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ON THE ABC SPECTRAL RADIUS OF CACTUS GRAPHS

ZHIBIN DU AND BO ZHOU ∗

(Communicated by Y.-T. Poon)

Abstract. Let G be a graph with vertex set V (G) . Denote by du the degree of vertex u in G .
The ABC matrix of G , proposed by Estrada, is the matrix (ABCuv)u,v∈V(G) , where ABCuv =√

du+dv−2
dudv

if u and v are adjacent, and 0 otherwise. The ABC spectral radius of G is the

largest eigenvalue of the ABC matrix of G . In this paper, we determine the unique cactus graph
with the largest ABC spectral radius among all cactus graphs with fixed order and number of
cycles, and the cactus graphs of order n with the first a few largest ABC spectral radii for n � 4 .

1. Introduction

We consider simple (connected) graphs. For a graph G , denote by V (G) the vertex
set, and E(G) the edge set of G . For u ∈V (G) , denote by dG(u) , or simply du when
only one graph is under consideration, the degree of u in G . An edge uv of G is called
a pendent edge if du = 1 or dv = 1, and a vertex v is called a pendent vertex if dv = 1.

The ABC matrix of G , put forward by Estrada [6] in a molecular context, is de-
fined to be the matrix ABC(G) = (ABCuv)u,v∈V (G) , where

ABCuv =

{√
du+dv−2

dudv
if uv ∈ E(G),

0 if uv �∈ E(G).

As pointed out in [6], for an edge uv of the graph G , the (u,v)-entry of the ABC
matrix indicates the polarizing capacity of the bond uv in a molecular context, as it
represents the probability of visiting a nearest neighbor edge from one side or the other
of a given edge in a graph. Actually, Estrada [6] provided a probabilistic interpretation
of a graph invariant called the generalized ABC index, which is a generalization of
the much studied atom-bond connectivity index [9] (abbreviated ABC index [12]) and
then introduced a matrix representation of these probabilities in the form of generalized
ABC matrices.

For a graph G , the largest eigenvalue of ABC(G) is called the ABC spectral radius
of G , denoted by ρ(G) . Although initiated in 2017, the ABC spectral radius of graphs
has already attracted much attention. The study of the ABC spectral radii of trees,
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unicyclic graphs and bicyclic graphs may be found in [4, 13, 15], respectively. More
results on the ABC spectral radius of graphs may be found in [3, 5, 6, 11, 13, 16].
We mention that Estrada [6] also studied some other graph parameters related to the
eigenvalues of the ABC matrices, such as the ABC energy and the ABC Estrada index
(see [8] and [7] for a look on the ordinary energy and Estrada index, respectively). One
may find some results on the ABC energy in [3, 11, 10].

A cactus graph is a connected graph in which any two cycles have at most one
common vertex. Let C(n) be the set of cactus graphs of order n , and C(n,k) the set
of cactus graphs of order n with k cycles, where 0 � k � � n−1

2 � . In this article, we
determine the graph in C(n,k) that uniquely maximizes the ABC spectral radius for
0 � k � � n−1

2 � , and we further determine the graphs in C(n) with the first three largest
ABC spectral radii for 4 � n � 23, and with the first four largest ABC spectral radii for
n � 24.

2. Preliminaries

For an edge subset M of a graph G , let G−M denote the graph obtained from
G by deleting the edges in M , and for an edge subset M∗ of the complement of G , let
G+M∗ denote the graph obtained from G by adding the edges in M∗ . In particular,
if M = {uv} , then we write G− uv for G−{uv} , and if M∗ = {uv} , then we write
G+uv for G+{uv} .

Note that the graphs in C(n,0) are trees, and graphs in C(n,1) are unicyclic
graphs. For n � 4, let Dn be the tree of order n with a path of length 2 and n− 3
edges attached at a common end vertex. Let Tn,1 be the tree of order n � 6 with one
path of length 3 and n− 4 edges attached at a common end vertex, and Tn,2 the tree
of order n � 6 obtained from Dn−1 by adding a new edge incident with the vertex of
degree 2. All these trees are illustrated in Figure 1.
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Figure 1: The trees Dn , Tn,1 and Tn,2 .

Let Cn,k be the cactus graph obtained from the n -vertex star Sn by adding k inde-



ON THE ABC SPECTRAL RADIUS OF CACTUS GRAPHS 59

pendent edges, where 0 � k � � n−1
2 � , see Figure 2.
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Figure 2: The cactus graph Cn,k .

