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APPROXIMATE EQUIVALENCE IN VON NEUMANN ALGEBRAS

QIHUI L1, DON HADWIN AND WENJING LIU

(Communicated by I. Klep)

Abstract. Suppose A is a separable unital ASH C*-algebra, M is a sigma-finite II.. factor
von Neumann algebra, and 7,p : A — M are unital *-homomorphisms such that, for every
a € A, the range projections of 7 (a) and p (a) are Murray von Neuman equivalent in M. We
prove that = and p are approximately unitarily equivalent modulo /Ca,, where C 4 is the
norm closed ideal generated by the finite projections in M. We also prove a very general result
concerning approximate equivalence in arbitrary finite von Neumann algebras.

1. Introduction

In 1977 D. Voiculescu [15] proved a remarkable theorem concerning approximate
(unitary) equivalence for representations of a separable unital C*-algebra on a separable
Hilbert space. The beauty of the theorem is that the characterization was in purely
algebraic terms. This was made explicit in the reformulation of Voiculescu’s theorem
[7] in terms of rank.

THEOREM 1. [15] Suppose B(H) is the set of operators on a separable Hilbert
space H and K (H) is the ideal of compact operators. Suppose A is a separable
unital C*-algebra, and m,p : A — B(H) are unital x-homomorphisms. The following
are equivalent:

1. There is a sequence {U,} of unitary operators in B(H) such that

(a) Uy (a)U;—p(a) € K(H) for every n € N and every a € A.
(b) ||Upm (a)U; —p (a)|| — O forevery a € A.

2. There is a sequence {U,} of unitary operators in B(H) such that, for every
ac A,
|Une (@) Uy —p (a)]| — 0.
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3. Forevery ac€ A,
rank (m (a)) = rank (p (a)) .
4. kerm = kerp, and n|span’””(U{rann(a):n(a)elC(H)}) is unitarily equivalent to
p|.\'pun’””(U{mnp(a):p(a)G}C(H)})‘

If #: A— B(H) is a unital *-homomorphism, we will write = ~, p in B(H)
to mean that statement (2) in the preceding theorem holds and we will write 7 ~, p
(K(H)) in B(H) to indicate statements (1) and (2) hold. When the C*-algebra .4
is not separable, m ~, p means that there is a net of unitaries {U, } such that, for
every a € A, ||{Uyr(a)U; —p (a)H — 0. It was shown in [7] that & ~, p if and only
if rank (7 (a)) = rank(p (a)) always holds even when A or H is not separable, where,
for T € B(H), rank(T) is the Hilbert-space dimension of the projection 2R (7') onto
the closure of the range of 7.

Later Huiru Ding and the second author [4] extended the notion of rank to opera-
tors in a von Neumann algebra M, i.e., if T € M, then M -rank (T') is the Murray von
Neumann equivalence class of the projection 93 (T) onto the closure of the range of T .
If p and g are projections in a C*-algebra VW, we say that p and ¢ are Murray-von
Neumann equivalent in WV, written p ~ g, if there is a partial isometry v € VV such that
vy = p and w* = ¢q. Thus M-rank (T) = M-rank (S) if and only if R (S) ~ R (T).
In [4] they extended Voiculescu’s theorem for representations of a separable AH C*-
algebra into a von Neumann algebra on a separable Hilbert space, i.e., T ~, p in M if
and only if, for every a € A,

Me-rank (7 (a)) = M-rank (p (a)).

When the algebra A is ASH, their characterization works when the von Neumann
algebra is a II; factor [4]. (See Theorem 4.) In [2] A. Ciuperca, T. Giordano, P. W.
Ng, and Z. Niu found a limit for the results in [4]. We say that two representations
r,p : A — M are weak*-approximately equivalent if and only if, there are nets {U, }
and {V; } of unitary operators in M such that, for every a € A,

weak*-limU; 7 (a) Uj = p (a) and weak*-limV; p (a) V) =7 (a).

They proved that a separable unital C*-algebra A is nuclear if and only if, for every von
Neumann algebra M, and all representations 7,p : A — M, we have that for all a €
A, M-rank (7 (a)) = M-rank (p (a)), implies that & and p are weak*-approximately
equivalent.

Therefore the central questions in this subject are:

QUESTION 1. Are the results in [4] true whenever A is nuclear?

Another important question involves the analogue of part 1 (a) of Theorem 1 holds
when M is a semifinite and /C(H) is replaced with the norm closed ideal K¢ gener-
ated by the finite projections in M.

QUESTION 2. If m,p : A — M are approximately equivalent representations
from a separable unital C*-algebra A into a semifinite von Neumann algebra M acting
on a separable Hilbert space, does there exist a sequence {U,} of unitary operators in
M such that



APPROXIMATE EQUIVALENCE 3

1. limy e || U7 (a) U, — p (a)|| = 0 for every a € A, and
2. Uyn(a)U; —p(a) € Kaq forevery n € N and every a € A?

If these two conditions hold, we write 7 ~, p (Kaq).

When A is abelian the second author and Rui Shi [9] proved that Question 2 has
an affirmative answer when M is a sigma-finite /1. factor. This was extended to the
case of AF C*-algebras by Shilin Wen, Junsheng Fang and Rui Shi [5], and to the case
when A is an AH C*-algebra, and by Junhao Shen and Rui Shi [14].

In this paper we show (Theorem 5) that Question 1 has an affirmative answer when
M is a finite von Neumann algebra and A is satisfies the property that, for every finite
subset F' of A and every € > 0, there is a type I von Neumann algebra /3 contained
in the second dual A" such that, for every x € F,

dist(x,B) < €.

If this happens we say that A is approximately type I in A* . This class of C*-algebras
contains the ASH algebras and algebras that are direct limits of GCR C*-algebras.
For these theorems there are no assumptions on A being separable or M acting on a
separable Hilbert space. We say that A is approximately finite type I in A** if the type
I algebra 3 can always be chosen to be a finite type / von Neumann algebra. It is clear
that this latter property implies that A is strongly quasidiagonal. We do not know if
this property is equivalent to strong quasidiagonality.

