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FROBENIUS––RIEFFEL NORMS ON
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(Communicated by C.-K. Ng)

Abstract. In 2014, Rieffel introduced norms on certain unital C*-algebras built from conditional
expectations onto unital C*-subalgebras. We begin by showing that these norms generalize the
Frobenius norm, and we provide explicit formulas for certain conditional expectations onto uni-
tal C*-subalgebras of finite-dimensional C*-algebras. This allows us compare these norms to
the operator norm by finding explicit equivalence constants. In particular, we find equivalence
constants for the standard finite-dimensional C*-subalgebras of the Effros–Shen algebras that
vary continuously with respect to their given irrational parameters.

1. Introduction

A main goal of noncommutative metric geometry is to establish the convergence
of spaces arising in the physics or operator-algebra literature [24, 25, 14, 11, 12, 17].
To accomplish this, one must equip operator algebras with compact quantum metrics,
which were introduced by Rieffel [22, 23] and motivated by work of Connes [4, 5].
Then, convergence of compact quantum metric spaces is proven with quantum ana-
logues of the Gromov–Hausdorff distance [24, 16, 15, 13, 18, 28].

In [2], the first author and Latrémolière recently exhibited the convergence of
quantum metric spaces built from approximately finite-dimensional C*-algebras (AF
algebras) and, in particular, convergence of the Effros–Shen algebras [8] with respect
to their irrational parameters. Quantum metric spaces are obtained by endowing unital
C*-algebras with a type of seminorm whose properties are inspired by the Lipschitz
seminorm. A property, which is not needed in [2], but appears desirable in other con-
text [26], is called the strongly Leibniz property. A seminorm s satisfies the strongly
Leibniz property on an operator algebra A if

s(A−1) � s(A) · ‖A−1‖2
op
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for all invertible A ∈ A , in which ‖ · ‖op is the operator norm. This can be seen as a
noncommutative analogue of the quotient rule for derivatives. Although the authors of
[2] were able to prove their results without this property, Rieffel’s work on module con-
vergence over the sphere [26] uses the strong Leibniz property, and it can be expected
to play a role in the study of module convergence in general.

Let T be a topological space and let t ∈ T . The reason that the seminorms in [2]
do not likely satisfy the strongly Leibniz rule is because the seminorms are of the form

A �−→ ‖A−Pt(A)‖op,

where A is an element of the C*-algebra A , B is a C*-subalgebra of A , and Pt :
A → B is a certain surjective linear map called a faithful conditional expectation.
But conditional expectations are rarely multiplicative (otherwise, the strongly Leibniz
property of this seminorm would come for free). Rather than replace Pt , which pro-
vides crucial estimates, Rieffel provided another option in [27, Section 5] following
his previous work in [21]: replace the operator norm with one induced by Pt and the
subalgebra B . For A ∈ A , the Frobenius–Rieffel norm is

‖A‖Pt =
√
‖Pt(A∗A)‖op,

where A∗ is the adjoint of A . If we define

sPt : A �−→ ‖A−Pt(A)‖Pt ,

then sPt is a seminorm that is strongly Leibniz [27, Theorem 5.5].
However, this replacement comes at a cost. Following [2], we want the family

of maps (sPt )t∈T to vary continuously (pointwise) on a particular subset of A with
respect to ‖ · ‖op . Thankfully, in the setting of [2], one need only verify this continuity
when A is finite dimensional. In this case, ‖ · ‖Pt and ‖ · ‖op are equivalent on A ,
meaning there exist constants κ+

t ,κ−
t > 0 such that

κ+
t ‖ · ‖op � ‖ · ‖Pt � κ−

t ‖ · ‖op

for each t ∈ T . Therefore, we can replace sPt with

A �−→ 1

κ+
t

sPt (A),

which is strongly Leibniz. However, the constants κ+
t ,κ−

t need not change continu-
ously with respect to t . Therefore, our aim in this paper is to find explicit equivalence
constants for the operator norm and Frobenius–Rieffel norms on finite-dimensional C*-
algebras, so that we may prove the continuity of the constants κ±

t with respect to t ∈ T .
In fact, one of our main results (Theorem 5.2) shows that there exist explicit equiva-
lence constants for the finite-dimensional C*-algebras that form the Effros–Shen alge-
bras which vary continuously with respect to the irrational parameters that determine
these algebras.
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After some background on C*-algebras and the construction of the Frobenius–
Rieffel norms, we provide some basic facts in the next section. Then, we find equiv-
alence constants when A is the space of complex n× n -matrices. This provides a
framework for the general case of finite-dimensional C*-algebras, which we tackle
next. Our main method is to represent the conditional expectations as means of unitary
conjugates for some standard subalgebras, and then extend these results to all unital
C*-subalgebras by showing that although the Frobenius–Rieffel norms are not unitarily
invariant, their equivalence constants are.

2. Preliminaries

The facts we state about C*-algebras in this section can be found in standard texts
such as [7, 19, 20]. A C*-algebra (A ,‖·‖) is a Banach algebra over � equipped with a
conjugate-linear anti-multiplicative involution ∗ : A →A called the adjoint satisfying
the C*-identity (i.e., ‖A∗A‖ = ‖A‖2 for all A ∈ A ). We say that A is unital if it has a
multiplicative identity. If two C*-algebras A ,B are *-isomorphic, then we denote this
by A ∼= B . Let n ∈�= {1,2,3, . . .} . We denote the space of complex n×n matrices
by Mn and its C*-norm by ‖ · ‖op , the operator norm induced by the 2-norm on �n .
We denote the n× n identity matrix by In . For A ∈ Mn , we let Ai, j ∈ � denote the
(i, j)-entry of A for all i, j ∈ [N] , where [N] = {1,2, . . . ,N} .

EXAMPLE 2.1. Let N ∈� and let d1,d2, . . . ,dN ∈� . The space

N⊕
k=1

Mdk

is a unital C*-algebra with coordinate-wise operations; the norm is the maximum of the
operator norms in each coordinate. If we set n = d1 +d2 + · · ·+dN , then In =

⊕N
k=1 Idk

is the unit, which we frequently denote by I . Every finite-dimensional C*-algebra is of
this form up to *-isomorphism [7, Theorem III.1.1].

We denote A ∈ ⊕N
k=1 Mdk by A = (A(1),A(2), . . . ,A(N)) , so that A(k) ∈ Mdk for

each k ∈ [N] and A(k)
i, j ∈ � is the (i, j)-entry of A(k) for all i, j ∈ [dk] .

The following maps are needed for the construction of Frobenius–Rieffel norms.

DEFINITION 2.2. Let A be a unital C*-algebra and let B ⊆ A be a unital C*-
subalgebra. A linear function P : A → B is a conditional expectation if

1. ∀B ∈ B , P(B) = B , and

2. ∀A ∈ A , ‖P(A)‖ � ‖A‖ .

We say that P is faithful if P(A∗A) = 0 ⇐⇒ A = 0.

We can now define norms induced by faithful conditional expectations.
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THEOREM 2.3. ([21][27, Section 5]) Let A be a unital C*-algebra and B ⊆A
be a unital C*-subalgebra. Let P : A → B be a faithful conditional expectation. For
all A ∈ A , set

‖A‖P,B =
√
‖P(A∗A)‖.

