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Abstract. By the generalized Stinespring’s dilation theorem, every linear map between two ma-
trix algebras Mn and Md has ∗ -homomorphism dilation due to the fact that such a map is always
completely bounded. In fact, since every such a map has a generalized Choi-Kraus representation
ϕ(X) = ∑L

k=1 AkXB∗
k , it automatically induces a ∗ -homomorphism dilation by the representa-

tion matrix system {Ak,Bk} , which we call it the generalized Choi-Kraus dilation for a linear
map, and the Choi-Kraus dilation when Ak = Bk for a completely positive (CP) map. The pur-
pose of this paper is to examine the connections between the generalized Choi-Kraus dilations
with other well-established dilations including the universal dilation. We prove that any linearly
minimal ∗ -homomorphism dilation is equivalent to a linearly minimal generalized Choi-Kraus
dilation, and present a necessary and sufficient condition for the equivalence of two linearly min-
imal generalized Choi-Kraus dilations. While all the linearly minimal Choi-Kraus dilations for a
CP map are unitarily equivalent, the linearly minimal generalized Choi-Kraus dilations, even for
a CP map, are not necessarily equivalent. In fact, a linear map admits only one equivalent class
of linearly minimal generalized Choi-Kraus dilations if and only if its generalized Choi matrix
has full rank.

1. Introduction

Dilation theory [1, 13, 14] is a paradigm for studying operators by exhibiting an
operator as a compression of another operators which is well behaved in some sense,
which boosts the study of classes of operators not only on Hilbert spaces but also
Banach spaces [5]. While the finite dimensional approach to dilation theory or spe-
cial representations of linear maps on vector spaces [6, 9] provides insights into the
concrete property of maps, for example dilation dimension, positivity (including com-
pletely positivity [2], k -positivity [7, 16]), entanglement detection of quantum states
[17], or preservation of separability of states [8] etc. Exploring the limits of the finite
dimensional approach may enlighten us to develop the techniques for dilation theory of
operators in infinite dimensional spaces. A typical example is quantum channel (com-
pletely positive and trace preserving map, CPTP) in infinite dimensional Hilbert spaces
[19] and interpolations of some special quantum channels [10].
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Recently for operator-valued measures [5, 11], Ramsey et al. [18] studied the
measurable operator-valued functions with respect to an operator-valued measure and
Han et al.[5] developed the theory about projection-valued dilations for operator-valued
measures or more generally bounded homomorphism dilations for bounded linear maps
on Banach algebras. Moreover, to better understand the underlying algebraic structure
of the dilation theory, in [6], they also explored a pure algebraic version of the dilation
theory for a linear system which is a triple (ϕ ,A ,V ) such that ϕ is a linear map from
a unital algebra A to the space of all linear maps from vector space V to V , i.e., L(V ) .
In this paper, we turn to a class of concrete maps: linear maps between matrix algebras.

One of the well-known dilation theorems is due to Stinespring [21] and asserts that
a completely positive map φ from C∗ -algebras A into B(H ) (the linear bounded
operators on the Hilbert space H ) admits a ∗ -homomorphisms π into B(K ) for
some other Hilbert space K , that is, there exists a bounded operator V : H → K
such that for any a ∈ A , φ(a) = V ∗π(a)V , which we call the Stinespring dilation of
ϕ . Applying the above result to the completely bounded maps leads to Wittstock’s
decomposition theorem [22, 23, 14] : Let ϕ : A → B(H ) be a completely bounded
map. Then there exists a Hilbert space K and bounded operators V1,V2 : H → K
such that ϕ(a) = V ∗

1 π(a)V2 for all a ∈ A . This is also refereed to as the generalized
Stinespring’s dilation theorem [14, 15]. Due to Roger smith [20], any bounded linear
map from a C∗ -algebras into Mn(C) is completely bounded. So all linear maps from
the matrix algebra Mn(C) to Md(C) are completely bounded hence every such a linear
map has a ∗ -homomorphism dilation.

In this paper we examine all the dilations of linear maps between two matrix al-
gebras in connection with their generalized Choi-Kraus representations. In [2] Choi
introduced the Choi-Kraus representations for completely positive maps on complex
matrices, which has played an essential role in operator algebra [14] and has a wide
range of applications in mathematical physics, such as quantum measurement theory
[4], quantum information theory [12]. Following the same argument, every linear map
between matrix algebras has a generalized Choi-Kraus representation that naturally in-
duces a ∗ -homomorphism dilation, and we will call it the generalized Choi-Kraus di-
lations. Moreover, the non-uniqueness of generalized Choi-Kraus representations leads
to the diversity of those dilations. In this paper we establish some classification results
among these dilations as well as some other known dilations. We show that any linearly
minimal ∗ -homomorphism dilation of a linear map between matrix algebras is equiva-
lent to one of its linearly minimal generalized Choi-Kraus dilations. This allows us to
focus only on generalized Choi-Kraus dilations. We derive a condition under which a
generalized Choi-Kraus representation induces a principle dilation. By comparing with
the universal dilation and the principle dilation, we classify generalized Choi-Kraus
dilations in terms of the invariant subspaces of their associated matrix representation
systems. For a completely positive map, all the linearly minimal Choi-Kraus dilations
are unitarily equivalent. However, the generalized ones are not necessarily equivalent.
We prove that all the linearly minimal generalized Choi-Kraus dilations of a linear map
are equivalent if and only its generalized Choi matrix has the full rank. Moreover, the
number of the inequivalent classes of linearly minimal dilations will only be 1, 2, ∞ .
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2. Preliminary

Let C be the complex number field. We use the following standard notations.

• Vectors v ∈ Cn will be treated as column vectors v =

(α1

...
αn

)
and its adjoint gives

a row vector v∗ :=
(
α1, · · · ,αn

)
, and v( j) = α j is the j -th entry of the vector v .

We use {ei}n
i=1 for the standard basis of Cn , still considered as column vectors.

• Mn,m(C) — the n×m complex matrices, abbreviated as Mn,m (Mn = Mn,n(C)) .
M+

n — the set of positive semidefinite matrices, and we write X � 0 if X ∈ M+
n .

Ei, j — the standard matrix units. In — the identity matrix in Mn and A(i, j) —
the (i, j)-entry of a matrix A .

