,B). This article establishes
certain properties of (n, €) -pseudospectrum of operator pencils. We prove the Spectral Mapping
Theorem for operator pencils. We also find an analogue of the Spectral Mapping Theorem for
pseudospectrum and (n, €) -pseudospectrum of operator pencils. Some examples are provided to
illustrate the findings.

Ane(A,B) = 6(A,B)U {/1 eC: H()LBfA)*ZH

1. Introduction

Throughout this article Z denotes the set of all positive integers, X denotes a
complex Banach space, and BL(X) is the Banach algebra of all bounded linear opera-
torson X. For A € C and r > 0, define

D(A,r)={ze€C:|z—A|<r}.

DEFINITION 1.1. Let A € BL(X), n € Zy, and € > 0. The (n,¢€)-pseudospect-
rum of A is defined by
1
Mo e! }
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The (n,€)-pseudospectrum generalizes the pseudospectrum. For A € BL(X),
we have Ag¢(A) = A¢(A), the e-pseudospectrum of A. The (n,€)-pseudospectrum
evolved from the basic question on how to approximate the spectrum of a linear oper-
ator on separable Hilbert spaces. In [8], Hansen observed that numerical computation
of the spectrum of an operator can result in the spectrum of a slightly perturbed opera-
tor. This is due to the discontinuous behaviour of the spectrum and it is a concern for
numerical analysts. As a better approximation to the spectrum Hansen introduced the
(n, €)-pseudospectrum of an operator on a separable Hilbert space (see [7]). The ap-
proximating properties of (n, €)-pseudospectrum may found in [8, 9]. For more infor-
mation on pseudospectrum and (n, €) -pseudospectrum, one may refer to [4, 10, 16, 17].

Let A,B € BL(X). The generalized eigenvalue problem is defined by

Ax = ABx,

where x # 0 and A € C. The generalized eigenvalue problems lie at the heart of dy-
namical problems concerning various engineering structures. Operator pencils arise in
quantum mechanics, control theory, epidemic models in biology, numerical solutions
to differential equations and hence play an important role in numerical analysis and
perturbation theory.

DEFINITION 1.2. Let A,B € BL(X). The spectrum of the linear operator pencil
(A, B) is defined by

6(A,B) ={A € C: AB—Ais notinvertible}.

Throughout this paper, we are considering the linear operator pencil, and call it the
operator pencil subsequently. The generalized resolvent of the operator pencil (A, B) is
defined by

p(4,B)=C\o(A,B).

EXAMPLE 1.3. Consider A, B: ¢*> — ¢* defined by A(x;,x2,...) = (xh 2,32,.2

0,...) and B(x1,x,...) = (1,2, ...%n,0,...). Then G(A,B) = C.

EXAMPLE 1.4. Consider A,B: ¢! — ¢! defined by A(xy,x2,...) = (x1,X2,...) and
B(x1,x2,...) = (x2,X3,...,%,,0,...). Then 6(A,B) =0.

REMARK 1.5. If B is invertible, then 6(A,B) = 6(AB~') and hence 6(A,B) is
non-empty and compact.

DEFINITION 1.6. Let A,B € BL(X) and € > 0, the € -pseudospectrum of the op-
erator pencil (A,B) is defined by

Ae(A,B)=0(A,B)U{L€C:|[(AB—A)"||>¢e'}.

This article is devoted to studying (n, €) -pseudospectrum of operator pencils. The
following problems are addressed in the article.
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1. To obtain the Spectral Mapping Theorem for operator pencils.

2. To find an analogue of the Spectral Mapping Theorem for pseudospectrum of
operator pencils.

3. To find an analogue of the Spectral Mapping Theorem for (n, €) -pseudospectrum
of operator pencils.

The spectral mapping theorem for unbounded normal operators is proved in [2]. The
analogue of the spectral mapping theorem for pseudospectrum, determinant spectrum
and condition spectrum are also available, refer [1, 11, 12, 13, 14, 18]. The following
is the outline of the article.

In Section 2, we give the definition of (n, €)-pseudospectrum of an operator pencil
and develop certain properties of the same. We also find various equivalent definitions
of (n,€)-pseudospectrum of an operator pencil (Theorem 2.7). In Section 3, we prove
the Spectral Mapping Theorem for operator pencils (Theorem 3.1). We also find an
analogue of the Spectral Mapping Theorem for pseudospectrum of operator pencils
(Theorem 3.4, Theorem 3.5). In section 4, we find an analogue of the Spectral Mapping
Theorem for (n,€)-pseudospectrum of operator pencils (Theorem 4.2, Theorem 4.3).
Examples are provided in each section to demonstrate the results developed.

2. Properties of (n, e)-pseudospectrum of operator pencils

This section develops certain properties of (n, €) -pseudospectrum of operator pen-
cils. These results are used subsequently in the article.

