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WEAK–STAR DENTABILITY, QUASI–WEAK–STAR NEAR DENTABILITY

AND CONTINUITY OF METRIC PROJECTOR IN BANACH SPACES

BAO LAIYOU AND SUYALATU WULEDE ∗

Abstract. The relations between the w∗ dentability and Chebyshev set or the continuity of metric
projection operator are given. Let X∗ be the conjugate space of Banach space X , the conditions
of a point (x∗,y∗) on the unit sphere of product space X∗ ×X∗ to be w∗ denting point of closed
unit ball of product space X∗ ×X∗ are given. Also, a notion of quasi-w∗ near dentability in
conjugate space X∗ is introduced and the relations between the quasi-w∗ nearly denting point
of closed unit ball of X∗ and a certain slice of closed unit ball of X∗ are given.
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