• L(Mn,Md) — the set of all linear maps from Mn to Md and CP(Mn,Md) — the
set of all completely positive maps from Mn to Md .

• kerA — the kernel of the matrix A . ImA — the image space of A . Rank(A) —
the rank of A . A∗— the adjoint of matrix A , AT — the transpose of matrix A .

• A⊗B — tensor product of the matrices A and B . Suppose A = (ai, j) , for con-
venience, we set A⊗B in block form by⎛⎜⎝a1,1B · · · a1,nB

...
. . .

...
an,1B · · · an,nB

⎞⎟⎠
which is also referred as the Kronecker product of A and B .

Note that we actually follow the physicists’ convention to take inner products to
be linear in the second variable and conjugate linear in first. Besides, we can also write
|v〉 := v and 〈w| := w∗ , then v∗w = 〈v | w〉 and vw∗ =: |v〉〈w|.

DEFINITION 2.1. A linear map ϕ : Mn → Md is positive if

ϕ(X) � 0, whenever X � 0.

For any ϕ ∈ L(Mn,Md),k ∈ N , its k -th ampliation ϕk : Mk(Mn) → Mk(Md) is defined
by

ϕk

((
Xi, j
))

=
(

ϕ(Xi, j)
)
, 1 � i, j � k.

ϕ is said to be a completely positive (CP, for short) map if its k -th ampliation is positive
for all k ∈ N .

To characterize completely positive linear maps on complex matrices, Choi [2]
defines the Choi matrix

(
φ(Ei, j)

)
of φ ∈CP(Mn,Md) . Similarly, we define the gener-

alized Choi matrix Gϕ of ϕ ∈ L(Mn,Md) by

Gϕ = (ϕ(Ei, j)) ∈ Mn(Md).
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If we write Gϕ as ∑m
i=1 viw∗

i , where for 1� i �m , vi =

⎛⎝α i
1

...
α i

n

⎞⎠ , wi =

⎛⎝β i
1

...
β i

n

⎞⎠∈Cnd , and

α i
j,β i

j ∈Cd ,1 � j � n. Let Ai =
[
α i

1,
... , · · · ,

... , α i
n

]
d,n and Bi :=

[
β i

1,
... , · · · ,

... , β i
n

]
d,n ,

then it can be verified that

ϕ(X) =
m

∑
i=1

AiXB∗
i , (1)

which is called a generalized Choi-Kraus representation of ϕ [15], where {Ai,B∗
i }m

i=1
is called the Kraus matrix pairs.

Conversely, if ϕ(X) = ∑m
i=1 AiXB∗

i for some Ai :=
[
α i

1,
... , · · · ,

... , α i
n

]
d,n and

Bi :=
[
β i

1,
... , · · · ,

... , β i
n

]
d,n , and set vi =

⎛⎝α i
1

...
α i

n

⎞⎠ , wi =

⎛⎝β i
1

...
β i

n

⎞⎠ ∈ Cnd , then Gϕ =

∑m
i=1 viw∗

i . In particular, if we define

Aϕ =
m

∑
i=1

vie
∗
i , Bϕ =

m

∑
i=1

wie
∗
i , (2)

then
Gϕ = AϕB∗

ϕ . (3)

Similar to Choi rank Cr(φ) of φ ∈CP(Mn,Md) to ϕ ∈ L(Mn,Md) , the generalized
Choi rank of ϕ is given by

Gr(ϕ) := min
{

k : ϕ(X) =
k

∑
i=1

AiXB∗
i

}
and we have

Gr(ϕ) = Rank(Gϕ ). (4)

Of course, these concepts coincide when the linear maps are completely positive
maps.

Now we recall the dilation theory on general linear systems in [6]. A linear system
is a triple (ϕ ,A ,V ) such that ϕ is a linear map from a unital algebra A to L(V ) ,
where V is a vector space and L(V ) denotes the space of all linear maps from V to V.

DEFINITION 2.2. A homomorphism dilation system of a linear system (ϕ ,A ,V )
is a unital homomorphism π from A to L(W ) for some vector space W such that
there exist an injective linear map T : V →W and a surjective linear map S : W → V
such that for all a ∈ A , the following diagram commutes:

W
π(a) �� W

S .
��

V

T

��

ϕ(a) �� V
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That is
ϕ(a) = Sπ(a)T, ∀ a ∈ A .

We will use (π ,S,T,W ) to denote this homomorphismdilation system (also called
dilation for short). For our convenience, we call S as the synthesis operator, T as the
analysis operator, W as the dilation space.

For a given linear system, there are already two special ways to construct dilations:
the canonical dilation and the universal dilation. While the canonical dilation was ini-
tially introduced in [5, Section 4.1] for dilation for operator-valued measure and finally
named together with the universal dilation as the main tools to investigate the structural
properties of dilations for linear systems [6]. Here we list the universal dilation for later
use.

The universal dilation: Let Wu = A ⊗V . For ∑i ciai⊗xi ∈Wu where {ci}⊂C,{ai}⊂
A ,{xi} ⊂V , define

πu : A → L(Wu), πu(b)
(
∑
i

ciai ⊗ xi

)
= ∑

i
ci(bai)⊗ xi, ∀ b ∈ A .

Tu : V →Wu, Tux = 1⊗ x, ∀ x ∈V.

Su : Wu →V, Su

(
∑
i

ciai ⊗ xi

)
= ∑

i
ciϕ(ai)xi.

It can be checked that all the maps are well-defined and πu is a homomorphism and

Suπu(a)Tux = ϕ(a)x, ∀a ∈ A ,x ∈V.

Thus, (πu,Su,Tu,Wu) is a homomorphism dilation system and we call it the universal
dilation of (ϕ ,A ,V ).

While for ϕ ∈ L(Mn,Md) , suppose its generalized Choi-Kraus representation is
ϕ(X) = ∑m

i=1 AiXB∗
i where Ai,Bi ∈ Md,n,1 � i � m . Define π : Mn → Mmn, and A,B :

Cmn → Cd by

A = (A1, · · · ,Am) , π1(X) =

⎛⎜⎝X · · · 0
...

. . .
...

0 · · · X

⎞⎟⎠= Im ⊗X , B = (B1, · · · ,Bm) .