DEFINITION 2.1. Let A,B € BL(X), n € Z4, and € > 0. The (n,&)-pseudo-
spectrum of the operator pencil (4, B) is denoted by A, ¢(A,B) and is defined by

1
Ed —1
> € }

The generalized (n, €)-pseudoresolvent of the operator pencil (A,B) is defined by

1
o _
<e 1}.

Ane(A,B) =0(A,B)U {k eC: H(AB—A)—Z"

Pne(A,B) =p(A,B)N {A eC: H(AB—AY”

REMARK 2.2.
1. 6(A,B) C Aye(A,B) forevery n € Z and € > 0.
2. If B=1, then A, e(A,1) = Aye(A).

3. If n=0, then Age(A,B) = Ac(A,B).
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DEFINITION 2.3. Let A,B € BL(X), n € Z;y U{0}, and A € C. Define v} :
C — [0,0) as

_JIlaB-a) T, A ¢ o(AB)
vish) {o, if 1 € o(A,B).

THEOREM 2.4. Let A,B € BL(X), n € ZU{0}, and € > 0. Then the following
holds.

(i) If B is invertible, then v{ p is continuous.

(ii) Ane(A,B)={A € Ci,0) <e}.
(iti) Ant1e(A,B) C Ane(A,B).
(ZV) An,é‘l (AaB) g An.’gz (A,B) fOV every 0< €1 < &.

(v) 6(A,B)= () Ane(A,B).

>0

(vi) Ane(0A,0B) = An"s_‘ (A,B) for oo #£0.
(vii) Ave(BA+0B.B) = o+ BA, « (A.B) for o, € C with B #0.
(viii) If X is a Hilbert space, then A € A e(A,B) <= A € A, ¢(A*,B*).

Proof.

(1) If B is invertible, then

0(A,B) ={A € C: AB— Ais not invertible}
={A € C: Al —AB " is not invertible}
=o(AB™).

Suppose A, € C\ 6(A,B) and A,, — A for some A ¢ 6(A,B). Then

-1

Voo ) = || (o — 4)2 T = na2).

If A, € C\o(A,B) and A, — A for some A € 6(A,B). From Lemma 10.17
of [15], ||(An —AB™")~"|| — co and ¥} p(Am) — 0 = 74 p(1). Hence ¥} 5 is
continuous.

-1
T | -a)

(i) This follows from the Definition 2.1 and 2.3.
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1
n —1
>et)

zo'(A,B)U{?Le(C:;I <£}.
IR(A,A,B)*||7"

(iii) For A € p(A,B), denote (AB—A)~! by R(A,A,B). Then

Ane(A,B) = 6(A,B)U {x eC: HR(/LA,B)?”

The result is true from the following fact,

1 1
1 2 1 1
[R(A,A,B)" |2 [IR(A,A,B)*"[|"T |R(A,A,B)>" || 7+
1

IR(A,A,B)> ||

(iv) Let A € Ayg (A,B) and 0 < & < &. Then

1
27!

2B -4

1
Z— = —.
€]

Hence A € Ay ¢, (A,B).
(v) Observe that
S ﬂ Ane(A,B) <= ¥ p(A) < e forevery e >0

>0

<= %p(A)=0<= 1 €0(A,B).

(vi) Let o # 0, then (A, B) = 6(A,B). Also

1
AeAmg(aA,aB)\a(aAﬂB)@H(xaB—aA)*" Tse!
1
- Jam— >

<= ALEA, ¢

& (A,B)\ o(A,B).
(vii) Let o, € C and B # 0, then
o(BA+ aB,B)={A € C: AB— BA— aBis not invertible}

= {k eC: )G—aB —Ais not invertible} .
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i, A €0(BA+0B,B) < 43% € 6(A,B) <= A € a+ B (A,B). Also

A € Ane(BA+aB,B)\ 6(BA+ 0B, B) < H(?LB _BA—oaB)? 2

=

1
€

1 A—o || 1
‘:’|F|< 7o) |
= )LB €A, ¢ (A,B)\0(4.B)

— 7L€OC—|—[3A (A,B)\ o(A,B).

%
(viii) If A € 6(A,B) <= A € 6(A*,B*). If 1 € A, ¢(A,B)\ 6(A,B), then

i
on

(AB—A)"Y S 157 R
| (7 -)

1
.

Hence A, ¢(A,B) C Ay ¢(A*,B*). The other inclusion also follows similarly. [

THEOREM 2.5. Let A,B € BL(X), n € Z, U{0}, and € > 0. If B is invertible,
then

(i) Ane(A,B) € D(0,

“+elB=.
(ii) Ang(A,B) is compact.
(iii) If AB = BA, then

A, e (AB')CAe(AB)CA | (AB7Y).

o | nel5|

(iv) If A is invertible, AB = BA, and k| = M 1’ ||A2" n for some A #0.