LEMMA 1. [1, 14] Among the trees C(n,0) with n � 6 ,

(i) if n = 6,7,8 , then Cn,0 , Dn , and Tn,2 are, respectively, the unique trees with the
first three largest ABC spectral radii;

(ii) if n � 9 , then Cn,0 , Dn , and Tn,1 are, respectively, the unique trees with the first
three largest ABC spectral radii.

We mention that the above ordering was given in [1] for n � 11. As to the small n
with 6 � n � 10, one can deduce the corresponding ordering by considering maximum
degree as in [14] or as what we used for unicyclic graphs in [16].

Note that ρ(Cn,0) =
√

n−2, and ρ(Dn) , ρ(Tn,1) , and ρ(Tn,2) are, respectively,
the largest roots of the equations on x :

2(n−2)x4−2(n2−5n+7)x2 +(n−3)2 = 0,

4(n−3)x4−2(2n2−13n+23)x2+4n2−31n+61 = 0,

and
3(n−3)x4− (3n2−19n+34)x2+4(n−4)2 = 0.

Let Un,1 be the unicyclic graph of order n � 5 obtained from a quadrangle by
adding n− 4 edges incident with a common vertex, and Un,2 the unicyclic graph of
order n � 5 obtained from Cn−1,1 by adding an edge incident with a vertex of degree
two, see Figure 3.

LEMMA 2. [16] Among the graphs in C(n,1) with n � 5 ,

(i) if 5 � n � 18 , then Cn,1 and Un,2 are, respectively, the unique unicyclic graphs
with the first two largest ABC spectral radii;

(iii) if n � 19 , then Cn,1 and Un,1 are, respectively, the unique unicyclic graphs with
the first two largest ABC spectral radii.
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Figure 3: The unicyclic graphs Un,1 and Un,2 .

Note that ρ(Cn,1) , ρ(Un,1) , and ρ(Un,2) are, respectively, the largest roots of the
equations on x :

2(n−1)x3−
√

2(n−1)x2−2(n2−4n+5)x+
√

2(n−2)(n−3) = 0,

(n−2)x4− (n2−5n+8)x2 +(n−3)(n−4)= 0,

and

6(n−2)x4−2(3n2−15n+25)x2−2
√

3(n−1)(n−2)x+7n2−47n+80 = 0.

3. The ABC spectral radius of cactus graphs

For an n -vertex graph G , we introduce the revised of ABC matrix of G , denoted
by ÃBC(G) , is the matrix (ÃBCuv)u,v∈V (G) , where

ÃBCuv =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
n−2
n−1 if uv is a pendent edge of G,√
1
2 if uv is an edge of G, but not a pendent edge,

0 if uv �∈ E(G).

Let ρ̃(G) be the largest eigenvalue of ÃBC(G) , which we call the revised ABC spectral
radius. Note that, if n � 3, then ÃBC(G) has the same zero-nonzero pattern as the
adjacency matrix of G , so ÃBC(G) is irreducible if and only if G is connected. In this
case, by Perron-Frobenius theory (see, e.g., [2, Theorem 1.4, p. 27]), corresponding to
ρ̃(G) , there is a unique positive unit eigenvector, say x . For any v ∈ V (G) , denote by
xv the entry in x corresponding to vertex v throughout this paper. Particularly, for any
u ∈V (G) ,

ρ̃(G)xu = ∑
v∈V (G)

ÃBCuvxv.

LEMMA 3. Let G be a graph. Then ABCuv � ÃBCuv for any vertices u,v∈V (G) .

Proof. When uv is not an edge of G , ABCuv = ÃBCuv = 0, it is already done.
Suppose that uv is an edge of G in the following. Assume that du � dv , and set

f (du,dv) =
√

du+dv−2
dudv

.
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It is easy to verify that f (du,dv) increases in du when dv = 1, and decreases in du

for fixed dv � 2. As a consequence, if uv is a pendent edge of G , then

f (du,dv) = f (du,1) � f (n−1,1) =

√
n−2
n−1

,

and if uv is not a pendent edge of G , then

f (du,dv) � f (2,2) =

√
1
2
.

In either case, the corresponding inequality is equivalent to our desired result that
ABCuv � ÃBCuv . �

LEMMA 4. Let G be a graph. Then ρ(G) � ρ̃(G) with equality when G is con-
nected if and only if ABC(G) = ÃBC(G) .