It is easy to verify that π is a unital ∗ -homomorphism and for all X ∈ Mn,x ∈ Cd ,

Aπ(X)B∗x =
m

∑
i=1

AiXB∗
i x = ϕ(X)x.

If ϕ ∈CP(Mn,Md) with the Choi-Kraus representation ϕ(X) = ∑m
i=1 AiXA∗

i . De-
fine π : Mn → Mmn, and A : Cmn → Cd by

A = (A1, · · · ,Am) , π(X) =

⎛⎜⎝X · · · 0
...

. . .
...

0 · · · X

⎞⎟⎠= Im⊗X .

Then π is also a unital ∗ -homomorphism and ϕ(X) = Aπ(X)A∗ for all X ∈ Mn.
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DEFINITION 2.3. For ϕ ∈ L(Mn,Md) , the above constructed dilation (π ,A,B∗,
Cmn) is called the generalized Choi-Kraus dilation induced by ϕ(X) = ∑m

i=1 AiXB∗
i .

For ϕ ∈ CP(Mn,Md) , (π ,A,A∗,Cmn) is called the Choi-Kraus dilation of ϕ induced
by ϕ(X) = ∑m

i=1 AiXA∗
i .

REMARK 1. (i) A CP map can have a generalizedChoi-Kraus representation ϕ(X)
= ∑m

i=1 AiXB∗
i , where Ai ’s are not necessarily the same as Bi ’s. In this case the induced

generalized Choi-Kraus dilation could be quite different (inequivalent) from the Choi-
Kraus dilation induced by ϕ(X) = ∑m

i=1CiXC∗
i (see Proposition 3.8 or Example 3.12).

(ii) There is a simple question concerning the generalized Choi-Kraus dilation
(π ,A,B∗,Cmn) for ϕ is whether span{π(X)B∗x,X ∈ Mn,x ∈ Cd} is Cmn . It is in
general not true (see Corollary 3.5). While, given a homomorphism dilation system
(π ,S,T,W) of a linear system (ϕ ,A ,V ) , we choose the dilation space as the subspace

π(A )TV = span{π(a)Tx : a ∈ A ,x ∈ X}
so that the restriction of π to π(A )TV still defines a homomorphism.

Besides, if kerS contains a nonzero π -invariant subspace K , then we define W̃ =
W/K , and let S̃ : W̃ →V, T̃ : V → W̃ and π̃ : A → L(W̃ ) be the induced linear maps.
Then we have

S̃π̃(a)T̃ (x) = ϕ(a)x,∀a ∈ A ,x ∈V.

Thus (π̃ , S̃, T̃ ,W̃ ) is a homomorphism dilation of (ϕ ,A ,V ) and we call it the reduced
homomorphism dilation of (π ,S,T,W) with respect to K.

Thus, we give the following definition.

DEFINITION 2.4. A homomorphism dilation system (π ,S,T,W) of a linear sys-
tem (ϕ ,A ,V ) is called reducible if kerS contains a nonzero π -invariant subspace,
otherwise it is called irreducible. The space π(A )TV is called the linearly minimal
dilation space whose dimension is called the dilation dimension. And we call the dila-
tion is linearly minimal if W = π(A )TV . It is called a principle dilation if it is both
linearly minimal and irreducible.

Clearly, given a dilation (π ,S,T,W) , we replace W with the subspace π(A )TV ,
then (π ,S,T,π(A )TV ) is also a dilation of (ϕ ,A ,V ) , which is a linearly minimal
one. In what follows we mainly focus on linearly minimal dilations. In particular,
the universal dilation is a linearly minimal dilation with the largest dilation dimension
dim(A )dim(V ) .

Han et al. [6] established several results to better understand the structural proper-
ties of all linearly minimal dilations, we list some here for later reference.

DEFINITION 2.5. For a linear system (ϕ ,A ,V ) , we say two linearly minimal
homomorphism dilation systems (π1,S1,T1,W1) , (π2,S2,T2,W2) are equivalent if there
exists a bijective linear map R : W1 →W2 such that

RT1 = T2, S2R = S1, π1(a) = R−1π2(a)R, ∀a ∈ A .

Moreover, if R is a unitary, we call two dilations are unitarily equivalent.
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THEOREM 2.6. All the principle homomorphism dilation systems for a linear sys-
tem are equivalent.

Any linearly minimal dilation is equivalent to a reduced dilation of its universal
dilation. To be more precise, we have

THEOREM 2.7. Let (π1,S1,T1,W1) be a linearly minimal homomorphism dila-
tion system and (πu,Su, Tu,Wu) be the universal dilation system for a linear system
(ϕ ,A ,V ) . Then (π1,S1,T1,W1) is equivalent to a reduced homomorphism dilation
system of (πu,Su,Tu,Wu) with respect to

K =
{

w = ∑
i

ciai⊗ xi ∈Wu : ∑
i

ciπ1(ai)T1xi = 0
}
,

which is called the reduced subspace associated with (π1,S1,T1,W1) .
Moreover, two linearly minimal homomorphism dilation systems are equivalent if

and only if the corresponding reduced subspaces are the same.

The above theorem indicates that the reduced subspace determines an equivalent
class of linearly minimal dilations, thus we can give a classification of all linearly min-
imal dilations based on the reduced subspaces.

Note that the above results are about homomorphism dilation systems of linear
systems, when we consider the ∗ -homomorphismdilations of the linear maps on matrix
algebras, those theorems remain valid in our setting.

3. Generalized Choi-Kraus dilations

The first result tells us that it is enough to work with linearly minimal generalized
Choi-Kraus dilations.

THEOREM 3.1. For ϕ ∈ L(Mn,Md) , any linearly minimal ∗ -homomorphism di-
lation of ϕ is equivalent to a linearly minimal generalized Choi-Kraus dilation.

Proof. Suppose (π ,S,T,W1) is a linearly minimal ∗ -homomorphism. Then the
reduced subspace associated with it is

K =
{

w = ∑
i

ciai⊗ xi ∈Wu : ∑
i

ciπ(ai)Txi = 0
}
.

By Theorem 2.7, it remains to show that there is a linearly minimal generalized Choi-
Kraus dilation such that the corresponding reduced subspace is K as well.