Then

1
A€ AM(A*I,B) = = € Mper, (A,B7Y).

A

Further if ky = ’?L 1’ HA 2 ” for some A # 0, then

1 _
— € Aper, (A1, B).

A€M e(ABH) = 2

Proof.

() If B is invertible, then 6(A,B) = 6(AB~!). Hence A € 6(A,B) implies A €
D(0,||AB7!||). If A € Awe(A,B)\ G(A,B), then

H(AB—A)—Z” ZL"zH[ YA —AB 1)1 1<HB Y[z =B
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Suppose [A| > ||AB~!||+€||B~!|| > |[AB~!||, then (A1 —AB~!) is invertible.

o 1

o . L . 1
|aB—ay || < 57| (A1 —a8") "] <||B N e <

Hence A ¢ A, ¢(A,B) and A, ¢(A,B) C D(0,

AB | +e||B71|).
(i) This follows from (i), (ii) of Theorem 2.4 and (i) of Theorem 2.5.

(iii) We have 0(A,B) = 6(AB™!). Suppose AB=BA and L €A, = _(AB™!)\

NSk

o(AB™!), then

El

2 €L
2)1

27!
HBg < H(A{I—ABil)izn

= ||[BGB-2)71)"

1
2"

1 1
<HB2" B —a)y|”.

Hence A € A, ¢(A,B)\ 0(A,B). Further assume that AB=BA and 1 € A, ¢(A,B)\
o(A,B), then

L
on

1 n
S« H(?LB—A)’z
&
n %
= |1 a1 |
n L’l n Ln
<H3—2 "l ar—apH2||™".

Hence A € A (AB"Y)\ o(AB7 ).

el
(iv) Suppose A, B are invertible and AB = BA. Let A # 0, then

A €0(A™!,B) <= AB—A"!is not invertible
-1

B
<~ —AB (T —A) A~ is not invertible

= % c€o(A,B.
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Furtherif 2 € A,¢(A~',B)\ 6(A~!,B), then

1 0| 7
_gH(AB_A71)72 2
€
R
— l—(l)‘lA (T—A) B‘ll
1
N . 2t
_ n||2m B _on L
e [ (5 -a) T e

wn L a L 1
Define ky = [A~!|[|A%"||?" ||B~"||*" . then 7 € Aneky (A, B\ o(4,B™.
Next assume that A, B are invertible, AB=BA,and A € A, .(A,B~')\c(A,B7 ).
Then,
1 n %
Lo

1
2" || 27

:H[_Wl (2a)'s |
HG-T

i 1
7" then 1 € Aver, (A", B)\o(A"",B). O

1
N o
<A ! HA*? | g

L
on

Define k, = [A7!|[|A~%]

an ’

PROPOSITION 2.6. Let A,B,V € BL(X), V is invertible, n € Z. U{0}, and € >
0. Define T =VAV~ and S=VBV~'. Then

An (TaS) g An,e(AaB) g An,ek(TaS)7

£
'k

where k = HV||2L" ||V_1H2L".

Proof. Since T =VAV~! and S=VBV !,

6(A,B) = {A € C: AV 'SV —V~ITV is not invertible} = &(T, ).
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Define k = ||V||27||V~"||", then

L
on

n Ln n
|[s—1) 7" = | [avev! —vav-1)-1)?
(o
= |t —ay v
1
<V (|[aB—a) 2| v
1
<kH(?LB—A)*2" &
Hence 1\"7%(T7 S) € Aye(A,B). Similarly
21 || 3 |3
[[as-2 77" = |vas-n)-v-17?
1
<Vl [|[as—1) |7 vty

L
on

<kH(?LS—T)‘2"

Hence A, ¢(A,B) C Ay er(T,S). O

The following theorem presents some equivalent definitions for (n,€)-pseudo-
spectrum of operator pencils.

THEOREM 2.7. Let A,B € BL(X), n € Z;U{0}, and € > 0. Then the following
are equivalent.

(i) A€ Ane(A,B).
(i) ||[(AB—A)*"y

‘ < & for some v € X with ||v]| = 1.

(iii) [(XB—A)zn —E|v =0 for some E € BL(X) with ||E|| < e and v € X with
[l =1.

Proof. If A € 0(A,B), then take v as the normalized eigenvector corresponding
to the generalized eigenvalue A and E = 0. Hence (i), (ii) and (iii) are equivalent.