In [7] the second author extended Voiculescu’s theorem (Theorem 1) in another
way:

THEOREM 2. [7] Suppose A is a separable unital C*-algebra, H is a separable
Hilbert space, and m,p : A — B(H) are unital representations. The following are
equivalent:

1. Forevery a€ A,
rankr (a) < rank (p (a))

2. There is a representation ¢ such that

preTdo.

An analogue of this result was proved in [9] when M is a II; factor and A is
abelian. This result was further extended to the case when 4 is AF by Shilin Wen,
Junsheng Fang and Rui Shi [5]. We extend this result to the case when there is an
LF C*-algebra D such that A C D C A*™. This class of algebras includes the ASH
C*-algebras.

The proof of Voiculescu’s theorem (Theorem 1) have two parts.

The “easy part” involves the compact operators. Suppose .4 is a separable unital
C*-algebra and 7 : A — B((?) is a unital *-homomorphism. Then sup{R(7(a)) :
n(a) € K(£?)} reduces 7 and leads to a decomposition

T = Tycy) DT
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The “easy part” says that if 7 ~, p, then i) and py(;) must be unitarily equivalent.
Using descriptions of C*-algebras of compact operators and their representations (see
[1]), and it is not too hard to show that the equality of rank conditions imply that 7y (g
and pi (g are unitarily equivalent. When B(H) is replaced with a sigma-finite type
II, factor von Neumann algebra M and K (H) is replaced with the closed ideal &y
generated by the finite projections, the hard part is harder (and unsolved) and the easy
part is not true. For example, if M is the set of all bounded operator matrices (A4;;)
with each A;; in the free group factor Ly, C B(¢*(F»)), and U,V are the unitary
generators of L, , then A = diag(U,0,0,...) and B= diag(V,0,0,...) arein K and
are approximately equivalent, but not unitarily equivalent. If A =C*(A), n(A)=A
and p (A) = B, then w ~, p in M, but mc,, and pi,, are not unitarily equivalent in
M. However, mx,, and px,, are approximately equivalent. So the analogue of the
“easy” part must look something like

TC]CM NaPICM (ICM)

In Theorem 7 we prove that this holds in a very general setting when A is a separable
unital ASH algebra. One of our main results (Theorem 8) gives an affirmative answer to
both Questions 1 and 2 when A is a separable ASH C*-algebra and M is a semifinite
von Neumann algebra acting on a separable Hilbert space.

The “hard” part of the proof of Voiculescu’s theorem is showing that if A C B (62)
is a separable unital C*-algebra, 7: 4 — B (62) is a unital *-homomorphism such that
K (£?)nACkerrm, then

idpA DT ~gidy (’C(fz)),

where id 4 denotes the identity representation on A.
In a deep and beautiful paper [12], Qihui Li, Junhao Shen, and Rui Shi proved the
best-to-date version of the “hard” part.

THEOREM 3. [12] Suppose A is a separable nuclear C*-algebra, M is a sigma-
finite type 1l factor von Neumann algebra and K pq is the closed ideal generated by
the finite projections in M. If .0 : A — M are unital *-homomorphisms such that

' (Kam) Ckerp,

then
Tr~gTBO (ICM)

2. Finite von Neumann algebras

A separable C*-algebrais AF if it is a direct limit of finite-dimensional C*-algebras.
A separable C*-algebra is homogeneous if it is a finite direct sum of algebras of the
form M, (C (X)), where X is a compact Hausdorff space. A unital C*-algebra A is
subhomogeneous if there is an n € N, such that every irreducible representation is on
a Hilbert space of dimension at most n; equivalently, if x* = 0 for every nilpotent
x € A. Every subhomogeneous algebra is a subalgebra of a homogeneous one. Every
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subhomogeneous von Neumann algebra is homogeneous; in particular, if 4 is subho-
mogeneous, then A g homogeneous, i.e., A" is a finite direct sum of algebras of
the form M, (L (X,Z,u)) with (X,Z, 1) a measure space. A C*-algebra is approxi-
mately subhomogeneous (ASH) if it is a direct limit of subhomogeneous C*algebras.
A C*-algebra A is GCR (Type 1) if for every irreducible representation 7 : A — B (H)
we have K (H) C m(A). Thus every subhomogeneous C*-algebra is GCR and every
ASH C#*-algebra is a direct limit of GCR C*-algebras. It was proved by Glimm [6]
that a C*-algebra .4 is GCR if and only if, for every representation 7 : A — B(H),
n(A)” is a type I von Neumann algebra. This is equivalent to saying .A* is a type I
von Neumann algebra.

There has been a lot of work determining which separable C*-algebras are AF-
embeddable. A (possibly nonseparable) C*-algebra B is LF if, for every finite subset
F C B and every € > 0 there is a finite-dimensional C*-algebra D of B such that, for
every b € F, dist(b,D) < €. Every separable unital C*-subalgebra of a LF C*-algebra
is contained in a separable AF subalgebra [3]. A C*-algebra A is AL if, for every finite
subset F C A and every € > 0, there is a finite-dimensional C*-subalgebra D of A
such that, for every x € F, dist(b,D) < €. We say that a unital C*-subalgebra B of a
unital C*-algebra & is relatively LF in £ if and only if, for every finite subset F' C BB
and every € > 0 there is a finite-dimensional C*-algebra D of £ such that, for every
beF,dist(b,D) <e.