We first recall the universal dilation of ϕ ∈ L(Mn,Md) , as a special linear system
(ϕ ,Mn,C

d) , the dilation space is Wu = Mn ⊗Cd , in the light of the one-to-one corre-
spondence between Wu and Cn2d . That is, here we choose Cn2d as the dilation space
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of the universal dilation. Then the maps Tu : Cd →Wu,πu : Mn → L(Wu) are realized
concretely as Tu : Cd → Cn2d , πu : Mn → Mn2d and formulated by

Tu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1,1

...
E1,d
E2,1

...

...
En,d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, πu(X) =

⎛⎜⎝X · · · 0
...

. . .
...

0 · · · X

⎞⎟⎠= Ind ⊗X , ∀ X ∈ Mn. (5)

Write Gϕ =
(
ϕ(Ei, j)

)
= ∑nd

i=1 vie∗i , where vi =

⎛⎝α i
1

...
α i

n

⎞⎠ ∈ Cnd and α i
j ∈ Cd ,1 �

j � n and {ei}nd
i=1 is the standard basis of Cnd . Define Vi =

(
α i

1, · · · ,α i
n

) ∈ Md,n . Then
Su = (V1, · · · ,Vnd) .

Represent K ⊂Wu = Cn2d = Cnd ⊗Cn , for arbitrary w ∈ K as ∑n
i=1 wi⊗ei , where

{wi}n
1=i ⊂ Cnd and {ei}n

1=i is standard basis of Cn . Since K is πu -invariant subspace
in kerSu , that is, for all X ∈ Mn , πu(X)w ∈ K ⊂ kerSu , it follows that

πu(Ei, j)w ∈ K ⊂ kerSu,1 � i, j � n.

On the one hand, fix j , for 1 � i � n , as

πu(Ei, j)w = (Ind ⊗Ei, j)w = wj ⊗ ei,

then deriving the condition {wj ⊗ ei}n
i=1 ⊂ kerSu implies that wj ∈ kerGϕ . On the

other hand, for each i , for 1 � j � n , π(Ei, j)w ∈ K , that is, {wj ⊗ ei}n
j=1 ⊂ K. Thus

we conclude form those properties that K = M⊗Cn , where M is a subspace of kerGϕ .

We construct a matrix D such that kerD = M , a slight of variation of Douglas’
Factorization Theorem in [3], there exists C such that CD = Gϕ , as we can write
C = ∑m

i=1 vie∗i ,D = ∑m
i=1 eiw∗

i for some m , where {ei}m
i=1 is the standard basis of Cm

and {vi,wi}m
i=1 ⊂ Cnd . Besides, we can rearrange vectors {vi,wi}m

i=1 into the Kraus
matrix pairs {Ai,Bi}m

i=1 ⊂ Md,n such that ϕ(X) = ∑m
i=1 AiXB∗

i . Then we can show
(by the following Corollary 3.6 which does not depend on this theorem) that the re-
duced subspace associated with the linearly minimal dilation (π ,A,B∗,W2) induced by
ϕ(X) = ∑m

i=1 AiXB∗
i is K as well. Therefore, (π ,S,T,W1) is equivalent to the linearly

minimal generalized Choi-Kraus dilation (π ,A,B∗,W2) . �

PROPOSITION 3.2. Let ϕ ∈ L(Mn,Md) with Gr(ϕ) = r . Then the generalized
Choi-Kraus dilation (π ,A,B∗,Cnr) of ϕ induced by its generalized Choi-Kraus repre-
sentation ϕ(X) = ∑r

i=1 AiXB∗
i is a principle dilation.
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Proof. By definition, the generalized Choi-Kraus dilation (π ,A,B∗,Cnr) of ϕ is
given by

A = (A1, · · · ,Ar), B = (B1, · · · ,Br), π(X) =

⎛⎜⎝X · · · 0
...

. . .
...

0 · · · X

⎞⎟⎠= Ir ⊗X ,∀ X ∈ Mn.

We first show it is irreducible, namely, kerA does not contain any nontrivial π -
invariant subspaces. Suppose K is π -invariant subspace in kerA , meaning that if v ∈
K , then π(X)v ∈ K ⊂ kerA for all X ∈ Mn. Note that K ⊂W ⊂ Cnr , we set

v =

⎛⎜⎜⎜⎝
α1

α2
...

αr

⎞⎟⎟⎟⎠ ∈ Cnr where αi =

⎛⎜⎜⎜⎝
αi(1)
αi(2)

...
αi(n)

⎞⎟⎟⎟⎠ ∈ Cn.

We first choose E1,1 , then π1(E1,1)v ∈ K ⊂ kerA and thus

Aπ1(E1,1)v = (A1, · · · ,Ar)

⎛⎜⎝E1,1α1
...

E1,1αr

⎞⎟⎠= 0 (zero vector).

That is,

α1(1)

⎛⎜⎝A1(1,1)
...

A1(d,1)

⎞⎟⎠+ α2(1)

⎛⎜⎝A2(1,1)
...

A2(d,1)

⎞⎟⎠+ · · ·+ αr(1)

⎛⎜⎝Ar(1,1)
...

Ar(d,1)

⎞⎟⎠= 0 (zero vector).

Continuing this way, namely, we take {Ei,1}n
i=2 and arrange the conditions {π1(Ei,1)v}n

i=1
⊂ kerA into

α1(1)A1 + α2(1)A2 + · · ·+ αr(1)Ar = 0 (zero matrix).

As Gr(ϕ)= r and ϕ(X)= ∑r
i=1 AiXB∗

i , then we claim {Ai}r
i=1 is linearly indepen-

dent, otherwise, we can recombine the Kraus matrix pairs {Ai,B∗
i }r

i=1 into {Ci,D∗
i }k

i=1
where k < r , which contradicts the minimality of the generalized Choi rank. Conse-
quently,

α1(1) = α2(1) = · · · = αr(1) = 0.

For each 2 � j � n , we repeat the above argument, that is, we take E1, j,E2, j, · · · ,En, j

such that π(Ei, j)v ∈ kerA for all 1 � i � n . Then it follows that

α1( j)A1 + α2( j)A2 + · · ·+ αr( j)Ar = 0 (zero matrix).

