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GENERALIZED CHOI–KRAUS DILATIONS OF

LINEAR MAPS BETWEEN MATRIX ALGEBRAS
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Abstract. By the generalized Stinespring’s dilation theorem, every linear map between two ma-
trix algebras Mn and Md has ∗ -homomorphism dilation due to the fact that such a map is always
completely bounded. In fact, since every such a map has a generalized Choi-Kraus representation
ϕ(X) = ∑L

k=1 AkXB∗
k , it automatically induces a ∗ -homomorphism dilation by the representa-

tion matrix system {Ak,Bk} , which we call it the generalized Choi-Kraus dilation for a linear
map, and the Choi-Kraus dilation when Ak = Bk for a completely positive (CP) map. The pur-
pose of this paper is to examine the connections between the generalized Choi-Kraus dilations
with other well-established dilations including the universal dilation. We prove that any linearly
minimal ∗ -homomorphism dilation is equivalent to a linearly minimal generalized Choi-Kraus
dilation, and present a necessary and sufficient condition for the equivalence of two linearly min-
imal generalized Choi-Kraus dilations. While all the linearly minimal Choi-Kraus dilations for a
CP map are unitarily equivalent, the linearly minimal generalized Choi-Kraus dilations, even for
a CP map, are not necessarily equivalent. In fact, a linear map admits only one equivalent class
of linearly minimal generalized Choi-Kraus dilations if and only if its generalized Choi matrix
has full rank.
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