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STABILITY BOUNDS FOR RECONSTRUCTION

FROM SAMPLING ERASURES
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Abstract. The Shannon-Whittaker Sampling Theorem states that a frequency bounded signal
can be completely determined by its sampled values at a countable number of points. Thus, the
theorem allows us to convert analog signals to digital signals by sampling (or evaluating) the
signal at these points. In prior work, it was shown that if a signal is oversampled, and if some
of the sampled values are lost when transmitting the signal, then it is still possible to reconstruct
the signal. However, in certain situations, the reconstruction algorithm is very unstable. In this
paper, we provide stability bounds on the reconstruction algorithm and determine when it is not
feasible to perform the reconstruction.
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