We are interested in the property that a C*-algebra A is relatively LF in A%
If A is subhomogeneous, then A* is a finite direct sum of algebras of the form
M, (L= (Q,%, 1)) with (Q,%,u) a measure space. If {Ej,...,E;} is a measurable
partition of Q, then the set of matrices of the form (f;;) with each f;; in the linear span
of {¥g,,---,xE,} is an sn*-dimensional C*-subalgebra of M, (L= (Q,Z,u)). Since
the set of n x n matrices of simple functions is dense in M, (L (Q,Z, 1)), we see that
M, (L~ (2,2, 1)) is LE If A is ASH, then there is a sequence {.A,} of subhomoge-
neous C*-subalgebras of A such that

Ay C Ay C o and A= (UpenAy) I

It follows that A C (UneNAﬁ#)_HH C A* and (UyenAn) I is LE. Thus every subho-
mogeneous C*-algebra is relatively LF in its second dual.

For LF C*-algebras we can prove an approximate equivalence theorem for repre-
sentation into an arbitrary unital C*-algebra.

LEMMA 1. Suppose B is a unital LF C*-algebra and D = M, (C)&--- &
M, (C) and W is a unital C*-algebra.

1. If m,p : D — W are unital *-homomorphisms and 7 (ey; ) ~ p (e11s) for 1 <
s < k, where {eim} is the system of matrix units for M,,_(C), then © and p are
unitarily equivalent in WV .

2. If m,p : B— W are unital x-homomorphisms such that m(p) ~ p (p) in W for
every projection p € B, then @ ~,p in V.
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Proof. (1) Since ejis ~ e11s in D for 1 <i<ns and 1 <5 <k, we see that
7 (eiis) ~ p (eiis) in W for 1 <i<ngand 1 <s < k. It follows from [4, Theorem 2]
that w and p are unitarily equivalent in W .

(2) Suppose A is the set of all pairs A = (Fy,¢;) with F), a finite subset of B
and g, > 0. Clearly A is directed by (C,>). For A € A, we can choose a finite-
dimensional algebra D, C B such that, for every x € Fy, dist(x,D; ) < g, . It follows
from part (1) that there is a unitary operator U, € W such that, for every x € D, ,
Ur(x)U* = p (x). For each a € F; , we can choose x, € D, such that ||a —x,|| < &, .
Hence, for every a € F),

U (a) Uy —p (a)|| = ||Ur7t (a—x4) Uy — p (a —x4)|| < 2€5.
It follows that, for every a € A,

liQILnHU;Ln(a) Uj—p(a)]|=0. O

A key property of a finite von Neumann algebra M is that there is a faithful
normal tracial conditional expectation @, from M to its center Z (M), and that for
projections p and ¢ in M, we have p and ¢ are Murray-von Neumann equivalent if
and only if @ (p) = DPaq(q). (See [11].) The map Do, is called the center-valued
trace on M. Note that in the next lemma and the theorem that follows, there is no
separability assumption on the C*-algebra A or the dimension of the Hilbert space on
which M acts. This lemma appears in [2] and [8].

LEMMA 2. Suppose A is a (possibly nonunital) C*-algebra, M is a finite von
Neumann algebra. If m,p : A — M are x-homomorphisms, the following are equiva-
lent:

1. Forevery ac A,
M-rank (rt (a)) = M-rank(p (a)),

2. @Mon:d)Mop.

Proof. (1) = (2). We can extend 7 and p to weak*-weak* continuous *-homo-
morphisms 7, p : A% — M. Suppose x € A and 0 < x < 1. Suppose 0 < o < 1 and
define fy :[0,1] — [0,1] by

f(r) =dist(z,]0,0]).

Since f(0) =0, we see that f(x) € A, and (¢ 1) (x) = Weak*-limnﬁmf(x)l/n € A,
so

R(f (X)) = X1 (%)
It follows that
7 (K(et) (%) = R (7 (for (%)) = X(a1) (7 (x))
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and
P (X)) =R(p (fou (%)) = K1) (P (%)) -
Hence
Dt (7 (X(01] () = Pt (B (X1 (%)) -
Suppose 0 < o < B < 1. Since (48] = X(a,1] — X(B,1)» We see that
Pt (7 (X (¥))) = Poa (P (X(ap) (%)) -

Thus, forall n € N,

A n—lk . n_lk
Dy (n (2 —X(k kb1 (x))) =,y (P (2 —X(k kil (x)>> .
k—ln n’on k_ln nron

Since, for every n € N,

it follows that

P (7 (x)) = P (7 (x)) = Pt (P (x)) = P (p (x)) -

Since A is the linear span of its positive contractions, ®jomr =D 0p.
(2) = (1). This is contained in [4]. O

THEOREM 4. Suppose A is relatively LF in A% and M is a finite von Neumann
algebra. If m,p : A — M are unital *-homomorphisms, then the following are equiv-
alent:

1. W~y p in M.
2. M-rank(m(a)) = M-rank(p (a)) for every a € A.

3. q)MoTL'ZGDMop.

Proof. (3) = (1). We can extend 7 and p to weak*-weak™ continuous *-homo-
morphisms #,p : A" — M. Since @ is weak*-weak* continuous, it follows that
q)M ot = q)M o [3 .

Let

A={(F,e): F C A,F is finite, £ > 0},

ordered by the relation (C,>). Suppose A = (F,€) € A. Since A is relatively LF in
A# there is a finite-dimensional algebra B C A* such that, for every x € F,

dist(x,B) < €.
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Thus, for each x € F there is a b, € B such that
|lx—by]| < €/2.

We know from Lemma 1 that 7|z and p|z are unitarily equivalent in M. Hence, there
is a unitary U, € M such that, for every b € B,

Ui (B)U, = p (b).
Thus, for every x € F,
[U; 7 () Up = p (0)|| < [|U; 7 (x = D) Up || + (1B (bx = x)[| < &.
Hence, for every x € A

li)anHU,{n(x) U, —p (x)||=0.

Thus T~ p (M).
(1) = (3). Suppose {U, } is a net of unitaries in M such that, for every a € A,

|Urm(a) Uy —p (a)|| — 0.
Thus, since @, is tracial and continuous,
®p(p(a)) :11/{11c1>M (Upm(a)U}) = @pq (7 (a)).