This defines a norm on A called the Frobenius–Rieffel norm associated to B and P.

The terminology for these norms is due to two facts: Rieffel introduced these
norms [27, Section 5] using his work that introduced spaces called Hilbert C*-modules
[21] and we show in Theorem 3.16 that one can recover the Frobenius norm using a
particular C*-subalgebra.

One of the main results that makes our work in this paper possible is the fact
that we can express our conditional expectations as orthogonal projections. The key
property that allows this is the preservation of faithful tracial states. A state on a C*-
algebra A is a positive linear functional ϕ : A → � of norm 1. We say that ϕ is
faithful if ϕ(A∗A) = 0 ⇐⇒ A = 0 and tracial if ϕ(AB) = ϕ(BA) for all A,B ∈ A . If
B is a unital C*-subalgebra and P : A →B is a conditional expectation onto B , then
we say that P is ϕ -preserving if ϕ ◦P = ϕ .

EXAMPLE 2.4. Let N ∈ � and d1,d2 . . . ,dN ∈ � . Let v = (v1,v2, . . . ,vN) ∈
(0,1)N such that ∑N

k=1 vk = 1. For every A = (A(1), . . . ,A(N)) ∈⊕N
k=1 Mdk , define

τv(A) =
N

∑
k=1

vk

dk
Tr(A(k)),

where Tr is the trace of a matrix. Then τv is a faithful tracial state on
⊕N

k=1 Mdk . In
fact, all faithful tracial states on

⊕N
k=1 Mnk are of this form [7, Example IV.5.4]. For

Mn , we have v = (1) . Thus, τv = 1
nTr, and we simply denote τv by τ in this case.

A faithful tracial state allows us to define an inner product on A .

THEOREM 2.5. ([6, Proposition VIII.5.11]) Let A be a unital C*-algebra and
let ϕ : A →� be a faithful state. Then

〈A,B〉ϕ = ϕ(B∗A)

is an inner product on A .

The following fact is well known.

THEOREM 2.6. ([2, Expression (4.1)]) Let A be a unital C*-algebra, let B ⊆
A be a unital C*-subalgebra, and let ϕ : A → � be a faithful tracial state. If B
is finite dimensional, then there exists a unique ϕ -preserving conditional expectation
Pϕ

B : A → B onto B such that given any basis β of B which is orthogonal with
respect to 〈·, ·〉ϕ , we have

Pϕ
B(A) = ∑

B∈β

〈A,B〉ϕ

〈B,B〉ϕ
B

for all A ∈ A .
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In this case, we denote the associated Frobenius–Rieffel norm on A by ‖ · ‖τ,B .
Now, let A =

⊕N
k=1 Mdk , let B⊆A be a unital C*-subalgebra, and let v = (v1,v2, . . . ,

vN) ∈ (0,1)N such that ∑N
k=1 vk = 1.

1. We denote the conditional expectation of Theorem 2.6 induced by the faithful tracial
state τv of Example 2.4 by Pv

B . We denote the associated Frobenius–Rieffel norm
by ‖ · ‖v,B .

2. If N = 1, then τ = 1
d1

Tr is the unique faithful tracial state on Md1 , and we denote
the conditional expectation of Theorem 2.6 induced by τ by PB . We denote the
associated Frobenius–Rieffel norm by ‖ · ‖B .

3. Some properties of Frobenius–Rieffel norms

In this section, we detail the subalgebras of
⊕N

k=1 Mdk that we will be working
with and the conditional expectations given by Theorem 2.6. We also explain why we
use “Frobenius” in the name of the norms of Theorem 2.3.

A partition λ of n ∈ � , denoted λ � n, is a tuple λ = (n1,n2, . . . ,nL) ∈ �L ,
where L ∈ � depends on n and n = ∑L

i=1 ni . We need the following refinement to
describe certain subalgebras of Mn .

DEFINITION 3.1. Let n,L ∈� . A formal expression λ = (nm1
1 ,nm2

2 , . . . ,nmL
L ), in

which mi,ni ∈� for 1 � i � L, and

n =
L

∑
i=1

mini (3.1)

is a refined partition of n , denoted 〈λ � n〉 . Write mλ = (m1,m2, . . . ,mL) and nλ =
(n1,n2, . . . ,nL), so that n = mλ · nλ . The vectors mλ and nλ are the multiplicity
vector and dimension vector of λ , respectively. We drop the subscript λ unless needed
for clarity. In the formal expression for λ , we suppress mi if mi = 1. The number
L = L(λ ) of summands in (3.1) is the length of λ .

For example, (22,2),(23),(2,2,12),(3,3),(6) are refined partitions of 6 with, re-
spectively, lengths 2,1,3,2,1; multiplicity vectors (2,1),(3),(1,1,2),(1,1),(1) ; and
dimension vectors (2,2),(2),(2,2,1),(3,3),(6) .

In what follows, we use Kronecker products and direct sums. For example, by
(I2⊗M2)⊕ (I1⊗M1) ⊂ M5 , we mean the subalgebra

{diag(A,A,μ) : A ∈ M2,μ ∈ M1}
of M5 , where diag(A,A,μ) is the block-diagonal matrix⎡

⎣A
A

μ

⎤
⎦ ,

with 0s in the entries not occupied by the As and μ .
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DEFINITION 3.2. Let n∈� and let λ be a refined partition of n . The subalgebra
of Mn corresponding to 〈λ � n〉 is

Bn
λ =

L(λ )⊕
i=1

(Imi ⊗Mni) . (3.2)

We sometimes write Bλ instead of Bn
λ when the context is clear.

EXAMPLE 3.3. For each n ∈� , we have Bn
1n = In⊗M1

∼= M1 and

Bn
1,1,...,1 =

n⊕
i=1

(I1⊗M1) = {diag(μ1,μ2, . . . ,μn) : μ1,μ2, . . . ,μn ∈ �} ∼= �n,

where n -copies of 1 are in the subscript of Bn
1,1,...,1 and ∼= denotes *-isomorphism.

EXAMPLE 3.4. Observe that

B4
12,2 = (I2⊗M1)⊕ (I1⊗M2) = {diag(μ ,μ ,A) : μ ∈�,A ∈ M2} ∼= M1⊕M2.

Thus,
{diag(μ ,A,μ) : μ ∈ �,A ∈ M2}

is a unital C*-subalgebra of M4 which is not of the form (3.2), but is *-isomorphic to
B4

12,2 .

The algebra of circulant matrices provides another example of a unital C*-subalge-
bra of Mn that is not of the form (3.2).

EXAMPLE 3.5. A matrix of the form⎡
⎢⎢⎢⎢⎢⎣

a1 a2 a3 · · · an

an a1 a2 · · · an−1

an−1 an a1 · · · an−2
...

...
. . .

. . .
...

a2 a3 · · · an a1

⎤
⎥⎥⎥⎥⎥⎦

is a circulant matrix [10, 0.9.6 and 2.2.P10]. The *-algebra of n×n circulant matrices
is a unital commutative C*-subalgebra of Mn that is *-isomorphic to Bn

1,1,...,1 . Indeed,
they are simultaneously unitarily diagonalizable normal matrices.