Similarly, by the linear independence of {Ai}r
i=1 , we get α1( j) = α2( j) = · · ·= αr( j) =

0. To summarise,
αi( j) = 0, 1 � i � r, 1 � j � n.
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that is, v = 0, meaning {0} is the only π -invariant subspace in kerA .
Next, suppose W is the linearly minimal dilation space, that is, W = span{π(X)B∗x :

X ∈ Mn,x ∈ Cd} . Note that

∑
k

ckπ(Xk)B∗xk =

⎛⎜⎝∑k ckXkB∗
1xk

...
∑k ckXkB∗

mxk

⎞⎟⎠

=

⎛⎝ B∗
1(1,1)In ··· B∗

1(1,d)In B∗
1(2,1)In ··· ··· B∗

1(n,d)In
... ···

...
... ··· ···

...
B∗

m(1,1)In ··· B∗
m(1,d)In B∗

m(2,1)In ··· ··· B∗
m(n,d)In

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑k ckXkE1,1xk

...
∑k ckXkE1,dxk

∑k ckXkE2,1xk

...

...
∑k ckXkEn,dxk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(6)

Using the notations defined in Equation (2) and Equation (5), we have,

∑
k

ckπ(Xk)B∗xk = (B∗
ϕ ⊗ In)

(
∑
k

ckπu(Xk)Tuxk

)
= (B∗

ϕ ⊗ In)
(
∑
k

ckXk ⊗ xk
)
.

Hence
W = (B∗

ϕ ⊗ In)(Wu) = (B∗
ϕ ⊗ In)(Cn2d). (7)

That is, the linearly minimal dilation space of dilation (π ,A,B∗,Cnr) is Im(B∗
ϕ ⊗ In) .

A similar argument gives that {Bi}r
i=1 is linearly independent, and thus Rank(B∗

ϕ)
= r . Therefore dimW = Rank(B∗

ϕ ⊗ In) = nr . Moreover, since W ⊂ Cnr , it follows
that W = Cnr . Therefore we have proved that (π ,A,B,Cnr) is irreducible and linearly
minimal hence is a principle dilation. �

REMARK 2. With the notations as above, if ϕ(X)= ∑r
i=1ViXW ∗

i is another gener-
alized Choi-Kraus representation of ϕ , then, by Theorem 2.6, (π ,V,W ∗,Cnr) induced
by ϕ(X) = ∑r

i=1ViXW∗
i is equivalent to (π ,A,B∗,Cnr) . Moreover, the reduced sub-

space associated with (π ,A,B∗,Cnr) is

K =

{
∑
k

ckXk ⊗ xk ∈Wu : ∑
k

ckπ(Xk)B∗xk = 0

}
.

By the above argument, it follows that K = ker(B∗
ϕ ⊗ In) . A direct application of the

Sylvester Theorem in matrix theory [24], which states that for P∈Mm,n,Q ∈Mn,l , then

Rank(PQ) = Rank(Q)−dim(ImQ∩kerP),

it gives that if Rank(PQ) = Rank(Q) , then kerPQ = kerQ . As Rank(B∗
ϕ) = r =

Gr(ϕ) = Rank(Gϕ ) , we have the reduced subspace

K = ker(B∗
ϕ ⊗ In) = ker(Aϕ ⊗ In)(B∗

ϕ ⊗ In) = ker(Gϕ ⊗ In).
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Meanwhile, by the fact that in the finite dimensional case, if a linearly minimal homo-
morphism dilation system is equivalent to a principle dilation, then it’s also a principle
dilation by Corollary 3.2 in [6]. Thus by Theorem 2.6 and 2.7, a generalized Choi-Kraus
dilation of ϕ ∈ L(Mn,Md) is a principle dilation if and only if the reduced subspace is
ker(Gϕ ⊗ In).

From Theorem 2.7, we know that any linearly minimal dilation is equivalent to
a reduced dilation of the universal dilation. Meanwhile any linearly minimal dilation
can be reduced to a principle dilation with respect to a maximal invariant subspace
by [6]. Next, we quantify the relation between the generalized Choi-Kraus dilation
with the universal dilation defined in Equation (5) and the principle dilation shown in
Proposition 3.2.

THEOREM 3.3. Let ϕ ∈ L(Mn,Md) with Gr(ϕ) = r . Let (πu,Su,Tu,C
n2d) be

the universal dilation, (π1,A,B∗,Cnr) be the principle dilation induced by ϕ(X) =
∑r

i=1 AiXB∗
i and (π2,E,F∗, Im(F∗

ϕ ⊗ In)) be a linearly minimal generalized Choi-Kraus
dilation induced by ϕ(X) = ∑m

i=1 EiXF∗
i . Then

(1) (π2,E,F∗, Im(F∗
ϕ ⊗In)) is equivalent to the reduced dilation of (πu,Su,Tu,C

n2d)
with respect to K1 = ker(F∗

ϕ ⊗ In) .
(2) (π1,A,B∗,Cnr) is equivalent to the reduced dilation of (π2,E,F∗, Im(F∗

ϕ ⊗ In))
with respect to K2 = ker(Eϕ ⊗ I)

⋂
Im(F∗

ϕ ⊗ In) .

Proof. Similar to the Equation (6), we have

∑
k

ckπ2(Xk)F∗xk = (F∗
ϕ ⊗ In)

(
∑
k

ckπu(Xk)Tuxk

)
= (F∗

ϕ ⊗ In)
(
∑
k

ckXk ⊗ xk

)
.

Then the reduced subspace K1 = {∑k ckXk ⊗ xk ∈ Wu : ∑k ckπ2(Xk)F∗xk = 0} can be
simplified as ker(F∗

ϕ ⊗ In). Thus if we define the following induced map

F̃∗
ϕ ⊗ In : Cn2d/K1 → Im(F∗

ϕ ⊗ In),
[
∑
k

ckXk ⊗ xk

]
�→ ∑

k

ckπ2(Xk)F∗xk,

then it is easy to verify that F̃∗
ϕ ⊗ In is a well-defined bijection from the quotient space

Cn2d/K1 into Im(F∗
ϕ ⊗ In) and

F̃∗
ϕ ⊗ InT̃u = F, π2(X)F̃∗

ϕ ⊗ In = F̃∗
ϕ ⊗ Inπ̃u(X),∀X ∈ Mn,

where S̃u, T̃u and π̃u(X) are corresponding induced maps. Then it follows from EF̃∗
ϕ ⊗ In

= S̃u that (π2,E,F∗, Im(F∗
ϕ ⊗In)) is equivalent to the reduced dilation of (πu,Su,Tu,C

n2d)
with respect to K1 = ker(F∗

ϕ ⊗ In) .
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Next, if we take w∈ ker(Eϕ ⊗I)
⋂

Im(F∗
ϕ ⊗In) represented by w= ∑k ckπ(Xk)F∗xk ,

then

Ew = E
(
∑
k

ckπ(Xk)F∗xk

)
=
(
E1, · · · ,Em

)⎛⎜⎜⎝
∑k ckXkF

∗
1 xk

...