(3) = (2). Assume (3). Then, for any a € A,

D (R (7 (a))) = lim D rq (n ((aa*)l/">> — lim @y (p ((aa*)l/">>

n—oo n—so0

=0p (R(7(a))).
Hence R (7 (a)) ~ R (p (a)). Thus M-rank (x (a)) = M-rank(p (a)).
(2) = (3). Thisis Lemma 2. O

REMARK 1. Itis important to note that the proof of (2) = (3) in Theorem 4 holds
even when A is not unital.

Here is our main theorem of this section.

THEOREM 5. Suppose A is a unital C*-algebra that is approximately type I in
A* M is a finite von Neumann algebra, and mt,p : A — M are unital *-homomor-
phisms such that

(M-rank) o = (M-rank)op.

Then w~,p in M.
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Proof. Let ®pq : M — Z (M) be the center-valued trace on M. Let #,p :
A# — M be the weak * -continuous extensions of 7 and p. Then @07t =D 0P,
or

(M-rank) o & = (M-rank) o p.
In particular, ker#& = kerp is a weak*-closed ideal in A so there is a projection
Q € Z (A™) such that
kerft = kerp = (1 — Q) A™.

Thus #,p : QA" — M is an embedding. Since Q.A™ is isomorphic to a subalgebra
of M, we know that Q.4* is a finite von Neumann algebra and a summand of 4% .
Suppose A is a type I von Neumann subalgebra of A" . Then QN is a type I von
Neumann subalgebra of QA* . Since Q.A™ is finite, QN is a finite type I von Neu-

mann algebra. Thus there is an orthogonal sequence {e,} of projections in the center
of QN whose sum is Q such that

QN = ZkeeN ekQN

and each ¢;QN is a type I; von Neumann algebra and is isomorphic to My (L (i)
acting on

L2 ()™ =L (m) @ - & L ()

for some measure space (Xi,%, ). Clearly, etQN = My (L™ (1)) is an AL C*-
algebra. Since 7 (Q) = p (Q) = 1, it follows that

1= f(en) = plen).

neN neN

Since, for each n € N, (M-rank) o 7 (e,) = (M-rank) o p (e¢,) we see that the projec-
tions 7 (e,) and P (e,) are unitarily equivalent in M. Thus there is a unitary operator
U € M such that, for every n € N,

Ut (en) U™ = p (en)-
By replacing w with Uz (-) U*, we can assume, for every n € N, that
7t (en) = P (€n) -
We now have 7., onPle,on : €nON — 7t (e,) M7 (e,). Since e,0ON is AL and
7t (en) M7 (ey) is a finite von Neumann algebra, it follows from Theorem 4 that 7, on

and pl.,on are approximately equivalent in 7 (e,) M7 (e,) for each n € N. Since
Rlon,Plon : ON =35 7 (en) M7 (e,) and

A D A A D N
lon = ey Bleson and Plon =D, Plesons

we easily see that £|ga- and P are approximately equivalentin M. Since Z[(;_g)nr
=P-gw =0, we see that #|\" and p|x are approximately equivalent in M.
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Let A={(F,e): F C Ais finite, € > 0} directed by the partial order (C,>). Sup-
pose A = (F,&) € A. Since A approximately type I in A*™ we know that there is a
type I von Neumann subalgebra N of A** such that, forevery T € F,

dist(T,N) < g/2.

Thus, for each T € F, there is an x7 € N such that ||T —xr|| < €/37.

Thus |7 (x7) — 7 (T)|| < €/37 and ||p (xr) —p (T)|| < €/37 whenever T € F.
Since {x7: T € F} is finite and Z|N and p|,r are approximately equivalent in M,
there is a unitary U; € M such that

UL (xr) Uy — p (x7)|| < €/37
forevery T € F. Thus
|z (1) U3~ p (T)|
< ||ULR (er) Uy = p (o) || + IUL R (T —xr) U¥|| 4 [|p (T —x1) || < €
Thus, forevery T € A,

li)ILnHU;Ln(T) Uy —p(T)||=0.

Hence 7 and p are approximately equivalentin M. [

In [7] it was shown that if A is a separable unital C*-algebra and 7 and p are
representations on a separable Hilbert space such that, for every x € A

rankr (x) < rankp (x),
then there is a representation ¢ such that
TDO ~gp.

In [9], Rui Shi and the first author proved an analogue for representations of separable
abelian C*-algebras into //; factor von Neumann algebras. This result was extended
by Shilin Wen, Junsheng Fang and Rui Shi [5] to separable AF C*-algebras. We extend
this result further, including separable ASH C*-algebras.

THEOREM 6. Suppose A is a separable C*-algebra and there is an LF C*-algebra
D such that A C D C A*™. Suppose also that M is a Il factor von Neumann al-
gebra with a faithful normal tracial state T. Suppose P is a projection in M and
7:A— PMP and p : A — M are unital x-homomorphisms such that, for every
ac A,
M-rank(m (a)) < M-rank(p (a)).

Then there is a unital -homomorphism & : A — P~ MP* such that

TE@GNaP (M)
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Proof. As in the proof of Theorem 4 choose a separable AF C*-algebra B such
that A C B C D, and extend 7 and p to unital weak*-weak* continuous *-homomor-
phisms 7 and p with domain A**. Tt was shown in [4] that the condition on 7 and
p is equivalent to: for every a € M with 0 < a, t(7(a)) < 7(p (a)). It follows from
weak* continuity that, for every a € A" with 0 <a, (& (a)) < t(p (a)). In particular
this holds for 0 < a € B. However, since B is AF, it follows from [5] that there is a
unital *-homomorphism y: B — P+ AP such that

(7lB) &Y ~apla (M).
Ifwelet 6 =7v|a,wesee T® O ~,p (M). O

3. Representations of ASH algebras relative to ideals

In this section we prove (Theorem 8) a version of Voiculescu’s theorem for repre-
sentations of a separable ASH C*-algebra into a semifinite von Neumann algebra acting
on a separable Hilbert space.

