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KOTANI THEORY FOR ERGODIC BLOCK JACOBI OPERATORS

FABRÍCIO VIEIRA OLIVEIRA ∗ AND SILAS L. CARVALHO

Abstract. We extend the so-called Kotani Theory for a particular class of ergodic block Ja-
cobi operators defined in l2(Z;Cl ) by the law [Hω u]n := D∗(Tn−1ω)un−1 + D(Tnω)un+1 +
V (Tnω)un , where T : Ω → Ω is an ergodic automorphism in the measure space (Ω,ν) , the
map D : Ω → GL(l,R) is bounded, and for each ω ∈ Ω , D(ω) is symmetric and D−1(ω) is
bounded. Namely, it is shown that for each r ∈ {1, . . . , l} , the essential closure of Zr := {x ∈R |
exactly 2r Lyapunov exponents of Az are zero} coincides with σac,2r(Hω ) , the absolutely con-
tinuous spectrum of multiplicity 2r , where Az is a Schrödinger-like cocycle induced by Hω .
Moreover, if k ∈ {1, . . . ,2l} is odd, then σac,k(Hω ) = /0 for ν -a.e. ω ∈ Ω . We also provide a
Thouless formula for such class of operators.
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