The next definition serves as a vital intermediate step in finding equivalence con-
stants associated to all unital C*-subalgebras and faithful tracial states of

⊕N
k=1 Mdk .

DEFINITION 3.6. Consider A =
⊕N

k=1 Mdk . For each k ∈ [N] , let

pk : A → Mdk
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be the canonical projection onto the k th summand. We say that B ⊆ A is a standard
unital C*-subalgebra if it is a unital C*-subalgebra such that for each k ∈ [N]

pk(B) = Bdk
λk

,

where 〈λk � dk〉 . Then B is a unital C*-subalgebra of

CB =
N⊕

k=1

Bdk
λk

,

which is a unital C*-subalgebra of A .

EXAMPLE 3.7. Observe that

B = {diag(μ ,ν)⊕ μ ∈ M2⊕M1 : μ ,ν ∈�} ∼= �2

is a standard unital C*-subalgebra of M2⊕M1 and

CB = {diag(μ ,ν)⊕η ∈ M2⊕M1 : μ ,ν,η ∈ �} = B2
1,1⊕B1

1
∼= �3.

We note that the unital C*-subalgebra of M3 given by

{diag(μ ,ν,μ) : μ ,ν ∈�}

is not standard, but it is *-isomorphic to B . Thus, whether a subalgebra is standard or
not depends upon the larger ambient algebra.

EXAMPLE 3.8. Observe that

B = {diag(μ ,A,μ)⊕A ∈ M4⊕M2 : μ ∈ �,A ∈ M2}

is not a standard unital C*-subalgebra of M4 ⊕M2 since p1(B) = {diag(μ ,A,μ) :
μ ∈ �,A ∈ M2} is not of the form (3.2). But it is *-isomorphic to the standard unital
C*-subalgebra

E = {diag(A,μ ,μ)⊕A ∈ M4⊕M2 : μ ∈ �,A ∈ M2}

of M4⊕M2 . Note p1(E ) = B2,12 and p2(E ) = B2 = M2 .

Up to unitary equivalence, standard unital C*-subalgebras comprise all unital C*-
subalgebras of

⊕N
k=1 Mdk . To be clear, let B,C ⊆ A =

⊕N
k=1 Mdk be two unital

C*-subalgebras. We say that B and C are unitarily equivalent (with respect to A ) if
there exists a unitary U ∈ A such that B �→UBU∗ is a bijection from B onto C , in
which case we write C =UBU∗ . Sometimes the term spatially isomorphic is used for
unitary equivalence, but spatially isomorphic is also sometimes used in a more general
sense.
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Unitary equivalence is stronger than *-isomorphism. For example, the unital C*-
subalgebras

B12 ⊕B1,1 and B1,1⊕B12

of M2 ⊕M2 are *-isomorphic but not unitarily equivalent in M2 ⊕M2 (they are uni-
tarily equivalent in M4 , but we are viewing them as subalgebras of M2 ⊕M2 ). We
now state the following well-known result.

THEOREM 3.9. ([7, Theorem III.1.1, Corollary III.1.2, and Lemma III.2.1]) Every
unital C*-subalgebra B ⊆ Mn is unitarily equivalent with respect to Mn to Bλ for
some refined partition λ = (nm1

1 ,nm2
2 , . . . ,nmL

L ) of n, and

Bλ ∼=
L⊕

i=1

Mni .

Furthermore, any unital C*-subalgebra of
⊕N

k=1 Mdk is unitarily equivalent, with re-
spect to

⊕N
k=1 Mdk , to a standard unital C*-subalgebra.

For example, the *-algebra of circulant matrices of Example 3.5 is unitarily equiv-
alent with respect to Mn to Bn

1,1,...,1 , not just *-isomorphic to it [10, 2.2.P10]. Also, the
subalgebras B and E of Example 3.8 are unitarily equivalent, not just *-isomorphic.

We use Theorem 3.9 to generalize our results to all unital C*-subalgebras once we
verify our results for the standard subalgebras. One of the advantages of working with
standard unital C*-subalgebras is that they have canonical bases which are orthogonal
with respect to the inner products induced by faithful tracial states.

DEFINITION 3.10. Consider
⊕N

k=1 Mdk . For each k ∈ [N] and i, j ∈ [dk] , let

E(k)
i, j ∈⊕N

k=1 Mdk have a 1 in the (i, j)-entry of the k th summand and zeros in all other

entries and all other summands. We call E(k)
i, j a matrix unit. If N = 1, then we suppress

the superscript (k) .

Any standard unital C*-subalgebra B ⊆ ⊕N
k=1 Mdk has a standard basis (up to

ordering of terms) given by matrix units or sums of distinct matrix units, which we
denote by βB .

EXAMPLE 3.11. For the subalgebra B ⊆ M2 ⊕M1 of Example 3.7, we have

βB = {E(1)
1,1 +E(2)

1,1 ,E(1)
2,2} .

EXAMPLE 3.12. For Bn
1n ⊆ Mn , we have βB1n =

{
∑n

k=1 Ek,k
}

= {In}.
For Bn

1,1,...,1 ⊆ Mn , we have βBn
1,1,...,1

= {E1,1,E2,2, . . . ,En,n}.
For B4

22 ⊆ M4 , we have βB4
22

= {Ei, j +Ei+2, j+2 : i, j ∈ [2]} .

All cases in the example above can be recovered as follows.
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REMARK 3.13. Let B ⊆ Mn be a standard unital C*-subalgebra of Definition
3.6. Thus, there exists a refined partition λ = (nm1

1 ,nm2
2 , . . . ,nmL

L ) of n such that B =
Bn

λ , and we have that

βBn
λ

=
L⋃

k=1

{
mk−1

∑
t=0

Eit(p), jt(q) : p,q ∈ [nk], it(p)− p = jt(q)−q = tnk +
k−1

∑
r=1

mrnr

}
,

where we regard a sum over an empty set of indices as zero.

For these bases, although some of the elements are sums of distinct matrix units,
we note that the summands are from distinct blocks. For example, for B4

22 , no element
of the form Ei, j +Ei,m appears in the standard basis. This easily verified fact and more
are summarized in the following.

THEOREM 3.14. Let B ⊆ ⊕N
k=1 Mdk be a standard unital C*-subalgebra. For

each B ∈ βB , let ΨB = {(k; i, j) : B(k)
i, j = 1} (i.e., B = ∑(k;i, j)∈ΨB

E(k)
i, j ). The following

hold:

1. ΨB ∩ΨB′ = /0 for every B,B′ ∈ βB with B �= B′ .

2. If (k; i, j),(k′ ; i′, j′) ∈ ΨB , then (k; i, j) = (k′; i′, j′) if and only if k = k′ and (i = i′
or j = j′ ).

3. If v = (v1,v2, . . . ,vN) ∈ (0,1)N , then βB is an orthogonal basis of B with respect
to 〈·, ·〉τv .

We now provide an explicit way of calculating the conditional expectations asso-
ciated with standard unital C*-subalgebras. This is a complete generalization of [1,
Proposition 2.8].

THEOREM 3.15. Let B ⊆ A =
⊕N

k=1 Mdk be a standard unital C*-subalgebra.