Proof. It is a direct consequence of Lemma 3 and part of the famous Perron-
Frobenius theory (see, e.g., [2, Corollary 1.5, p. 27]). �

LEMMA 5. Let G be a connected graph of order n � 4 , where vwi ∈ E(G) and
uwi �∈ E(G) for 1 � i � r . Assume that dG(v) � r +1 � 2 and dG(u) � 2 . Denote by
x the unique positive unit eigenvector of ÃBC(G) corresponding to ρ̃(G) . Consider
G1 = G−{vw1,vw2, . . . ,vwr}+{uw1,uw2, . . . ,uwr} . If xu � xv , then ρ̃(G) < ρ̃(G1) .

Proof. Among vw1,vw2, . . . ,vwr , assume that there are s edges which are pendent
in G , where 0 � s � r . Further, we may assume that vwi is a pendent edge of G for
i = 1,2, . . . ,s , and vwi is not a pendent edge of G for i = s+1,s+2, . . . ,r . It is easy to
see that vwi is a pendent edge of G if and only if uwi is a pendent edge of G1 , which
implies that the (v,wi)-entry in ÃBC(G) coincides with the (u,wi)-entry in ÃBC(G1) ,
for 1 � i � r .

First suppose that dG(v) � r +2. Under this condition, dG1(v) � 2, thus wy is a
pendent edge of G if and only if wy is a pendent edge of G1 , for each wy ∈ E(G) \
{vw1,vw2, . . . ,vwr} , that is to say, the (w,y)-entries in ÃBC(G) and ÃBC(G1) are the
same. It is standard to get by Rayleigh’s principle that

ρ̃(G1)− ρ̃(G) � xT (ÃBC(G1)− ÃBC(G))x

= 2(xu− xv)

(√
n−2
n−1

s

∑
i=1

xwi +

√
1
2

r

∑
i=s+1

xwi

)
� 0,

i.e., ρ̃(G) � ρ̃(G1) . In particular, if ρ̃(G1) = ρ̃(G) , then x is also an eigenvector of
ÃBC(G1) corresponding to ρ̃(G1) . However, such situation would result in

ρ̃(G1)xu − ρ̃(G)xu =

√
n−2
n−1

s

∑
i=1

xwi +

√
1
2

r

∑
i=s+1

xwi = 0,



62 Z. DU AND B. ZHOU

which is impossible, since xwi > 0. Therefore, ρ̃(G) < ρ̃(G1) follows.
Next suppose that dG(v) = r +1. At this time, dG1(v) = 1. Assume that z is the

unique neighbor of v in G different from w1,w2, . . . ,wr . Note that vz is a pendent edge
in G1 whether dG(z) = 1 or not. When dG(z) = 1, the above proof (about dG(v) �
r + 2) is still valid. But when dG(z) � 2, there exists some difference, which comes
from the fact that vz would be changed from a non-pendent edge in G into a pendent

edge in G1 (in the aspect of entries, the (v,z)-entry in ÃBC(G) is
√

1
2 , but is

√
n−2
n−1

in ÃBC(G1)). In this case, as
√

n−2
n−1 >

√
1
2 , one has

ρ̃(G1)− ρ̃(G) � xT (ÃBC(G1)− ÃBC(G))x

= 2(xu− xv)

(√
n−2
n−1

s

∑
i=1

xwi +

√
1
2

r

∑
i=s+1

xwi

)

+2

(√
n−2
n−1

−
√

1
2

)
xvxz

> 2(xu− xv)

(√
n−2
n−1

s

∑
i=1

xwi +

√
1
2

r

∑
i=s+1

xwi

)
� 0,

so ρ̃(G) < ρ̃(G1) .
In conclusion, we can get ρ̃(G) < ρ̃(G1) in either case. �

LEMMA 6. Let G be a graph in C(n,k) that maximizes the revised ABC spectral
radius, where n � 4 and uv ∈ E(G) . If dG(u),dG(v) � 2 , then uv is an edge of a
triangle, and at least one of u,v is of degree 2 .

Proof. Let x be an eigenvector of ÃBC(G) corresponding to ρ̃(G) . We always
assume that xu � xv .

First suppose that uv is a cut edge of G . Then uv lies outside any cycle of
G and in particular, u and v have no common neighbor. Denote by w1,w2, . . . ,wr

the neighbors of v in G different from u , where r = dG(v) − 1 � 1. Let G1 =
G−{vw1,vw2, . . . ,vwr}+{uw1,uw2, . . . ,uwr} . As G∈C(n,k) , we have G1 ∈C(n,k) .
By Lemma 5, we get ρ̃(G) < ρ̃(G1) , which is a contradiction to the maximality of
ρ̃(G) . This shows that uv is not a cut edge.