(i) = (ii). If A € Aye(A,B)\ 0(A,B), then ||(AB—A)~%

€L
on

> é . Hence there

n oL >
exists u € X with u # 0 such that ||(AB—A)"2"u|> > H"[z . Define v = (AB —
A)~%"u, then u = (AB—A)*'v and
Jul* _ a8 v |1
S Ll 1 - H(;LB—A)T’ 4
(e ik I
Define v = ‘%H,then [v][=1 and |[(AB—A)*"v|| < €.
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(i) => (iii). Suppose there exists v € X with [[v]| =1 and ||(AB—A)*v| <€?".
Then there exists ¢ € X" with ||¢| =1 and ¢(v) =1 (Corollary 3.3 of [15]). Define a
rank one operator E : X — X

E(w) = ¢(w)(AB—A)*v.

Then ||E|| < €* and [(AB—A)* —E]v=0.

(iii) = (i). Suppose there exists E € BL(X) with ||E|| < €' and a unit vector
v € X such that [(AB—A)* —E|v=0. For A ¢ 6(A,B), define v=(AB—A) >'Ev.
Then

n

1= |v]| = H(/lB—A)‘anvH < H(/lB—A)‘zn e,

Hence [[(AB—A)~%"

> Jr and A € Ay e(A,B)\G(4,B). O

COROLLARY 2.8. Let A,B € BL(X), n€ Z,U{0}, 0 € 0,(B) and AB = BA.
Define

1
e* :min{HAznv g :Bv=0,veX,|v||= 1}

then, Ay ¢(A,B) =C for € > €*.

Proof. This follows from (ii) of Theorem 2.7. [

Operator pencils (A,B) with singular B arise in various applications including
fluid mechanics and wave propagations. For more information one may refer to [5, 6].
The following result shows that A, (A, B) contains a neighbourhood of 6(A,B).

THEOREM 2.9. Let A,B € BL(X), B is invertible, n € Z, U {0}, and € > 0.
Then for each A € 6(A,B) there exists r > 0 such that D(A,r) C A, ¢(A,B).

Proof. If there exists A € 6(A,B) such that D(A,r) N A, ¢(A,B)¢ # 0 for every
r> 0. Then there exists a sequence A,, € Ap¢(A,B)¢ such that A, — A . From (i),(ii)
of Theorem 2.4,
Ane(A,B)={A eC:¥ig(A)<e},

and ¥} p(Am) — 74 p(A). Thus ¥} 5(4) > € for every m and y; z(A) =0 . Thisis a
contradiction. [

THEOREM 2.10. Let A,B € BL(X) and n € Z4 U{0}. Further ® : BL(X) —
BL(X) such that ®(aA) = a ®(A) forevery 0. > 0. If A, ¢, (P(0tA),B) = Ay, (0A, B)
for every o > 0 and some &y > 0, then

Ane(®P(A),B) = Ay e(A,B) forevery € > 0.

In particular 6(®(A),B) = 6(A,B).
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Proof. Let o > 0, then A, g (0 ®(A),B) = Apg,(0A,B). From (vii) of Theorem
2.4,
aA, o (P(A),B)=aA, «(A,B).

G
Since o > 0 is arbitrary,
Ane(®P(A),B) = Ay e(A,B) forevery € > 0.
Also
0(®(A),B) =[] Ane(P(A),B) = () Ane(A,B) =0(A,B). O

>0 >0

The following results may be proved similarly.

COROLLARY 2.11. Let A,A’,B,B' € BL(X) and n € Z. U{0}. If Ay, (A, B) =
Angy (@A’ B') for every oo > 0 and some € > 0, then

Ane(0A,B) = Ape(0A',B') forevery € > 0.

In particular 6(A,B) = 6(A’,B).

COROLLARY 2.12. Let U,V € BL(X) and n € Zy U{0}. If A,g(UA,B) =
An.e,(VA,B) for every A,B € BL(X) and some & > 0. Then for every A,B € BL(X),

Ane(UA,B) = Ay e(VA,B) forevery € > 0.

In particular 6(UA,B) = o(VA,B).

3. Spectral mapping theorem and pseudospectral mapping theorem
for operator pencils

For A € BL(X) and an analytic function f on an open set containing 6 (A), the
Spectral Mapping Theorem gives f(0(A)) = o(f(A)). In this section, we prove the
Spectral Mapping Theorem and Pseudospectral Mapping Theorem for operator pen-
cils. The classical Spectral Mapping Theorem is shown as a special case of this result.
Throughout the section, the operator B considered is invertible.

THEOREM 3.1. Let A,B € BL(X), f analytic on Q, an open set containing
6(A,B), and T be the any closed contour enclosing Q. Define

f(A,B) = %/Ff(z) (zB—A)"! dz.

Then
f(o(A,B)) =0(Bf(A,B)).
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Proof. Since B is invertible,

I AB™ d
AB Zm/f (z 0z

= Z—M/l_f(z)(zI—AB_l)_ldz
=B lf(AB7).