For each B ∈ βB and k ∈ [N] , let Ψ(k)
B = {(i, j) : (k; i, j) ∈ ΨB} , and let |Ψ(k)

B | denote

the cardinality of Ψ(k)
B . Let v ∈ (0,1)N satisfy ∑N

k=1 vk = 1 . If A ∈ A , then

Pv
B(A) = ∑

B∈βB

∑N
k=1

vk
dk

∑(i, j)∈Ψ(k)
B

A(k)
i, j

∑N
k=1

|Ψ(k)
B |vk
dk

B.

Proof. Fix B ∈ βB . Since Ψ(k)
B is the set of indices for the nonzero entries of the

basis element B contained in the k th summand, we know that

B =
N

∑
k=1

∑
(i, j)∈Ψ(k)

B

E(k)
i, j .
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If m ∈� , then Tr(E∗
i, jC) = Ci, j for any C ∈ Mm and i, j ∈ [m] . We use this fact

repeatedly in the following calculation. Let A ∈ A and observe that

τv(B∗A) = τv

⎛
⎝
⎛
⎝ N

∑
k=1

∑
(i, j)∈Ψ(k)

B

E(k)
i, j

⎞
⎠

∗

A

⎞
⎠ =

N

∑
k=1

vk

dk
∑

(i, j)∈Ψ(k)
B

A(k)
i, j .

We also have by Theorem 3.14

τv(B∗B) = τv

⎛
⎝
⎛
⎝ N

∑
k=1

∑
(i, j)∈Ψ(k)

B

E(k)
i, j

⎞
⎠

∗⎛
⎝ N

∑
k=1

∑
(i, j)∈Ψ(k)

B

E(k)
i, j

⎞
⎠
⎞
⎠

=
N

∑
k=1

vk

dk
∑

(i, j)∈Ψ(k)
B

1 =
N

∑
k=1

|Ψ(k)
B |vk

dk
.

Hence, by (3) of Theorem 3.14 and Theorem 2.6, we conclude that

Pv
B(A) = ∑

B∈βB

∑N
k=1

vk
dk

∑(i, j)∈Ψ(k)
B

A(k)
i, j

∑N
k=1

|Ψ(k)
B |vk
dk

B,

which completes the proof. �

We next show how the Frobenius–Rieffel norms recover the Frobenius norm.

THEOREM 3.16. For all A ∈ Mn ,

‖A‖B1n = ‖A‖Fn,

where ‖A‖Fn = 1√
n

√
Tr(A∗A) is the Frobenius norm normalized with respect to In .

Proof. By Theorem 3.15, we have that

PB1n (A) =
1
n
Tr(A)In.

Therefore,

‖A‖2
B1n =

∥∥PB1n (A∗A)
∥∥

op =
∥∥∥∥1

n
Tr(A∗A)In

∥∥∥∥
op

= ‖A‖2
Fn

. �

The next two examples show that Frobenius–Rieffel norms are not generally sub-
multiplicative or unitarily invariant.
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EXAMPLE 3.17. Consider the unital C*-subalgebra B2
1,1 of M2 . Let A =

[
1 2
2 1

]
and use Theorem 3.15 to calculate

‖A‖2
B2

1,1
=

∥∥∥PB2
1,1

(A∗A)
∥∥∥

op
=

∥∥∥∥PB2
1,1

([
5 4
4 5

])∥∥∥∥
op

=
∥∥∥∥
[
5 0
0 5

]∥∥∥∥
op

= 5.

Thus, ‖A‖B2
1,1
· ‖A‖B2

1,1
= 5. Similarly, ‖AA‖B2

1,1
= 41, so

‖AA‖B2
1,1

> ‖A‖B2
1,1
‖A‖B2

1,1
.

EXAMPLE 3.18. Consider

A =
[
1 1
1 1

]

and the unitary

U =
1√
2

[
1 1
1 −1

]
.

Following similar calculations as the last example, we conclude

‖A‖2
B2

1,1
= 2 �= 4 = ‖U∗AU‖2

B2
1,1

.

4. Equivalence constants for the operator norm

As discussed in the introduction, it is important to be able to compare the Frobenius–
Rieffel norms with the operator norm. Theorem 2.3 says that

‖A‖P,B =
√
‖P(A∗A)‖op �

√
‖A∗A‖op =

√
‖A‖2

op = ‖A‖op

for all A ∈ ⊕N
k=1 Mdk , any unital C*-subalgebra B ⊆ A , and any conditional expec-

tation P : A → B onto B . This equality is achieved by the identity matrix. Thus, the
nontrivial task is to find a constant κ+

P,B > 0 such that

κ+
P,B‖A‖op � ‖A‖P,B

for all A ∈⊕N
k=1 Mdk .

We begin with some general results and then focus on the case of Mn . Then, we
move to the general case, which is more involved since the Frobenius–Rieffel norms
depend on the underlying subalgebra and faithful tracial state. We begin with an in-
equality that allows us to avoid dealing with A∗A .

LEMMA 4.1. Let B ⊆ A =
⊕N

k=1 Mdk be a unital C*-subalgebra, let τ be a
faithful tracial state on A , and let μ ∈ (0,∞). The following are equivalent.

1. ‖C‖op � μ‖Pτ
A (C)‖op for all positive C ∈ A .
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2. ‖A‖op � √μ‖A‖τ,A for all A ∈ A .

Proof. We begin with (1) =⇒ (2) . Suppose ‖C‖op � μ‖Pτ
A (C)‖op for all posi-

tive C ∈A . Then ‖A∗A‖op � μ‖Pτ
A (A∗A)‖op for all A ∈A . Since ‖A∗A‖op = ‖A‖2

op ,
we see that ‖A‖op � √μ‖A‖τ,A .

For (2) =⇒ (1) , suppose that

‖A‖op � √
μ‖A‖τ,A =

√
μ
√
‖Pτ

A (A∗A)‖op

for all A∈A . Then ‖A∗A‖op = ‖A‖2
op � μ‖Pτ

A (A∗A)‖op . Thus, ‖C‖op � μ‖Pτ
A (C)‖op

for all positive C ∈ A . �

The next lemma allows us to extend our results from standard unital C*-subalgebras
to all unital C*-subalgebras. The following fact is surprising since, at the end of the
last section, we showed that the Frobenius–Rieffel norms are not unitarily invariant in
general. Also, it can be the case that ‖A‖τ,B �= ‖A‖τ,C for certain A ∈ A , but the
equivalence constants are the same for uniatrily equivalent subalgebras B,C ⊆ A .

LEMMA 4.2. Let τ be a faithful tracial state on A =
⊕N

k=1 Mdk , let B,C ⊆ A
be unitarily equivalent (with respect to A ) unital C*-subalgebras , and let μ ∈ (0,∞).
The following are equivalent.

1. μ‖A‖op � ‖A‖τ,B for all A ∈ A .

2. μ‖A‖op � ‖A‖τ,C for all A ∈ A .

Proof. The argument is symmetric, so we prove only (1) =⇒ (2) . Fix an orthog-
onal basis β = {B1,B2, . . . ,Bm} for B with respect to τ . Since U(·)U∗ : B → C is a
linear bijection, β ′ = {UB1U∗,UB2U∗, . . . ,UBmU∗} is a basis for C . Furthermore, if
j,k ∈ [m] , we have

τ((UBjU
∗)∗UBkU

∗) = τ(UB∗
jBkU

∗) = τ(U∗UB∗
jBk) = τ(B∗

jBk).