...
∑k ckXkF

∗
mxk

⎞⎟⎟⎠

=
(
E1,1, · · · ,Ed,1,E2,1, · · · , · · ·Ed,n

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1(1,1)In ··· Em(1,1)In
...

...
...

E1(d,1)In ··· Em(d,1)In
E1(1,2)In ··· Em(1,2)In

...
...

...
...

...
...

E1(d,n)In ··· Em(d,n)In

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
∑k ckXkF

∗
1 xk

...

...
∑k ckXkF

∗
mxk

⎞⎟⎟⎠

=
(
E1,1, · · · ,Ed,1,E1,2, · · · , · · · ,Ed,n

)
(Eϕ ⊗ In)w = 0

and
(Eϕ ⊗ In)π2(X)w = (Eϕ ⊗ In)(Im ⊗X)w = (Ind ⊗X)(Eϕ ⊗ In)w.

Thus K2 = ker(Eϕ ⊗ I)
⋂

Im(F∗
ϕ ⊗ In) is a π -invariant subspace in kerE . By Equation

(2) and the minimality of number of the Kraus matrix pairs {Ai,B∗
i } , an easy compu-

tation shows that kerB∗
ϕ = kerGϕ . Meanwhile Gϕ = EϕF∗

ϕ . Thus kerF∗
ϕ ⊂ kerGϕ =

kerB∗
ϕ . Due to the fact that

(kerT )⊥ = Im(T ∗), ∀ T ∈ Mi, j,

where ⊥ denotes the orthogonal complement, we have Im(Bϕ) ⊂ Im(Fϕ) . Then by
Douglas’ Factorization Theorem [3], there exists V ∈ Mm,r such that Bϕ = FϕV . Write
V as

(
vi, j
)
, by the correspondence between the Kraus matrix pairs and the decomposi-

tion of the generalized Choi matrix. We have

B∗
i =

m

∑
j=1

v j,iF
∗
j ,∀1 � i � r.

Setting R = V ∗ ⊗ In : Im(F∗
ϕ ⊗ In) → Cnr we get

R
(
∑ckπ2(Xk)F∗xk

)
=
(
∑ckπ1(Xk)B∗xk

)
.

It is easy to verify that K2 = kerR . Define the quotient map R by

R : Im(F∗
ϕ ⊗ In)/K2 → Cnr,

[
∑ckπ2(Xk)F∗xk

]
�→ ∑ckπ1(Xk)B∗xk.

Then we can check that R is a well-defined bijection, moreover

R π2(X) = π1(X) R, R F∗ = B, AR = E, ∀X ∈ Mn,
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where E,F∗,π2(X) are corresponding induced maps. Thus the principle dilation (π1,
A,B∗,Cnr) is equivalent to the reduced dilation of (π2,E,F∗, Im(F∗

ϕ ⊗ In)) with respect
to K2 = ker(Eϕ ⊗ I)

⋂
Im(F∗

ϕ ⊗ In) . �
With the same notations as above, if Rank(F∗

ϕ ) = nd , then it follows that K1 =
{0} . If Rank(F∗

ϕ )= r , as Gr(ϕ)= r = Rank(Gϕ )= Rank(EϕF∗
ϕ ) , then by the Sylvester

Theorem [24] again we have kerEϕ ∩ ImF∗
ϕ = {0} , and thus K2 = {0} . Consequently,

we have the following:

COROLLARY 3.4. Let ϕ ∈ L(Mn,Md) with Gr(ϕ) = r . If (π ,E,F∗, Im(F∗
ϕ ⊗ In))

is the linearly minimal generalized Choi-Kraus dilation induced by ϕ(X)= ∑m
i=1 EiXF∗

i .
Then

(1) If Rank(F∗
ϕ ) = nd , then (π ,E,F∗, Im(F∗

ϕ ⊗ In)) is equivalent to the universal
dilation.

(2) If Rank(F∗
ϕ ) = r , then (π ,E,F∗, Im(F∗

ϕ ⊗ In)) is a principle dilation.

Suppose (π ,A,B,Cnm) is the generalized Choi-Kraus dilation induced by ϕ(X) =
∑m

i=1 AiXB∗
i . As the linearly minimal dilation space is Im(B∗

ϕ ⊗ In) . We have the fol-
lowing corollary.

COROLLARY 3.5. Let ϕ ∈ L(Mn,Md) with generalized Choi-Kraus representa-
tion ϕ(X) = ∑m

i=1 AiXB∗
i . If RankBϕ = m, then (π ,A,B,Cmn) is a linearly minimal

dilation.

By Theorem 2.7, two linearly minimal dilations are equivalent if and only if the
reduced spaces associated with them are same. Thus by Theorem 3.3 we get

COROLLARY 3.6. For ϕ ∈ L(Mn,Md) with ϕ(X) = ∑m
i=1 AiXB∗

i = ∑n
j=1 EjXF∗

j .
Then the linearly minimal generalized Choi-Kraus dilations (π1,A,B∗, Im(B∗

ϕ ⊗ In))
and (π2,E,F∗, Im(F∗

ϕ ⊗ In)) induced by its representations respectively are equivalent
if and only if kerB∗

ϕ = kerF∗
ϕ .

For a CP map, all the Choi-Kraus dilations are Stinespring dilations. By Theo-
rem 3.3, the reduced subspace associated with a linearly minimal Choi-Kraus dilation
(π ,A,A∗, Im(A∗

ϕ ⊗ In)) induced by ϕ(X) = ∑m
i=1 AiXA∗

i is ker(A∗
ϕ ⊗ In) , as a notable

fact about a linear equation system is that kerT = kerT ∗T , it follows that the reduced
space is ker(Cϕ ⊗ In) because of AϕA∗

ϕ = Cϕ , by the previous Remark 2, meaning all
the linearly minimal Choi-Kraus dilations are principle dilations hence are equivalent.
The following shows that they are actually also unitarily equivalent.