The last step is true from the the operator analogue of the Cauchy integral formula or
the Dunford Taylor integral. Thus

f(o(A,B)) ={f(A): AB—Ais not invertible}
{f(A): (M —AB~")Bis not invertible}
f(o(AB™Y)).

From the usual Spectral Mapping Theorem for operators,
f(0(A,B)) = f(6(AB™")) = 6(f(AB™")) = 6(Bf(A,B)). O
REMARK 3.2. In particular, if B =1, then

f(o(A) = f(a(A,1)) = o(f(A.])) = o (f(A)).

The following example shows that the Spectral Mapping Theorem is not true for
pseudospectrum of operator pencils. We find A,B € BL(¢!) and an analytic function
f on an open set containing 6(A,B) such that f(Ag(A,B)) # A¢(Bf(A,B)) for every
£>0.

EXAMPLE 3.3. Consider A,B € (BL(¢'),|| - ||1) defined by A(xy,x2,x3,...) =
(%2,0,0,...) and B(x,x2,x3,...) = (2x1,x2,X3,...). Then 6(A,B) = {0} and for A #
O’

1

1
(AB—A)"! (xl por 2B ) and ||(7LB—A)‘1||1:W+—2W2.

20 2A27 A7 A7
For € >0,

1

AB:{?LE(C |(AB—4)7", = 1}
AeC: 2

{
{l A< 2 }
s

€
S37

2

reC: A< (; £ +2£>

1
> -
£

——

e2

+
[\
™

AgAB

T
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For f(z) = z*, we have B(A,B)> = (AB~')?. For x = (x1,x2,x3,...) € £},
(AB Hx=A (%,xz,x3,...> = (x,0,0,...),
and (AB~')2x = (0,0,...). Then
Ae(B(A,B)*) = Ac((AB™ 1)) ={A € C:[A|< e}

Hence for every € > 0,

(Ae(A,B))* # Ae(B(A,B)?).

THEOREM 3.4. Let A,B € BL(X) and let [ be an analytic function defined on
Q, an open set containing 6(A,B). For € > 0, define

1
iei‘j‘;BH mi— a7

Then ¢(€) is well defined, $(0) =0 and f(Ae(A,B)) C Ay(e)(Bf(A,B)).

Proof. Define g: C — R™ by
1
(r1= B!

g(A) = H

We claim that g is continuous. Let A ¢ 6(A,B), then f(1) ¢ f(c(AB™!)). Suppose
An € C\ 0(A,B) such that A,, — 4. Since f is analytic,

gCm) = | (G a7 = ([ - pas) | =,

Hence g is continuous on C\ 6(A,B). Further, let A € 6(A,B) and 4, € C\ 6(A,B)
such that A,, — A . Then

f(A) € (0(4,B)) = 0(Bf(4,B)) = o(F(AB™")).
Since f(An) — f(A), from Lemma 10.17 of [15],
| (FOm1 = paB 1) 7| = o
Thus g(A,) — 0= g(A). This proves the claim. Also,
6(€) =sup{g(1) : & € Ae(A,B)}.
Since A¢(A,B) is compact, ¢(¢) is well defined. Next we claim that ¢(0) = 0.

1
M- fas—)"!|

= sup
A€o (A,B) H
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If A € 06(A,B), then f(1) € f(6(A,B)) = 6(Bf(A,B)) = o(f(AB™!)) and

H(f(;t)z_f(AB*I))*‘H —0.

Thus ¢(0) =0. Now if L € A¢(A,B), then
1
(= ras—) |

=g(A) <9(e),

and
IR 1 1
H(f(/l)l—f(AB h) H = > o(e)
i.e.,
F(A) € Ny(e)(f(AB™")) = Ay (e) (B (A, B)).
Thus

f(Ae(A;B)) € Ag(e) (Bf(A,B)). O

THEOREM 3.5. Let A,B € BL(X) and let f be an analytic injective function de-

fined on Q, an open set containing o(A,B). Suppose there exists € > 0 such that
Ae (Bf(A,B)) C f(Q). For 0 < e < €, define

y(e) = sup S —
ocf (A BrA B N (@ —AB~H 71|

Then y(g) is well defined, y(0) =0 and A¢(Bf(A,B)) C f (AW(S)(A,B)).