Hence, β ′ is an orthogonal basis for C with respect to τ .
Now let A ∈ A . Theorem 2.6 implies that

Pτ
C (A) =

m

∑
i=1

τ((UBiU∗)∗A)
τ((UBiU∗)∗UBiU∗)

UBiU
∗

= U

(
m

∑
i=1

τ(UB∗
i U

∗A)
τ(B∗

i Bi)
Bi

)
U∗

= U

(
m

∑
i=1

τ(U∗AUB∗
i )

τ(B∗
i Bi)

Bi

)
U∗

= UPτ
B(U∗AU)U∗.
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For all A ∈ A ,

‖A‖2
τ,C = ‖Pτ

C (A∗A)‖op

= ‖UPτ
B(U∗A∗AU)U∗‖op

= ‖Pτ
B(U∗A∗AU)‖op

= ‖Pτ
B((AU)∗AU)‖op = ‖AU‖2

τ,B

� μ2‖AU‖2
op

= μ2‖A‖2
op,

which completes the proof. �
We next present a basic lemma about positive matrices.

LEMMA 4.3. If T = A−B for some positive A,B ∈ Mn , then

‖T‖op � max{‖A‖op,‖B‖op}.

Proof. Since −‖B‖opI � −B � T � A � ‖A‖opI , it follows that T −λ In is invert-
ible if λ > ‖A‖op or λ < −‖B‖op . Thus, the spectrum of the self-adjoint matrix T is
contained in the interval [−‖B‖op,‖A‖op] . �

Lemma 4.4 is our main tool in providing equivalence constants. It is motivated by
the notion of “pinching” in matrix analysis (see [3]).

LEMMA 4.4. Let X ∈Mn be positive. If P(X) is a mean of n unitary conjugates
of X , XT (the transpose of X ), or X∗ , one of which is X itself, then

‖P(X)‖op � 1
n
‖X‖op.

Proof. Since X is positive, a unitary conjugate of X , XT , or X∗ is also positive
(and has the same operator norm as X ). Suppose that

P(X) =
1
n

n−1

∑
i=0

Ci

is a mean of n unitary conjugates Ci of X , XT , or X∗ and that C0 = X itself. Since
P(X) is positive, the previous lemma ensures that

‖X −P(X)‖op =

∥∥∥∥∥n−1
n

X − 1
n

n−1

∑
i=1

Ci

∥∥∥∥∥
op

� n−1
n

‖X‖op.

Consequently,

‖P(X)‖op = ‖X +P(X)−X‖op

� ‖X‖op−‖X −P(X)‖op

� ‖X‖op− n−1
n

‖X‖op =
1
n
‖X‖op,
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which completes the proof. �
We first apply this lemma to the following family of unital C*-subalgebras.

THEOREM 4.5. Let Bλ ⊆ Mn where 〈λ � n〉 and λ = (n1,n2, . . . ,nL) .
If X ∈ Mn is positive, then

1
L
‖X‖op � ‖PBλ (X)‖op.

Moreover,
1√
L
‖X‖op � ‖X‖Bλ

for all X ∈ Mn .

Proof. Consider the unitary U =
⊕L

i=1 ω iIni , where ω is a primitive L th root of
unity. Let X ∈ Mn . We may write X as blocks in the following way

X =

⎡
⎢⎢⎢⎣

Xn1 A
Xn2

. . .
B XnL

⎤
⎥⎥⎥⎦ ,

where Xnk ∈Mnk with (Xnk)i, j = Xi+n1+···+nk−1, j+n1+···+nk−1 for each k ∈ {1,2, . . . ,L},
and i, j ∈ {1,2, . . . ,nk} , and A and B denote the remaining entries of X . By Theorem
3.15, it follows that

PBλ (X) =

⎡
⎢⎢⎢⎣

Xn1 0
Xn2

. . .
0 XnL

⎤
⎥⎥⎥⎦ .

On the other hand, a direct computation shows that

1
L

L−1

∑
i=0

UiXU∗i =

⎡
⎢⎢⎢⎣

Xn1 0
Xn2

. . .
0 XnL

⎤
⎥⎥⎥⎦ .

Hence, PBλ (X) = 1
L ∑L−1

i=0 UiXU∗i .
By Lemma 4.4, we have that ‖PBλ (X)‖op � (1/L)‖X‖op .
By Lemma 4.1, we have

1√
L
‖X‖op � ‖X‖Bλ

for all X ∈ Mn . �
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We can now use the ideas from Theorem 4.5 to calculate equivalence constants for
a subalgebra of the form Bλ for arbitrary λ (Definition 3.2). The idea of the proof is
as follows. Assume we want to project a matrix of the form

X =

⎡
⎣A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎤
⎦

onto the subalgebra of matrices of the form⎡
⎣B 0 0

0 B 0
0 0 C

⎤
⎦ .

We can do this in two steps. First project X onto

Y =

⎡
⎣A1,1 0 0

0 A2,2 0
0 0 A3,3

⎤
⎦ ,

which is the setting of Theorem 4.5. Then project Y onto⎡
⎣M 0 0

0 M 0
0 0 A3,3

⎤
⎦ .

The proof of the next theorem shows how we can represent this final projection using a
mean of unitary conjugates, which allows us to utilize Lemma 4.4 as done in the proof
of Theorem 4.5. The reason for this two-step approach is that it does not seem feasible
to represent the projection directly onto the desired subaglebra as a mean of unitary
conjugates.

THEOREM 4.6. Consider Bλ ⊆Mn such that 〈λ � n〉 , where λ = (nm1
1 ,nm2

2 , . . . ,
nmL

L ) . Set r = ∑L
i=1 mi and � = lcm{m1,m2, . . .mL} . If X ∈ Mn is positive, then

‖PBλ (X)‖op � 1
r�
‖X‖op.

Moreover,

‖X‖op � 1√
r�
‖X‖op

for all X ∈ Mn.

Proof. We write PBλ as the composition of two maps. For each i ∈ [r] , set

ei =

{
n1 if 1 � i � m1,

n j if 2 � j � L and 1+ ∑ j−1
p=1 mp � i � ∑ j

p=1 mp,
(4.1)
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that is, e1 = n1, e2 = n1, . . . , em1 = n1 , and

em1+1 = n2, em1+2 = n2, . . . , em1+m2 = n2,

etc. Now set λ ′ = (e1,e2 . . . ,er) and note that 〈λ ′ � n〉 . By Theorem 4.5, we have
‖PBλ ′ (X)‖op � (1/r)‖X‖op for all positive X ∈ Mn .

For each i ∈ [L], let Vj,i to be the nimi × nimi circulant matrix with all zeros in
the first row, except for a 1 in the (1 + jni) th position for j ∈ 0,1, . . . ,mi − 1. Then
we define Vj =

⊕k
i=1V( j mod mi),i for j = 0,1, . . . , �−1 where � = lcm{m1,m2 . . . ,mL}.

For any positive X ∈ Mn , define

Q(X) =
1
l

l−1

∑
j=1

VjXV ∗
j .