PROPOSITION 3.7. For φ ∈ CP(Mn,Md) , all the linearly minimal Choi-Kraus
dilations of φ are unitarily equivalent.

Proof. Suppose Cr(ϕ) = r and ϕ(X) = ∑r
i=1 AiXA∗

i = ∑m
j=1 BjXB∗

j are two Choi-
Kraus representations of ϕ . (π1,A,A∗,Cnr) and (π2,B,B∗,Cnm) are Choi-Kraus dila-
tions induced by ϕ(X)= ∑r

i=1 AiXA∗
i = ∑m

j=1 BjXB∗
j , respectively. Then by Proposition
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3.2, (π1,A,A∗,Cnr) is a principle dilation. And (π2,B,B∗, Im(B∗
ϕ ⊗ In)) is a linearly

minimal Choi-Kraus dilation.
Due to Choi [2, 4], there exists a unique matrix U = (ui, j)∈Mm,r such that U∗U =

Ir,Bi = ∑r
j=1 ui, jA j . Define U =

(
ui, j
)⊗ In : Cnr → Cnm , then it can be checked that

B∗ = U A∗,BU = A and π2(X)U = U π1(X) . Meanwhile, for any ∑k ckπ(Xk)A∗xk ∈
Cnr where k ∈ N,{ck} ⊂ C,{Xk} ⊂ Mn,{xk} ⊂ Cd , we have

U
(
∑
k

ckπ1(Xk)A∗xk

)
= ∑

k

ckπ2(Xk)B∗xk.

Furthermore, as U ∗U = Inr and U : Cnr → Im(B∗
ϕ ⊗ In) is a surjective isometry, we

get that U is unitary. Hence (π1,A,A∗,Cnr) and (π2,B,B∗, Im(B∗
ϕ ⊗ In)) are unitarily

equivalent. By the transitivity of equivalence, we have all the linearly minimal Choi-
Kraus dilations are unitarily equivalent. �

For ϕ ∈ L(Mn,Md) with Gr(ϕ) = r , a basis fact about the dimension k of the
linearly minimal dilation space of a generalized Choi-Kraus dilation of ϕ is nm where
r � m � nd . This leads to some natural questions. For example, (i) Under what condi-
tion is there only one (two, three, · · · ) equivalent class of linearly minimal generalized
Choi-Kraus dilations? (ii) Clearly equivalent linearly minimal dilations have the same
dilation dimension. Is the converse is also true? For question (i) we have

PROPOSITION 3.8. Let ϕ ∈ L(Mn,Md) with Gr(ϕ) = r .

• There is only one equivalent class of linearly minimal generalized Choi-Kraus
dilations for ϕ if and only if r = nd .

• There are two equivalent classes of linearly minimal generalized Choi-Kraus di-
lations for ϕ if and only if r = nd−1 .

• There are infinite many equivalent classes of linearly minimal generalized Choi-
Kraus dilations for ϕ if and only if r � nd−2 .

Proof. For ϕ ∈ L(Mn,Md) , by Theorem 3.3, the reduced subspace associated with
the linearly minimal generalized Choi-Kraus dilation (π ,A,B∗, Im(B∗

ϕ ⊗ In)) induced
by ϕ(X) = ∑m

i=1 AiXB∗
i is ker(B∗

ϕ ⊗ In) , that is, kerB∗
ϕ ⊗Cn . While the reduced sub-

space associated with any principle generalized Choi-Kraus dilation is ker(Gϕ ⊗ In) ,
which can be verified to be the largest reduced subspace, then

ker(B∗
ϕ ⊗ In) ⊂ ker(Gϕ ⊗ In) = kerGϕ ⊗Cn.

Thus kerB∗
ϕ ⊂ kerGϕ . Moreover, by Theorem 2.7, each reduced subspace determines

an equivalent class of linearly minimal dilations, then the classification of all linearly
minimal generalized Choi-Kraus dilations of ϕ can be reduced to the structure of the
linear subspaces of kerGϕ . Thus we have

• There is only one equivalent class of linearly minimal generalized Choi-Kraus di-
lations if and only if kerGϕ has only one linear subspace if and only if kerGϕ =
{0} , that is, dimkerGϕ = 0.
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• There are two equivalent classes of linearly minimal generalized Choi-Kraus di-
lations if and only if kerGϕ has only two different linear subspaces if and only
if dimkerGϕ = 1.

• There are infinite equivalent classes of linearly minimal generalized Choi-Kraus
dilations if and only if kerGϕ has infinite different linear subspaces if and only
if dimkerGϕ � 2.

As seen in Equation (4), Rank(Gϕ ) = Gr(ϕ) and dimkerGϕ +dimIm(Gϕ) = nd ,
that is,

dimkerGϕ = nd−Gr(ϕ).

Thus those statements are a direct consequence of the above characterizations. �
We first give an example with full rank.

EXAMPLE 3.9. Let ϕ : Mn → Mn be the transpose map, i.e. ϕ(X) = XT ,∀X ∈
Mn . One of the generalized Choi-Kraus representations is ϕ(X) = ∑1�i, j�n Ei, jXEi, j .
Define

π(X) =

⎛⎜⎝X · · · 0
...

. . .
...

0 · · · X

⎞⎟⎠= In2 ⊗X , ∀ X ∈ Mn

and

A = (E1,1, · · · ,E1,n,E2,1, · · · , · · · ,En,n), B = (E1,1, · · · ,En,1,E1,2, · · · , · · · ,En,n).

Then (π ,A,B∗,Cn3
) is a linearly minimal generalized Choi-Kraus dilation. It can be

checked that (π ,A,B∗,Cn3
) is a universal dilation as well as a principle dilation, by

Theorem 2.7, the largest reduced subspace is {0} . Thus any linearly minimal gen-
eralized Choi-Kraus dilation is equivalent to the universal dilation. This also follows
from Proposition 3.8 since its generalized Choi matrix Gϕ =

(
ϕ(Ei, j)

)
=
(
Ej,i
)

is a
unitary and hence has full rank. Therefore all the linearly minimal dilations of ϕ are
equivalent. �

Here is an example with exactly two equivalent classes of linearly minimal gener-
alized Choi-Kraus dilations.