Proof. Define h: C — R™ by

Bl

M) = or—aB 1]

We claim that & is continuous. Suppose ® ¢ o(A,B), then @ ¢ 6(AB~1). If @, €
C\ o(A,B) such that ®,, — @, then

[t 4B = (@1 a5 |

and consequently h(®,,) — h(®). So h is continuous on C\ o(A,B). Next if ® €
6(A,B) and o, € C\ 6(A,B) such that @, — ®. Then from Lemma 10.17 of [15],

[|(@nl —AB~") || = oo
and h(®,,) — 0 = h(w). This proves the claim. Also

w(e) =sup{h(@) : @ € /' (Ae(Bf(A,B)))}.
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Since f~!(Ae(Bf(A,B))) is compact y(g) is well defined. Next we claim that y(0) =
0.

|1B]]
0) = e
YO oy TE@T—AB T T]
If we f~'(c(Bf(A,B))), then f(w )EG(Bf(AyB)) flo(4, B)):f(G(ABfl))
Since f is injective, @ € 6(A,B) and h(w) = ||(ol —AB~')~!|| = e. Thus

w(0)=0.
Let 0 < e < &, then

AS(Bf(A’B)) - As’(Bf(A7B)) - f(Q>

If z€ Ae(Bf(A,B)), then z € A¢(f(AB™1))Nf(Q). Consider @ € Q such that z =
Flw), then ® € -1 (Ae(B f(A,B))) NQ. Also

Bl
_— = < .
(ol —ag 1)1~ M@=V
Hence
B

( )~ wle)

From (iii) of Theorem 2.5, ® € A ) (AB™!) C A w(e) (A, B). Thus
W

~ flo >ef( v (AB™ >) £ (Ayie) (A.B)).

[B]l

Hence for 0 < e < &',
Ae (Bf(A,B)) C f (Ay(e)(A,B)). O

REMARK 3.6.

1. If B=1, then ¢(¢&) and y(€) coincide with the functions defined for the Pseu-
dospectral Mapping Theorem in [13].

2. Combining the above two inclusions,

f(AE(AvB)) < Aq) (Bf(A B)) < f(Au/(¢(£))(A7B))7

and

Ae (Bf(A,B)) C f (Ay(e)(A,B)) C Agy(e)) (Bf(A,B)).

3. Since ¢(0) =0 = y(0) and 6(A,B) = Ag(A,B), the usual Spectral Mapping
Theorem for operator pencils can be deduced from the above theorems. However,
the proof itself uses the Spectral Mapping Theorem for operator pencils.
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4. From the definitions of ¢ and W, it is clear that the set inclusions are sharp
because other functions cannot replace them. The functions ¢ and y may look
unwieldy at first glance, but they can be explicitly calculated for certain cases,
and we have illustrated it through Example 3.8.

5. If f(z) = a+ Bz, where o, 3 € C and 8 #0. Then

1

o(e)= sup —— <IBlIB "[e.
rene(a ) |B| (AI—AB-1) 7" |
Also
1Bl
y(e) < sup T T AR— =11
weAg(orIJrﬁAB*l)—a H(wI_AB 1) IH
B
- 181
weh ¢ (ap-1) [(@I—AB~1)71|
\/3\
= [B~"(IIBlle.

Then y(¢(e)) = ¢(y(e)) <|Bl[|B~"||e. Hence w(¢(e)) = ¢(w(e) )—8 when-
ever |[B||||B~"|| = 1. Thus A¢(Bf(A,B)) = f(Am | Ble A,B))
o+ Bz and B #0.

The following theorem shows that the class of functions for which the inclusion
relation in the Pseudospectral Mapping Theorem becomes equality as in the Spectral
Mapping Theorem are only affine functions.

THEOREM 3.7. Suppose f is a nonconstant analytic function defined on a non
empty open set Q in the complex plane. Then there exists a non negative real-valued
function 1 (A, B, €) such that for every A,B € BL(X) with 6(A,B) C Q and ||B||||B~||
=1 we have

f(Ae(A,B)) = Ap(ape)(Bf(A,B))

Sor all € sufficiently small if and only if f(z) = ot + Bz for some o, € C.

Proof. 1f f(z) = ac+Bz. From (5) of Remark 3.6, f(A¢(A,B)) = Apape)(f(A,B))
with 1(A,B,€) = |B|||B~!||€. The other part follows from Theorem 2.2 of [13]. (Take
A=al, B=1withae Qand f'(a) #0). O

010
EXAMPLE 3.8. Consider A,B € BL(C?,||-||;) definedby A= 000 | and B=
000
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300
010 |.Then 6(A,B)={0} andfor A #0 and € >0, (AB—A) "' =
001

(5]
o oy~

w
o>»|~>a|~

9
-0 O

Ae(A,B) = {A eC:||AB-A)7", > é}
1 11
2
- {Ae(c: Al < §+7”986“28}

If f(z) =23, then

¢(e)= sup sup 4+
leAe(A.,B)H(7L3I—(AB*1)3)‘1H1 NGy 2 6

1 13’_<£ \/982+128>3
)

Ae(BF(AB) = Ae (AB™)) = {A € C: (2] <&}

1B]I

w(e)=  sup L
©= o T as T,

= sup 73‘60'2
wene((ap- 1)) ([©[+1)
< 38%.
Consequently,
(AS(A7B))3 gA e Vo2 i1e 3((AB_1)3)7
<§+f>
3
Ae (AB ) C <A3 %(A,B)> :
€

4. (n,€)-pseudospectral mapping theorem for operator pencils

This section develops an analogue of the Spectral Mapping Theorem for (n,€)-
pseudospectrum of operator pencils. The following example shows the Spectral Map-
ping Theorem of operator pencils, as it is not valid for (n, €) -pseudospectrum. Through-
out this section, we assume that B is invertible.