By Lemma 4.4 ‖Q(X)‖op � (1/�)‖X‖op for all positive X ∈ Mn . Then, a direct
computation along with Theorem 3.15 provides that PBλ (X) = Q(PBλ ′ (X)) , which
gives us

‖PBλ (X)‖op � 1
r�
‖X‖op,

for any positive X ∈ Mn. The rest follows from Lemma 4.1. �

EXAMPLE 4.7. We calculate the values of r, � for the following subalgebras of
M5.

For B5
3,2 , we have r = 1+1 = 2 and � = lcm{1,1}= 1. Thus r� = 2.

For B5
22,1

, we have r = 2+1 = 3 and � = lcm{2,1}= 2. Thus r� = 6.

For B5
2,12,1

, we have r = 1+2+1 = 4 and � = lcm{1,2,1}= 2. Thus r� = 8.

For B5
2,13 , we have r = 1+3 = 4 and � = lcm{1,3}= 3. Thus r� = 12.

We also note that for the subalgebra B4
13,1 ⊆ M4 , we have r = 3+ 1 = 4, � =

lcm{3,1} = 3, and r� = 12.

Thus, combining Theorem 4.6 with Lemma 4.2 and Theorem 3.9, we have found
equivalence constants for Frobenius–Rieffel norms constructed from any unital C*-
subalgebra of Mn built from natural structure (the dimensions of the terms of the block
diagonals of the given subalgebra).

Table 1 outlines the equivalence constants for all unital *-subalgebras of Mn for
1 � n � 5. The second column contains equivalence constants suggested by brute force
using software (this was done by making software calculate the operator and Frobenius–
Rieffel norms of many matrices, and then making a guess), which we think might be
the sharp equivalence constants. The third column contains the theoretical equivalence
constant found in Theorems 4.5, 4.6. Our goal in this paper is not to find the sharp
equivalence constants, but just explicit ones that afford us some continuity results as
mentioned in the first section. It remains an open question to find the sharp constants,
and this table suggests that we may have found the sharpest constants in some cases.
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Algebra Guess of Sharp Equiv. Const. Theorem 4.6 Equiv. Const.
B3

2,1 1/
√

2 1/
√

2
B3

12,1
1/

√
3 1/

√
6

B4
2,2 1/

√
2 1/

√
2

B4
22 1/

√
4 1/

√
4

B4
2,1,1 1/

√
3 1/

√
3

B4
2,12 1/

√
3 1/

√
6

B4
13,1 1/

√
4 1/

√
12

B4
12,1,1

1/
√

4 1/
√

8

B5
3,2 1/

√
2 1/

√
2

B5
2,2,1 1/

√
3 1/

√
3

B5
22,1

1/
√

4 1/
√

6

B5
3,1,1 1/

√
3 1/

√
3

B5
3,12 1/

√
3 1/

√
6

B5
2,1,1,1 1/

√
4 1/

√
3

B5
2,13 1/

√
4 1/

√
12

B5
2,12,1

1/
√

4 1/
√

8

Table 1: Theorem 4.6 equivalence constants and guesses of sharp equivalence constants

4.1. The general case

We now study the case of
⊕N

k=1 Mdk , which is much more involved for two main
reasons. First, as seen in Example 3.11, the canonical basis elements for standard unital
C*-subalgebras of

⊕N
k=1 Mdk can have non-zero terms in multiple summands, which

requires more bookkeeping than the previous section. Second, the Frobenius–Rieffel
norms now vary on an extra parameter: the faithful tracial state. In the Mn case,
the only faithful tracial state is 1

nTr, so this was not an issue. For instance, consider
M2⊕M2 and the subalgebra

B = {diag(μ ,ν)⊕diag(μ ,μ) : μ ,ν ∈ �}.
To build a Frobenius–Rieffel norm on M2 ⊕M2 with respect to B , we also need a
faithful tracial state on M2 ⊕M2 . We could take τ(1/4,3/4) on M2 ⊕M2 (see Ex-
ample 2.4). Hence, taking into account the expression for the associated conditional
expectation of Theorem 3.15, we need to keep track of how the coefficients 1/4 and
3/4 impact the construction of the Frobenius–Rieffel norm since μ appears in both
summands. Thus, we cannot simply view B as a subalgebra of M4 and proceed to use
the previous section since we would lose track of the weights since M4 has a unique
faithful tracial state. The following definition environment allows us to collect all the
terms that we use to find our equivalence constants in this much more involved setting.
We note that we generalize the constants r, � from Theorem 4.6.
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DEFINITION 4.8. Let B ⊆ A =
⊕N

k=1 Mdk be a standard unital C*-subalgebra,

where for each k ∈ [N] , we have pk(B) = B
dk
λk

with 〈λk � dk〉 . We denote mλk
=

(mk,1,mk,2, . . . ,mk,Lk ) and nλk
= (nk,1,nk,2, . . . ,nk,Lk) .

Next, we collect the data we need associated to a given faithful tracial state. Let
v = (v1,v2, . . . ,vN) ∈ (0,1)N such that ∑N

k=1 vk = 1, and let {b1,b2, . . . ,bM} be the
canonical orthogonal basis for B given by matrix units.

Define:

1. � = lcm
{
mk,i : k ∈ [N], i ∈ [Lk]

}
,

2. r = lcm{r1,r2 . . . ,rN} , where rk is the number of blocks of B in the k th sum-
mand of A for each k ∈ [N] ,

3. m = lcm{mb1 , . . . ,mbM} , where mbi is the number of nonzero entries of the basis
element bi for each i ∈ [M] ,

4. α = min
{

vk
dk

: k ∈ [N]
}

, and

5. γ = max
{

∑N
k=1

ρk,ivk
dk

: i ∈ [M]
}

, where ρk,i is the number of times there is a

nonzero entry of bi in the k th summand of A for each i ∈ [M] and k ∈ [N].

First, we tackle the subalgebras of the form CB in Definition 3.6, which recovers
Theorem 4.6 when N = 1.

THEOREM 4.9. Consider A =
⊕N

k=1 Mdk . For each k ∈ [N] , consider Bλk
⊆

Mdk such that 〈λk � dk〉 . Set

B =
N⊕

k=1

Bλk
.

Let v = (v1,v2, . . . ,vN) ∈ (0,1)N such that ∑N
k=1 vk = 1 . If X ∈ A is positive, then

‖Pv
B(X)‖op � 1

r�
‖X‖op,

and, moreover,
1√
r�
‖X‖op � ‖X‖v,B

for all X ∈ A .

Proof. For each B ∈ βB , let kB ∈ [N] be the summand where B has a non-zero
entry. Theorem 3.15 implies that

Pv
B(A) = ∑

B∈βB

∑(i, j)∈ΨB,kB
A(kB)

i, j

|ΨB,kB |
B

for all A ∈ A .
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We recover Pv
B using a mean of unitary conjugates in two steps. Let k ∈ [N] .