We first prove a more general result. If 7 is a norm closed two-sided ideal in a von
Neumann algebra M, we let 7y denote the ideal in M generated by the projections
in J . We begin with a probably well-known lemma.

LEMMA 3. Suppose J is a norm closed two-sided ideal in a von Neumann al-
gebra M and A is a C*-algebra and m,p : A — M are unital *-homomorphisms.
Then

1. J is the norm closed linear span of the set of projections in J, i.e.,
jO—HH -7,
. Jo={T € M : T = PTP for some projection P € T},

2
3. TeJoifandonlyif ¥ (IT]) =R(T) € T,
4. If P and Q are projections in Jy then PNV Q=R (P+ Q) € D,

W

ol (jo)*HH = 1),

. If {Aisi €1} is an increasingly directed family of unital C*-subalgebras of A
and A= [U,‘GIA,']_HH , then

=)

[UierAina ™ ()] R (J).

Proof. (1), (2), (3) can be found in [11].
(4). Suppose a € 71 (). Suppose € > 0 and define g : [0,00) — [0,0) by

_fr/eif0<r<e
gg(t>_{1 ifl<t -~
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Then 7 (a) € 7, so

7 (8e (la])) = ge (1w (@)]) x (e (|7 (a)]) € Do,

and
|a—age (la)|| < e.

(5). Let n: M — M /J be the quotient map. Suppose a € 7! (J) and & > 0.
Then there is an i € I and a b € A; such that |ja—b|| < €. Thus

(o (x]4,)) B)| = I(nom) )| = [[(nom) (b-a)ll <e,

so there is a w € A; so that

Iwll = [1(n o (x].4,)) W)l = [[(n e (7].4,)) (B < &

z=b—wecker(no(n|s))=n""(T)NA;,and ||b—z|| = ||w| < e. It follows from
part (2) that there is a v € 77! (J) N A; such that [|z—v|| < &. Hence [la—v| <
la—=bll+ 16—zl + [l — vI| < 3.

(6). Let n : M — M /J be the quotient map. Suppose a € 7! () and & > 0.
Then thereis an i € I and a b € A; such that |ja — b|| < €. Thus

(o (xla) ) = ll(nem) (Bl = l[(nem)(b-a)| <e&,

so there is a w € A; so that

Iwll = l[(n o (z]4) W)l = [(n o (x].4,) ()| < &

z=b—wecker(no(n|s))=n"1(T)NA;,and ||b—z|| = ||w| < e. It follows from
part (5) that there is a v € 77! (Jo) NA; such that ||z—v|| < &. Hence [la—v| <
la=bll+[lb—zll+lz—v[<3e. O

Suppose A is a unital C*-algebra, M C B(H) is a von Neumann algebra with a
norm-closed ideal 7 and 7 : A — M is a unital x-homomorphism. We define

Hyz =sp W (U{ranz (a):a € Aand 7 (a) € T}).

Itis clear that Hy 7 is areducing subspace for 7 and we call the summand 7 (-) [, , =
Ty .

The following is a fairly general version of the analogue of the “easy part” of the
proof of Voiculescu’s theorem when the C*-algebra is ASH. In particular, there is no
assumption that the von Neumann algebra M is sigma-finite (e.g., acts on a separable
Hilbert space).

THEOREM 7. Suppose A is a separable unital ASH C*-algebra, M C B(H) isa
von Neumann algebra with a norm closed two-sided ideal [J . Suppose w,p : A — M
are unital x-homomorphisms such that

1. Every projection in J is finite,
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2. M-rank(m(a)) = M-rank(p (a)) for every a € A.
Then there is a sequence {W,} of partial isometries in M such that
(3) W, W, is the projection onto Hy 7 and W,W," is the projection onto Hp 7,
(4) Wyrmg (a)W,f —pg(a) € T forevery n € N and every a € A,
(5) limy e |Wyrt7 (@)W, — p7(a)|| =0 for every a € A.

Proof. First, suppose x € A and x =x*. It follows from [4] that there is a sequence
{Uy,} of unitary operators in M such that

|Un7t (x) Uy = p ()] = 0.

It follows that 7 (x) € J if and only if p (x) € J when x = x*. However, for any
ac A, weget w(a) € J ifand only if 7 (|a|) € J. Hence 7= (J) =p~1(J). Also,
m(a) € Jp if and only if R (7w (a)) € Jo. Since R (nw(a)) and R (p (a)) are Murray
von Neumann equivalent (from (2)), we see that 7 (a) € Jy if and only if p (a) € Jo.
It follows that 7~ () NA, = p~ ! (Jo) NA, foreach n € N, and, from Lemma 3,

oo

ll il
lUn (Jo) ﬂAn] lUp (J0) mAn] = (J)=p ' (J).

Since A is an ASH algebra, we can assume that there is a sequence
AiCc A C -
of subalgebras of .4 such that U}?_, A, is norm dense in A such that, for each n € N,
A = M) (C(Xn1)) @+ My, (C (X, ))

with X, 1,...,X,, compact Hausdorff spaces.
Suppose T = (fi;) € My (C (X)) is a k x k matrix of functions. We define 7" =

diag (f,f,...,f) where f:Zf-‘?jzl |f,-j’2. If {e,-j 1<i,j < n} is the system of matrix
units for M, (C), then T = > =1 fijeij- Itis clear thatif T > 0, then R (T)<R (T'I*) .
Since fjjess = esiTejs, we have

2
’flll Css = (eSiTejS)* (eSiTejS) = esz*eisesiTejs = e;“sT*eiiTej&
Thus
R g k ’ g k .
=2 2 il es=2 X e T eiiTejs.
s=1i,j=1 s=1ij=1

Suppose A =A; & --- B A, € A, with each A; € My, ;) (C(X,;)). We define A, :
AP~ Z(AP) by
An(A):A]I‘@...@A;I;,
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Thus if A € A then A, (A) has the form

An(A) =Y BLACy,
k=1

with B,Cy,...,By,Cy € Aﬁ#
It is clear that

a. A, (A%) is contained in the center Z (Af*) of A%, and
b. If A >0, then R(A) <R (A, (A)) € Z (AF).