EXAMPLE 4.1. Consider A,B € (BL(¢'),| - ||;) defined by A(xi,xz,...) =
(3x2,0,...) and B(x,x2,...) = (3x1,X2,...). Then o(A,B) = {0} and for A #0,

) X1 4)C2 X2 X3
(A‘B_A) (x17x27"') = <W+maﬁaﬁ7>
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Also
1 4 _3|M+4

+ =
A 3AP 3P

lB=4)"], =

For f(z) =7* and € >0,

Are(A,B) = {/1 e MAF4 i}

3|M3 Z g2
Then
(Alg(A7B))2:{/12€(C: AP gsz}.
’ 3|A|+4
Also

(AB™1)?(x1,x2,...) =AB'(3x,0,...) = (0,0,...).
Since B(A,B)? = (AB~1)?,

ALe(B(A,B)?) = {AE(C |/ll /é}z{kEC:Mge}.

Thus (A1¢(A,B))* # A1 (B(A,B)?).

THEOREM 4.2. Let A,B € BL(X), n € Z, and let f be an analytic function
defined on Q, an open set containing 6(A,B). For € > 0, define

1

9(e) = sup ”
AEAne(AB) H(f()t)j—f(AB‘l))_zn :

Then ¢ () is well defined, ¢(0) =0 and f(Ane(A,B)) C A, 4(¢)(Bf(A,B)).

Proof. Define g: C — R™ by
1

|1 = rag—)?

We claim that g is continuous. If A ¢ 6(A,B), then f(A) ¢ f(o(A,B)) = o (f(AB~1)).
Suppose A, € C\ 6(A,B) such that A,, — A . Since f is analytic

g(4) =

n||2m

1
2n

[t ras=) [ = - san)

Hence g(A4,,) — g(A) and g is continuous on C\ o(A,B). Next let A € 6(A,B), by
Spectral Mapping Theorem for operator pencils

f(A) € f(o(A.B)) = 6(Bf(A,B)) = 0(f(AB™")).
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If A4, € C\ 6(A,B) be such that A,, — A. From Lemma 10.17 of [15],

| F 1= paB 1) | = o
Hence g(A,,) — 0 = g(1). This proves the claim. Also
¢(e) =sup{g(A): A € Ane(A,B)}.
Since A, ¢(A,B) is compact ¢(g) is well defined. Next we claim that ¢(0) =0.
1

¢(0) = sup +— =0.
reD (= s |

If 2 € Ane(A,B), then
1

1= a1

=g(A) < ¢(e),

€1
on

and
|| ot 1 1

|(ror = pap )

Thus f(4) € A, g(e) (f(AB™')). Hence

_ >

g(A) ™ ¢(e)
F(Mne(A,B)) C Ay ge)(Bf(AB)). O
THEOREM 4.3. Let A,B € BL(X), AB=BA, and n € Z.. Further, let [ be an

analytic injective function defined on Q, an open set containing ¢ (A,B) also there
exists € >0 such that A, ¢ (Bf(A,B)) C f(Q). For 0 < e < ¢ define

L
on

18~

v(e) = sup T
oef N (Ane(Bf(AB)NQ ||(0] — AB~1)=2"|| 2"

Then y(€) is well defined, y(0) =0 and Ay e(Bf(A,B)) C (A y(e)(A,B)).

Proof. Define h:C — R™ by

L
on

18*
(0 —AB=1)2"| 7"

h(w) =

We claim that / is continuous. Suppose ® ¢ 6(A,B) and m,, € C\ 6(A,B) such that
w,; — @. Then

b

H(wml—AB—l)—2”H = H(a)I—AB_l)‘zn)




728 K. KUMAR G. AND J. AUGUSTINE

and h(w,) — h(w). Hence h is continuous on C\ 6(A,B). Nextlet o € 6(A,B),
then @ € 6(AB~!) and h(w) = 0. If ®, € C\ 6(A,B) such that @,, — ®, then from
(Wnl —AB~1)72"|| — co. Thus h(®,) — 0= h(w). Hence h
is continuous on ¢ (A,B). This proves the claim. Also

w(e) = sup{h(w): @ € [ (Ane(Bf(A,B)))}.