Suppose the i th block of Bλk
has dimension (e(k)

i )2 (see Expression (4.1)). Set λ ′
k =

(e(k)
1 ,e(k)

2 , . . . ,e(k)
rk ) and note that 〈λ ′

k � dk〉 . Then, let

U (k) =
rk⊕

i=1

ω iI
e
(k)
i

,

where ω is a primitive rk th root of unity.
Note that U = (U (1), . . . ,U (N)) is unitary as each U (k) is unitary. We then define

P1 :
⊕N

k=1 A → ⊕N
k=1 Bλ ′

k
by

P1 (X) =
N⊕

k=1

1
r

r−1

∑
i=0

(
U (k)

)i mod rk
X (k)

((
U (k)

)∗)i mod rk
,

where i mod rk ∈ {0,1, . . . ,rk−1}. By Lemma 4.4, we have ‖P1(X)‖op � (1/r)‖X‖op .
Using the convention for mλk

,nλk
in Notation 4.8, we then define, for k ∈ [N], i ∈

[Lk] , the matrix Vk, j,i to be the nk,imk,i × nk,imk,i circulant matrix with all zeros in
the first row, except for a 1 in the (1 + jnk,i) th position for 0 � j � mk,i − 1. Set

V (k)
j =

⊕Lk
i=1Vk,( j mod mk,i),i for j = 0, . . . , �−1, and let

Vj =
(
V (1)

j , . . . ,V (N)
j

)
.

Then define P2 :
⊕N

k=1 Bλ ′
k
→ B by

P2(X) =
1
�

�−1

∑
j=0

VjXV ∗
j .

Since V0 = I , we know ‖P2(X)‖op � (1/�)‖X‖op by Lemma 4.4. We also have that
Pv

B = P2 ◦P1 by construction. Hence

‖Pv
B(X)‖op � 1

r�
‖X‖op,

which completes the proof by Lemma 4.1. �
The values of v = (v1,v2, . . . ,vN)∈ (0,1)N do not appear in the calculations above.

This makes sense because the case of Theorem 4.9 is essentially the case when N = 1
since the non-zero entries of a basis element do not appear in multiple summands, and
so the different coordinates of v do not appear and we simply work with ∑N

k=1 vk = 1.
Thus, we now move towards the case when the non-zero entries of our basis elements
can appear in multiple summands, such as in Example 3.7 and as in the subalgebras
defined before Theorem 5.2. To provide intuition for the following proof, we revisit the
example at the beginning of the section. Consider M2⊕M2 and the C*-subalgebra

B = {diag(μ ,ν)⊕diag(μ ,μ) : μ ,ν ∈ �}.
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The first step of the following proof is to project an A⊕B∈ M2⊕M2 onto an element
of the form diag(a,b)⊕diag(c,d) ∈ M2 ⊕M2 . Next, in order to project diag(a,b)⊕
diag(c,d) into B , we view diag(a,b)⊕ diag(c,d) as diag(a,b,c,d) ∈ M4 and we
view elements of B as diag(μ ,ν,μ ,μ) . Then we use a mean of unitary conjugates in
M4 to project diag(a,b,c,d) to an element of the form diag(μ ,ν,μ ,μ) , which is an
element in B . To form the unitaries, begin with W1 = I4 . Next, since the (1,1)-entry
in diag(μ ,ν,μ ,μ) repeats in the (3,3)-entry and (4,4)-entry, we permute the first,
third, and fourth column of W1 = I4 two times to get two more unitaries

W2 =

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ and W3 =

⎡
⎢⎢⎣

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎤
⎥⎥⎦ .

If we permute these columns one more time, then we obtain I4 . Note that

3

∑
i=1

Widiag(a,b,c,d)W ∗
i ∈ B.

Using Definition 4.8, note that m = lcm{3,1}= 3 since the standard basis elements of
B are diag(1,0,1,1) and diag(0,1,0,0) .

THEOREM 4.10. Let v = (v1,v2, . . . ,vN) ∈ (0,1)N such that ∑N
k=1 vk = 1 . Let B

be a standard unital C*-subalgebra of A =
⊕N

k=1 Mdk . If X ∈ A is positive, then

α
r�mγ

‖X‖op � ‖Pv
B(X)‖op,

and, moreover, √
α√

r�mγ
‖X‖op � ‖X‖v,B

for all X ∈ A .

Proof. For CB as defined in Definition 3.6, we have ‖Pv
CB

(X)‖op � (1/(r�))‖X‖op

for positive X ∈ A by Theorem 4.9.
We then define

P′(X) =
N⊕

k=1

vk

ak
Pv

CB
(X)(k),

which gives us ‖P′(X)‖op � α
r�‖X‖op for all positive X ∈⊕N

k=1 Mdk .
Suppose e2

k is the dimension of the k th block of B and b is the total number of
blocks of B . For the following, we view B and A as subalgebras of Md , where
d = ∑N

k=1 dk . Let

W1 =
b⊕

k=1

Iek = Id .
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We construct W2 by permuting the blocks of W1 in the following way. If the k th block
of B is not repeated, then fix Iek . Next, assume that the k th block of B is repeated
and that the k th block is the first position this repeated block appears. Assume that
the j th block is the next block to the right that the the k th block is repeated. Then
Iek stays in the same rows it occupied in W1 , but its columns permute to the columns
(in Md ) of the j th block in B . If the j th block is repeated, then repeat this process
with Ie j . However, if the j th block is not repeated, then permute the columns Ie j to the
columns of the k th block. Continue in this way until all blocks are either permuted or
fixed depending on repetition or lack thereof, which gives us W2 . Repeat this process
to make W3,W4, . . . ,Wm , where m is defined in (3) of Definition 4.8 (see the example
before the statement of the theorem). Note that Wm+1 = Id . Define f : CB → B by

f (X) =
1
m

m

∑
i=1

WiXW ∗
i ,

which satisfies
‖ f (P′(X))‖op � α

r�m
‖X‖op

for all positive X ∈ CB by Lemma 4.4.
Finally, by Theorem 3.15 and a direct computation, we have that

‖Pv
B(X)‖op =

1
γ
‖ f (P′(X))‖op.

We conclude that
‖Pv

B(X)‖op � α
r�mγ

‖X‖op

for all positive X ∈ A . Lemma 4.1 completes the proof. �

We can use the previous theorem to find equivalence constants for all unital *-
subalgebras B ⊆⊕N

k=1 Mdk by Lemma 4.2.

5. An application to Effros–Shen algebras

To finish, we now apply our main result to the finite-dimensional C*-algebras in
the inductive sequence used by Effros and Shen in the construction of their AF alge-
bras from the continued fraction expansion of irrational numbers [7, Section VI.3], [8].
These algebras provide a suitable example to test our results. Indeed, in [2], it was
shown that the Effros–Shen algebras vary continuously with respect to their irrational
parameters in a noncommutative analogue to the Gromov–Hausdorff distance, called
the dual Gromov–Hausdorff propinquity [15]. A crucial part of this result is the fact
that each Effros–Shen algebra comes equipped with a unique faithful tracial state and
that the faithful tracial states themselves vary continuously with respect to the irrational
parameters. Therefore, to test our results in the previous section, we will see that for the
Frobenius–Rieffel norms that are built from these faithful tracial states, this continuity
passes through to the equivalence constants. This further displays how far-reaching the
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information of the irrational parameters appears in structures related to the Effros–Shen
algebras.

First, given an irrational θ ∈ (0,1) , the Effros–Shen algebras are built using the
continued fraction expansion of θ . The continuity results in [2] were established using
the Baire space, a metric space that is homeomorphic to (0,1)\� with its usual topol-
ogy. The Baire space is the set of positive integer sequences, which is in one-to-one
correspondence with (0,1)\� via the continued fraction expansion, equipped with the
Baire metric. We begin reviewing continued fractions and the Baire space. Background
on continued fractions can be found in many introductory number theory texts, such as
[9].