We call a projection Q € A good if
c. #(0),p(Q) e
d Qe [Anr " (%)
e. Forall T € QA™Q, M-rank (% (T)) = M-rank (p (T)).

—weak*

Our proof is based on four claims.

CLAIM 0. Suppose Q1,0> € A are good projections and Q1 | Q>. Then Q =
Q1 + Q> is a good projection.

Proof of Claim 0. 1t is clear that Q satisfies (¢) and (d). Let P=7(Q)Vp (Q) €
Jo. Thus P is a finite projection in M, so PMP is a finite von Neumann algebra. Let
®p : PMP — Z(PMP) be the center-valued trace. Since Q; and Q, are good, we
know from Lemma 2 that

©p o g amg, = ProPlo.amg,

for k =1,2. Since Q; L O, we know 7 (Q1) L #(Q>) and p(Q1) L p(Q2). Since
®p is tracial, we know thatif 1 <i# j<2and A € A* then

Similarly,

Thus
Op (7 (QAQ)) = Pp (7 (Q1AQ1)) + Pp (7 (22A02))

= ®p (P (Q1401)) + Pp (P (Q2402)) -

Thus, by Lemma 2, Q satisfies (¢). Hence Q is a good projection. This proves the
claim. A simple induction proof implies that the sum of a finite family of pairwise
orthogonal good projections is good. [
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CLAIM 1. If Q € A* is a good projection, then there is a good projection P €
Z (A%) such that Q < P.

Proof of Claim 1. Suppose Q € Aﬁ# is a good projection. Choose By,Cy,...,By,Cy
in A% such that

E= 2 BQCy = A (Q) € Z (AFF).
def =1

Since R (E) € Z (A#*) and E > 0, we see that
E=R(E)ER(E) = 3 [R(E) BR(E)] QN (E)GRE).

Hence we can assume, for 1 < k < m, that By,Cy € R(E) A#R(E).

Since #(Q), p(Q) € Jo, we see that #(E) and p (E) € Jy, which, in turn,
implies & (PR (E)) and p (R (E)) € Jo. Then F =7 (R (E))VP (R(E)) € Ty is a finite
projection. Thus FMF is a finite von Neumann algebra. Also, since, for 1 < k < m,
By, Cr € R(E) AR (E), we see that 7t (ByQCy),p (ByQCy) € FMEF . Let ®F be the
center-valued trace on FMF . Since Q is a good projection and in EA®¥E, we know
from Lemma 2, that for every A € AP

Or (7(QAQ)) = ®r (p (QAQ)).

Now 7, p :EA™E — FMF are x-homomorphisms, and, since @ is tracial, we see
for A € A,
®; (# (EAE)) =

=Y @ (7 (QCAB;OC;BQ)) 2 @ (p (QCAB;QOC;B,Q))

k=1 jk=1

— @ (p (EAE)).
Thus ®roft = ®rop on EA™E, and since #,p, and @ are weak* continuous, we
have ®p o & = @ op on (EAME) N — R (E) A¥R (E).

Finally, since [A,N7~! (Jo)]_weak* is a weak* closed *-algebra, and an ideal
for Aﬁ#, we see that

E=4,(0) =Y BOC € [A,nm (Fo)] ",

k=1
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so P=R(E) € [A,nm 1 (N)] "V Thus P=R(E) € 2 (A%*) is a good projec-
tion and Q < P. This proves Claim 1. [J

CLAIM 2. If Q;,0, € A are good projections, then there is a good projection
Q € Z (A such that 01,0, < Q.

Proof of Claim 2. By Claim 1 we can choose good projections P,P; € Z (Aﬁ#)
such that Q; < P, and Q, < P,. Since P, and P, commute and P, (1 —P) < Py,
PP, < P and (1—P)P, < P>, we see that {P; (1 —P,),PiP,,(1—P;) P>} is an or-
thogonal family of good projections. Thus, by Case 0,

Q:P1VP2=P1(1—P2)+P1P2+(1 —Pl)Pz

is a good projection in Z (A™) . Thus Claim 2 is proved. [J

CLAIM 3. If 0<x € A, N~ (J), then R(A, (x)) € Z (AFF) is good.

)

Proof of Claim 3. We know that (9 (x)) and p (%R (x)) are Murray von Neu-
mann equivalent and M -rank (7 (x)) and M -rank (p (x)) are equal. Since 7 (x) € Jo,
we know 7 (R (x)),p (R (x)) € Jo. Arguing as in the proof of Claim 1, we see that
F=7a(R(x))Vp(R(x)) €T and that

#.p: eAx] I = FMF

weak™*

satisfy Oppp ot = Oppqp 0[3. Thus ®Pppp ot = Pppqp ij on [X.A)C]7 =
R (x) AR (x). Thus R (x) is a good projection. This proves Claim 3. [

We can choose a countable dense set {by,by,...} of Uz (A, N7 (J)) whose
closureis 71 (7).

We now want to define a sequence 0 = Py < P; < P, < --- of good projections
such that

I Pye Z(A}) forallneN,
2. If l<k<nand b, € A,, then R(by) < P, ie.,

by = Puby.

Define Py = 0. Suppose n € N and P; has been defined for 0 < k < n. We let
Xn = Sk<nt1 hyedy; bkbi € A1 N1 (). Thus, by Claim 3, B, and R (A1 (x))
are good projections in A%, and they commute since R (A1 (xa)) € Z (A% ).
By Claim 2, there is a good projection P, € Z (.An +1) such that P, < P, and
R (Aps1 (X)) < Prs1. Clearly, if 1 <k <nand by € Ay, we have R (by) =R (bib}) <
R (xn) < Bt

Since P, is a good projection, P, € [A, N7~ ()] ekt Thus

B, <sup{R(x):xe€ A,nm! (J0)} € A
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Thus 7 (P,) < Pr, 7 (the projection onto Hy, 7) and p (P,) < P, 7 (the projection onto
Hp 7). Let P, = lim, ... P, (weak*). Thus 7 (P,) < Pz 7 and p (P.) < Pp 7. On the
other hand, for every k € N,

lim ku —Pnka =0.
n—oo

This implies
P.b=bforevery b € [n—l (j)] =l .