EXAMPLE 3.10. Let ϕ : M2 → M2 be defined by

ϕ
((

a1,1 a1,2

a2,1 a2,2

))
=
(

a1,1 +a2,2 0
0 −a1,1

)
.

We can decompose the generalized Choi-matrix Gϕ into the sum of rank one matrices
and rearrange them into Kraus matrix pairs. Define

π1(X) =

⎛⎝X 0 0
0 X 0
0 0 X

⎞⎠= I3⊗X , ∀ X ∈ M2
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and

A =
(

1 0 0 0 0 1
0 0 −1 0 0 0

)
, B =

(
1 0 0 0 0 1
0 0 1 0 0 0

)
.

Then (π1,A,B∗,C6) is a principle generalized Choi-Kraus dilation. And the universal
dilation πu : M2 → M8 is given by

πu(X) =

⎛⎜⎝X · · · 0
...

. . .
...

0 · · · X

⎞⎟⎠= I4⊗X , ∀ X ∈ M2

with

Su =
(

1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 0

)
, Tu =

(
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

)T

.

Clearly, (π1,A,B∗,C6) is not equivalent to (πu,Su,Tu,C
8) . Moreover, it can be

verified that {0} and ker(Gϕ ⊗ I2) are the only two reduced subspaces and hence
there are only two equivalent classes of linearly minimal generalized Choi-Kraus di-
lations. �

The next example shows that there are infinitely many inequivalent classes of lin-
early minimal dilations even with the same dilation dimension. This answers question
(ii) negatively.

EXAMPLE 3.11. Let A =
(

1 2
3 4

)
. Define ϕ ∈ L(M2,M2) by ϕ(X) = A◦X , ∀X ∈

M2 , where A ◦B denotes the Hadamard (entrywise) product of A and B (also called
Schur product). Specifically,

ϕ
((

a1,1 a1,2

a2,1 a2,2

))
=
(

1 ·a1,1 2 ·a1,2

3 ·a2,1 4 ·a2,2

)
.

Set

A =
(

1 0 2 0
0 3 0 4

)
, B =

(
1 0 0 0
0 0 0 1

)
, π1(X) =

(
X 0
0 X

)
, ∀X ∈ M2.

Then (π1,A,B∗,C4) is a principle dilation.
Define

πu(X) =

⎛⎜⎜⎝
X 0 0 0
0 X 0 0
0 0 X 0
0 0 0 X

⎞⎟⎟⎠ , ∀X ∈ M2

with

Su =
(

1 0 0 0 0 0 2 0
0 3 0 0 0 0 0 4

)
, Tu =

(
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

)T

.

Then (πu,Su,Tu,C
8) is the universal dilation.



GENERALIZED CHOI-KRAUS DILATIONS 1235

Besides, if we define

π3(X) =

⎛⎝X 0 0
0 X 0
0 0 X

⎞⎠ , ∀X ∈ M2

with

C =
(

1 0 1 0 −2 0
0 3 0 1 0 −4

)
, Dλ =

(
1 λ 0 λ 0 λ

1−λ 0 1−λ 0 1−λ −1

)
,

then (π3,C,D∗
λ ,C6) is a linearly minimal generalized Choi-Kraus dilation.

Let

Rλ =

⎛⎝I2 (1−λ )I2 λ I2 0
0 (1−λ )I2 λ I2 0
0 (1−λ )I2 λ I2 −I2

⎞⎠ .

The reduced subspace associated with (π3,C,D∗
λ ,C6) is the kerRλ . Taking λ1 �= λ2 ,

clearly kerRλ1
�= kerRλ2

. Then (π3,C,D∗
λ1

,C6) and (π3,C,D∗
λ2

,C6) are not equiva-
lent. In summary, there are infinitely many inequivalent classes of 6-dimensional dila-
tions. �

Although none of the above three examples is completely positive. It is also a triv-
ial exercise to construct similar examples for quantum channels (i.e., trace-preserving
CP maps). Here is a one that admits infinitely many equivalent classes of linearly min-
imal generalized Choi-Kraus dilations.

EXAMPLE 3.12. Let φ ∈CP(M2,M2) be

φ
((

a1,1 a1,2

a2,1 a2,2

))
=
(

a1,1 0
0 a2,2

)
.

Define

A =
(

1 0 0 0
0 0 0 1

)
, π1(X) =

(
X 0
0 X

)
, ∀X ∈ M2

and

B =
1√
2

(
1 0 1 0
0 1 0 −1

)
, π2(X) =

(
X 0
0 X

)
, ∀X ∈ M2.

Then (π1,A,A∗,C4) and (π2,B,B∗,C4) are linearly minimal Choi-Kraus dilations hence
unitarily equivalent.

The universal dilation (πu,Su,Tu,C
8) is given by

πu(X) =

⎛⎜⎝X · · · 0
...

. . .
...

0 · · · X

⎞⎟⎠= I4⊗X , ∀ X ∈ M2

with

Su =
(

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

)
, Tu =

(
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

)T

.
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Besides, if we set

π(X) =

⎛⎝X 0 0
0 X 0
0 0 X

⎞⎠= I3⊗X , ∀ X ∈ M2.

As the generalized Choi matrix (ϕ(Ei, j)) has the following decomposition.⎛⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎠=

⎛⎜⎜⎝
3
5

4
5 0

0 0 0
0 0 0
0 0 1

⎞⎟⎟⎠
⎛⎜⎝ 3

5
4(1−α)

5
4α
5 0

4
5

−3(1−α)
5

−3α
5 0

0 0 0 1

⎞⎟⎠ ,

thus we can arrange those matrices into the following maps

E =
(

3
5 0 4

5 0 0 0
0 0 0 0 0 1

)
, Fα =

( 3
5

4α
5

4
5 − 3α

5 0 0
4(1−α)

5 0 − 3(1−α)
5 0 0 1

)
,

then it follows that (π ,E,F∗
α ,C6) is a linearly minimal generalized Choi-Kraus dilation.

By Corollary 3.6, if α1 �= α2 , then (π ,E,F∗
α1

,C6) and (π ,E,F∗
α2

,C6) are not
equivalent. Thus there are infinitely many equivalent classes of linearly minimal gen-
eralized Choi-Kraus dilations. �
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