Let θ ∈ � be irrational. There exists a unique sequence of integers (rθ
n )n∈�0

(where �0 = {0}∪�) with rθ
n > 0 for all n ∈� such that

θ = lim
n→∞

rθ
0 +

1

rθ
1 +

1

rθ
2 +

1

rθ
3 +

1

. . . +
1

rθ
n

.

When θ ∈ (0,1) , we have that rθ
0 = 0. The sequence (rθ

n )n∈�0 is called the continued
fraction expansion of θ .

To define the Baire space, first let N denote the set of positive integer sequences.
The Baire metric dB on N is defined by

dB(x,y) =

{
0 if x = y,

2−min{n∈�:xn �=yn} if x �= y.

The metric space (N ,dB) is the Baire space. In particular, the distance in the Baire
metric between two positive integer sequences is less than 2−n if and only if their
terms agree up to n . We now state the following well-known result in the descriptive
set theory literature.

PROPOSITION 5.1. ([2, Proposition 5.10]) The map

θ ∈ (0,1)\� �→ (rθ
n )n∈� ∈ N

is a homeomorphism with respect to the usual topology on � and the Baire metric.

Thus, convergence of a sequence of irrationals to an irrational in the usual topol-
ogy on � can be expressed in terms of their continued fraction expansions using the
topology induced by the Baire metric.

Next, we define the finite-dimensional C*-subalgebras of the Effros–Shen alge-
bras. For each n ∈� , define

pθ
0 = rθ

0 , pθ
1 = 1 and qθ

0 = 1, qθ
1 = rθ

1
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and set
pθ

n+1 = rθ
n+1pθ

n + pθ
n−1

and
qθ

n+1 = rθ
n+1q

θ
n +qθ

n−1.

The sequence
(
pθ

n /qθ
n

)
n∈N0

of convergents pθ
n /qθ

n converges to θ . In fact, for each
n ∈� ,

pθ
n

qθ
n

= rθ
0 +

1

rθ
1 +

1

rθ
2 +

1

rθ
3 +

1

. . . +
1

rθ
n

.

We now define the C*-algebras with which we endow Frobenius–Rieffel norms.
We set Aθ ,0 = C and, for each n ∈ N0 , we set

Aθ ,n = Mqθ
n
⊕Mqθ

n−1
.

For the subalgebras, define

αθ ,n : A⊕B ∈ Aθ ,n �→ diag(A, . . . ,A,B)⊕A ∈ Aθ ,n+1, (5.1)

where there are rθ
n+1 copies of A on the diagonal in the first summand of Aθ ,n+1 . This

is a unital *-monomorphism by construction. For n = 0,

αθ ,0 : λ ∈ Aθ ,0 �→ diag(λ , . . . ,λ )⊕λ ∈ Aθ ,1.

For each n ∈ N0 , set
Bθ ,n+1 = αθ ,n(Aθ ,n),

which is a standard unital C*-subalgebra of Aθ ,n+1 .
To complete the construction of the Frobenius–Rieffel norm, we need to define a

faithful tracial state. We begin with

t(θ ,n) = (−1)n−1qθ
n (θqθ

n−1− pθ
n−1) ∈ (0,1).

Then set
vθ ,n = (t(θ ,n),1− t(θ ,n)),

so for all (A,B) ∈ Aθ ,n , we have

τvθ ,n(A,B) = t(θ ,n)
1
qθ

n
Tr(A)+ (1− t(θ ,n))

1

qθ
n−1

Tr(B).

For each n ∈ N , the Frobenius–Rieffel norm on Aθ ,n associated to vθ ,n and to the
unital C*-subalgebra Bθ ,n is denoted by

‖ · ‖vθ ,n,Bθ ,n .



756 K. AGUILAR, S. R. GARCIA AND E. KIM

We conclude the paper with the following theorem, which shows that the equiv-
alence constants we found in this paper are natural in the sense that they reflect the
established continuity of the Effros-Shen algebras with respect to their irrational pa-
rameters.

THEOREM 5.2. Let θ ∈ (0,1)\� and N ∈� . Then√
θqθ

N − pθ
N(

θqθ
N−2− pθ

N−2

)
rθ
N(rθ

N +1)2
· ‖a‖op � ‖a‖vθ ,N ,Bθ ,N � ‖a‖op

for all a ∈ Aθ ,N . If (θn)n∈� is a sequence in (0,1) \� converging to some θ ∈
(0,1)\� , then

lim
n→∞

θnq
θn
N − pθn

N(
θqθn

N−2− pθn
N−2

)
rθn
N (rθn

N +1)2
=

θqθ
N − pθ

N(
θqθ

N−2− pθ
N−2

)
rθ
N(rθ

N +1)2
.

Proof. First, we gather the necessary information from the canonical basis of Bθ ,n

given by matrix units. Let

βθ ,n =
{

b1, . . . ,b(qθ
n−1)

2

}
be the set of basis elements that span elements of the form αθ ,n−1(A,0) ∈ Bθ ,n . Let

β ′
θ ,n =

{
b(qθ

n−1)
2+1, . . . ,b(qθ

n−1)
2+(qθ

n−2)
2

}
be the set of basis elements that span elements of the form αθ ,n−1(0,B) ∈ Bθ ,n . Note
for n = 1, we have β ′

θ ,n = /0 . Thus, the canonical basis for Bθ ,n is

βBθ ,n = βθ ,n∪β ′
θ ,n.

Using Definition 4.8, we have

�(θ ,n) = lcm{rθ
n ,1,1} = rθ

n

and
r(θ ,n) = lcm{rθ

n +1,1}= rθ
n +1.

Next
m(θ ,n) = lcm{rθ

n +1,1}= rθ
n +1

and

α(θ ,n) = min
{
(−1)n−1

(
θqθ

n−1− pθ
n−1

)
,(−1)n

(
θqθ

n − pθ
n

)}
= (−1)n

(
θqθ

n − pθ
n

)
,
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where the second term is given at the end of the proof of [2, Lemma 5.5], and finally

γ(θ ,n) = max
{

rθ
n · (−1)n−1

(
θqθ

n−1− pθ
n−1

)
+(−1)n

(
θqθ

n − pθ
n

)
,

(−1)n−1
(

θqθ
n−1− pθ

n−1

)}
= rθ

n · (−1)n−1
(

θqθ
n−1− pθ

n−1

)
+(−1)n

(
θqθ

n − pθ
n

)
= (−1)n−2(θqθ

n−2− pθ
n−2).

Thus, we conclude that the equivalence constant of Theorem 4.10 is√
θqθ

n − pθ
n(

θqθ
n−2− pθ

n−2

)
rθ
n (rθ

n +1)2
. (5.2)

Next, by Proposition 5.1, for fixed n ∈ � , there exists δ > 0 such that if η ∈
(0,1)\� and |θ −η | < δ , then rθ

m = rη
m for all m ∈ {0, . . . ,n+1} , and thus the same

holds for pθ
m = pη

m and qθ
m = qη

m . In particular, for irrational θ , (5.2) is continuous in
θ . �
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