Thus 7 (P.) = Pr.7 and p(P.) = Pp 7. Thus Py s and P, ;7 are Murray von
Neumann equivalent.
Since P, € A), for each n € N, we have of every A € Uy, A,

lim [|AP, — P,A| = 0.
n—o0

Hence,
lim ||AP, — P,A|| =0
n—oo

holds for every A € A.
Choose a dense subset {A},A»,...} of A. Suppose and m € N. It follows that we
can choose a subsequence {P,, } of {P,} such that, forall 1 <n < oo,

2 HAnPnk _PnkAnH < oo,
k=1

and, for 1 <n < m,
> 1
k; | APy, — PoAn| < e

Define e, = P,, — P,,_, (with P,; =0) and define ¢ : 4 — Zik@x exrAe; by
(0] (T) = 2 ekTek.
k=1

It follows from [10, page 903] that the above conditions on ||A, Py, — Py, A,|| that, for
all ke N,
A=A e (T)np ()

and

1
PA,— @ (A, —.
1A~ 0 (A < -

for 1 <n<m.
Suppose k € N. For each n > ny, e Ayer C Aﬁ#, which is homogeneous. Hence
C* (exAney) is subhomogeneous. Thus C* (exAey) is ASH. If we let Ey = 7 (ex) V
p (ex) for each k € N, we have Ej is a finite projection, ExME} is a finite von Neu-
mann algebra,
P c (exAer) — ExMEy,
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and, if ®g, is the center-valued trace on ExME;, then

q)Ek © (ﬁ‘C*(ek.Aek)) = q)Ek © (ﬁ ‘C*(ek.Aek)) s

and C* (ex.Aey) is ASH, it follows from Theorem 4 that

e (exAey) ~a Plc: (e Ae) (ExMER).

Since 7 (ex) and P (ex) are projections, then by [16, Proposition 5.2.6], any unitary
that conjugates 7 (¢;) to a projection that is really close to p (ex) is close to a unitary
that conjugates 7 (ex) exactly to p (e;). We can therefore, for each k € N, choose a
unitary Uy € ExME} such that

1
Uit U —p < —
|Urt (exaner) Uy — p (exaney)|| Tom

when 1 <n <k-+m < o, and such that
Ukﬁ? (ek) U];k =p (ek) .

For each k € N, let V; = Uyft (¢x). Then V; is a partial isometry whose initial
projection is 7 (ex) = V|’V and final projection is p (ex) = Vi V. Also

. N A A 1
Vet (e6) 7 (an) 7 (e) Vie = P (ex) p (@) (e0)]| < 72—
for 1 <n<k+m<eo. Then W,, = X7, Vi is a partial isometry in M with initial
projection 7 (P,) = Py, 7 and final projection p (P,) = P, 7. Moreover,

D
Wit ((P (an)) Wny; = 2 \ 7% (ekanek) Vk*a

1<k<oo

and
@

poa))= 2, pleraner).

1<k<oo

Since Vi 7t (exaner) Vi, P (exaner) € J for each n,k € N and since

klim Vi 7t (exaner) Vi — P (exaner)|| = 0,

we see that
Wit (@ (an)) Wy, — P (@ (an)) € T

for every n € N. Also,

Wi (9 (an)) Wi — P (0 ()| < 7

for 1 <n<m.
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Also
7 (¢ (an)) —m(an) =% (@ (an) —an) €T

and

7 (@ (an)) —p(an) =p (@ (an) —an) €T

for every n € N and

1 (0 (@)~ 7 (an)| < 7 and 5 (9 (@) —p ()| < 7

for 1 <n<m.
Foreach n € N,
Wntt (an) Wy, — p (an)

= (W (2 (an) — 7 (@ (@) Wil + Wit (0 (@0)) Wy — P (0 (@,))]
+5(9(an) —p (an).

Thus, for every n € N,
Wit (an) Wy — p (an) € J.

Also, for 1 <n<m,
. 1
[Wo e (@) Wy = p (@) < —.

It follows, for every a € A, that

Wkt (@ (@)W, —p (¢ (a)) €T

and
lim [|Wm (@)W, —p (@) =0. O

REMARK 2. In two cases, namely, when Hy s = Hp 7 = H, or when 7 (-) ‘Héj

and p (-)|,. are unitarily equivalent, the conclusion in Theorem 7 becomes
pJ

T~ P (-.7)

When A is a separable ASH C*-algebra and M is a sigma-finite /I, factor von
Neumann algebra, we can use Theorems 7 and 3 to have both parts of Voiculescu’s
theorem, including an extension of results in [4]. If o is a representation of a C*-
algebra, we let o) denote BB - -.

COROLLARY 1. Suppose A is a separable ASH C*-algebra, M is a sigma-finite
type 1l factor von Neumann algebra on a Hilbert space H. Suppose m,p : A — M
are unital *-homomorphisms such that, for every a € A

M-rank(m (a)) = M-rank(p (a)).

Then w~,p (Kam).
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Proof. We can write T = 7xc ., &7 and p = pxc, D p1 . It follows from Theorem
3 that

7o T &m @ pl™ (K) and p ~a picy @77 @p1™ (Ka).
It follows from Theorem 7 that

(= () ()

Tiep @17 &7 ~a e @m” Bpl” (Ka).
Thus w~.p (Kam). O

We have now arrived at our main result concerning semifinite von Neumann alge-
bras.