Since f~!(Ane(Bf(A,B))) is compact y(e) is well defined. Next we claim that
v(0) =0. If o € f'(c(Bf(A,B))), then f(») € 6(Bf(A,B)) = f(c(A,B)) =
f(c(AB™1)). Since f is injective, @ € 6(A,B) and ||(@I —AB~!)~2"||*" = . Thus
h(w) =0 and

|1B2'[| "
y(0) = sup +—=0.
wef~Y(o(Bf(AB) ||(w] —AB~1)=2"||7"

If0<e<e then A e(Bf(A,B)) C Ape(Bf(A,B)) C £(Q). For z € Ay (BF(A,B))
N (L), consider ® € Q such that z= f(w), then @ € £~ (A, (B f(A,B))NQ. Thus

|5
(I — AB-1)=2"||2"

=h(o) < y(e),

and .

n

S Gl Ll

T Th) 7 v

|(@r-a87")

From (iii) of Theorem 2.5,

®EA _ye (AB™') CA, (A B),

I
and
—f(@) € £ [ A, _ver 4B | €7 (Auyio(a.B).
ETE
Hence for 0 < e < &,
Ane(BF(AB) C f (Apyie)AB). O

REMARK 4.4.
1. Combining these two inclusions,

and
Ane(Bf(A,B)) C f (Any(e)(A:B)) € Ay g(yie)) (BS(A,B)).
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2. If B =1, the above theorems becomes the analogue of the Spectral Mapping
Theorem for (n, €)-pseudospectrum of operators (Theorem 4.2, Theorem 4.3).

3. Since ¢(0) =0 = y(0), we have 0(A,B) = A, 0(A,B). Thus the usual Spectral
Mapping Theorem for operator pencils can be deduced from the above theorems.

4. The set inclusions are sharp because other functions cannot replace the functions
¢ and y. Through Example 4.7, we illustrate that ¢ and y can be calculated
explicitly.

REMARK 4.5. If AB=BA, f(z) = oo+ Bz where a,3 € C and 3 #0. Then

! |
o= - <pljs*’
QLEAn,s(A.,B) ‘B_lH‘(AI—AB_l)_ZHHZ"

E.

In the similar way,
1

on

wie) <1878 e

Whenever ||B||||B~!|| =1 we have w(¢(¢)) = ¢(w(g)) = €. Thus for AB = BA and
f(z) = a+ Bz with B #0,

Ae(BF(AB) =f (A . (AB)).
cwam)=r(A L aB)

The following theorem shows that the class of functions for which the inequality in
the (n, €)-pseudospectral mapping theorem becomes equality are only affine functions.

THEOREM 4.6. Suppose f is a nonconstant analytic function defined on a non
empty open set  in the complex plane. Then there exists a non negative real-valued
Sfunction M(A,B,&,n) such that for every A,B € BL(X) with 6(A,B) C Q, AB=BA
and ||B||||B~|| = 1 we have

f(An,S(AaB)) = An,n(A,B.,&‘,n)(B (f(A7B))

Sfor all € sufficiently small if and only if f(z) = a+ Bz for some o, € C with B #0.

Proof. The if part follows from Remark 4.5. The only if part follows from Theo-
rem 2.2 of [13] (take A =al with a € Q and f'(a) #0 and B=1). O

EXAMPLE 4.7. Consider A,B € BL(C?|| - ||;) defined by A = (8 _Ol>,
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11
B= (3 g)-Then o(A,B) = {_575}' For 4 ¢ o(4,8), n=1,and £ >0,

ArelAB)={A eC:|[AB-A)2|2 > e}

_ . (24) >
- {7L Cravars© }

={AeC:(2A)* —41e - > <0}

V2k+,/—2z+ 4
:{/IGC:Mg vk

2

! -
_ (& 2 fe2 1\ (e > fe2 1)’
Wherek—<_+3 \/ﬁ+ﬁ) _T<T+8\/ﬁ+ﬁ> -

For f(z) = 7%, we have

1
A€M ¢(AB) H(f()t)l—f(f‘lB_l))_2 X
= sup |47
AGAI,S(AvB)
4e
Vi )

where k is defined above.
Aie(Bf(A,B)) =Are (AB 1)) ={A €C:|A[<e}.

We also have

1
1823
yle)=  sup .
0%EA ¢ ((AB™! H(wl AB— ) 2”2
2203
= sup
02en (AB)2) V202 + 1+ Vao? + 1
<2£7.
Consequently,
(ALe(A,B))* C Ay ge) (AB1)?),
and
2
—12
Are (AB71)?) C (ALzS%(A,B)) .
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Concluding remarks

The results are generally valid for elements of a complex unital Banach algebra.

We propose the following problems as future work.
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