THEOREM 8. Suppose M C B(H) is a semifinite von Neumann algebra, H is
separable, and A is a separable unital ASH C*-algebra. Also suppose m,p : A — M
are unital *-homomorphisms such that, for every a € A

M-rank (rt (a)) = M-rank(p (a)) .
Then m~yp (Kpm).

Proof. We can write M = F &N where F is a finite von Neumann algebra
and N has no finite direct summands, and N is a type Il. von Neumann alge-
bra. Correspondingly, we can write T = T G my and p = pr B par. It is clear
that (F-rank) o mr = (F-rank) o px and (N-rank) o myr = (N-rank) o pyr. Since

F&0C Ky and e ~, pr, by Theorem 5, there is a sequence {W,} of unitary
operators in F such that, for every a € A,

Wt (@) Wy — p (a)]| — 0.
Clearly, for every a € A and every n € N,
W,m (@)W, —p(a) € FOOC K.

Hence we can assume that M = N and 7 = 7y . From the central decomposition for
M there is a complete probability measure space (Q,X, 1) so that we can write

D
H= | (*d
R
and -
M=/Q Modpt ()

where each M, is either a type L. factor or a type /L. factor. Also there are families
{01,02,...} and {y1,yn,...} of *SOT-measurable functions from Q into the closed
unit ball B of B (£?) such that, for every o € Q,

{p1 (0), 0 (w)’m}_SOT =ball (M), and



APPROXIMATE EQUIVALENCE 21

{vi (@), y2 (@),...} 5T =ball (M),).

Let C be the set of trace class operator K € B (62) such that K >0 and Trace (K) =

1. With the trace norm ||||,, C is a complete separable metric space. Let C& =
Il ¢ with the product topology. Let B = []B with the product *-SOT

(n,j,k)eENXNxN neN
topology, let P be the set of projections in B (62) equipped with the *-SOT and let
P& = H ‘P with the product topology. Let U/ be the set of unitary operators

(n,j,k)eENxNxN
in B (¢%) with the *-SOT and let Y% = [ J¢/ with the product topology.
neN
We now let X be the set of all (U,A,B,P,K,C,D) in U x B x P& x C& x B& x
B&, with U ={U,}, A={A,}, P={Pyji}. K={Kuji}, C={Ci}, D={Dy},
such that

—

Uz AU, —Bi|| < 1/n for 1 <k <n< oo

N

| (UiAU — Bi) (1 =P, j ) || < 1/j for (n, j,k) ENxNxN,
3. Kn,j,k = Pn,j,kKn,j,kPn,j,k for (n,],k) e NxNxN,
4. UnDjZDjUn forj,nGN

5. Tr(Ky jxCsPy j kCiPj) = Tr (Ky jxCi Py 4CsPa ) for n,j,k,s,t € N.

It is not hard to show that X is closed in U x B x P& x C& x B& x B%. Thus X
is a complete separable metric space. Define

®: X — B x B* x B* x B%

by
¢((U714?B7P7K7C"D)) = (A7B7C7D) N

Then @ is continuous and it follows from [ 1, Theorem 3.4.3] that ® (X) is an absolutely
measurable set and there is an absolutely measurable function y: ® (X) — X such that
do Y= idq)(X) .

We can write 7T = [ Tpdu (@) and p = [ pwdu (@) so that, for almost every
0 EQ, Ty,Pp: A— M, and, forevery a € A,

®
7a)= [ 7o(@)du (@) andpa)= [ pola)du (o).
We know from [4, Theorem 4 (3)], that, for almost every » € Q,
M-rank (1 (a)) = Mgp-rank(pgy (a)) .

By throwing away a subset of € of measure 0, we can assume that all of the preceding
statements that were true for almost every w are now true for every m € Q.
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Let {aj,az,...} be norm dense in the closed unit ball if A. We now define a
measurable map I': Q — B® x B% x B& x B by

o) = ({wa (a")}nGN {Po (an)}neN AP (w)}nGN AVo (w)}neN) :

Suppose @ € Q. Since My, is a semifinite factor, it follows from Corollary 1 that
Ty ~ Pw (Kam,). Thus there is a sequence {W,} of unitary operators in M, such
that

(6) |Wime (ap) Wy — po (ar)|| < 1/n for 1 <k < n<eo,and
(7) Wing (ar) Wy — pow (ar) € K, forall n,k € N.

Since each W, 1 (ax) Wy, — po (ar) € Ko, , there are projections P, jx € Kaq,
such that, for n, j,k € N

| (W, 7t (@) W — P (@) (1 = P i) || < 1/m.

Since B, jx € Ka, P, jx must be a finite projection, and since My, is a semifinite
factor in B (%), P, xMaoP, ;i is a finite factor. Thus P, ;M oP, jx has a faithful
normal tracial state T, ;. Thus thereis a K, jx € C such that B, ; 1K, ; Py jx = K j i
and, for every S € P, j xMoP, j 1,

Tn,j,k(S) =Tr (Kn,j,k)

Hence,
({Wn} ’ {ﬂ:w (an)},{Pm (an)} ) {ij.,k} v{q)n (@)}»{Wn ((D)}) €X,
and thus
INw)ed(X).
Then

(yoT) (@) = ({Un (@)} {7 (an)} {Po (an)}  {Prjs (@)}, {on (@)}, {ya (©)})

is a measurable function from € to X. For n, j,k € N. Let

U, = /j Uy (0)dpt () and Py 4 = /jpn,ﬁk(w)du(m).
Then each U, is unitary in M, and each P, ; is a finite projection in M and
@) Uim(ax) Uy —p (ar)]] < 1/nfor 1 <k<n<eo,and
) |[(Uim (ax) Un—p (ax)) (1= P jx)|| < 1/j for n,jk €N.

Since {aj,az,...} is dense in the closed unit ball of A, we see that (8) and (9)
hold when a is replaced with any a € A with ||a|| < 1. It follows from (9) that, for
every a € A with |la|| < 1 that U;r (a) U, — p (a) € K. Therefore,

T p (Kam). O
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