As uv is not a cut edge of G , we may assume that u and v lie on some cycle, say
C , of G . Denote by w the other neighbor of v lying on C different from u . If C is of
length at least 4 , then clearly u and w are not adjacent. Let G2 = G−vw+uw . Clearly,
G2 is still in C(n,k) . By Lemma 5, ρ̃(G) < ρ̃(G2) follows, which is a contradiction
to the maximality of ρ̃(G) again. Thus C is of length 3, i.e., vu is an edge of some
triangle.

We are remaining to show that at least one of u,v is of degree 2. Suppose to the
contrary that dG(u),dG(v) � 3. Denote by z1,z2, . . . ,zt the neighbors of v in G but out-
side C , where t = dG(v)−2� 1. Let G3 =G−{vz1,vz2, . . . ,vzt}+{uz1,uz2, . . . ,uzt}∈
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C(n,k) . It follows from Lemma 5 that ρ̃(G) < ρ̃(G3) , which is a contradiction to the
maximality of ρ̃(G) . �

THEOREM 1. Let G ∈ C(n,k) , where n � 4 . Then ρ(G) � ρ(Cn,k) with equality
if and only if G ∼= Cn,k , where ρ(Cn,k) is equal to the largest root of fn,k(x) = 0 with

fn,k(x)= 2(n−1)x3−
√

2(n−1)x2−2(n2−(k+3)n+3k+2)x+
√

2(n−2)(n−2k−1).

Proof. By a direct calculation of the characteristic polynomial of ABC(Cn,k) , it is
not hard to verify that ρ(Cn,k) is the largest root of fn,k(x) = 0.

It is easy to see that ABC(Cn,k) = ÃBC(Cn,k) . By Lemma 4, we have ρ(G) � ρ̃(G)
with equality if and only if ABC(G) = ÃBC(G) . So it suffices to show that ρ̃(G) �
ρ̃(Cn,k) with equality if and only if G∼=Cn,k . Suppose that G is a graph in C(n,k) that
maximizes the revised ABC spectral radius. It suffices to show that G ∼= Cn,k .

Some forbidden structures are revealed in Lemma 6. Assume that uv is an edge
of G , where dG(u),dG(v) � 2. Lemma 6 asserts two properties related to uv : (i) uv is
an edge of a triangle; (ii) at least one of u,v is of degree 2.

If k = 0, then there is no cycle in G , so property (i) forces every edge of G to be
a pendent edge, i.e., G ∼= Cn,0 . Next we assume that k � 1, and analyze the structures
related to cycles in G .

From (i), it is known that each cycle of G is a triangle, and from (ii), exactly one
vertex of each triangle in G is of degree at least 3 , thus all the triangles of G converge
at a common vertex, say v . As to the remaining vertices outside the cycles, they can
be only pendent vertices adjacent to v , which is guaranteed by (i). So G is actually
Cn,k . �

As a consequence of Theorem 1, we conclude that Cn,0 is the unique n -vertex
tree that maximizes the ABC spectral radius of trees (see [4]), while Cn,1 is the unique
n -vertex unicyclic graph that maximizes the ABC spectral radius of unicyclic graphs
(see [13]).

In what follows we determine the graphs in C(n) for n � 4 with the first a few
largest ABC spectral radii.

LEMMA 7. For n � 6 and k � 1 , we have ρ(Cn,k) < ρ(Cn,k−1) .

Proof. Recall that ρ(Cn,k) is the largest root of fn,k(x) = 0, where

fn,k(x)= 2(n−1)x3−
√

2(n−1)x2−2(n2−(k+3)n+3k+2)x+
√

2(n−2)(n−2k−1).

As

fn,k

(√
2(n−2)
n−3

)
= −

√
2(n−2)(n−1)2(n2−8n+13)

(n−3)3 < 0,

we have ρ(Cn,k) >
√

2(n−2)
n−3 .
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On the other hand, it is easy to see that

fn,k(x)− fn,k−1(x) = 2(n−3)

(
x−

√
2(n−2)
n−3

)
,

which is positive if x >
√

2(n−2)
n−3 . As ρ(Cn,k) >

√
2(n−2)
n−3 , we have

0 = fn,k(ρ(Cn,k)) > fn,k−1(ρ(Cn,k)),

so ρ(Cn,k) < ρ(Cn,k−1) . �

LEMMA 8. For 6 � n � 23 , ρ(Dn) < ρ(Cn,2) , and for n � 24 , ρ(Dn) > ρ(Cn,2) .

Proof. Recall that ρ(Dn) is the largest root of f (x) = 0, and ρ(Cn,2) is the largest
root of g(x) = 0, where

f (x) = 2(n−2)x4−2(n2−5n+7)x2 +(n−3)2

and

g(x) = 2(n−1)x3−
√

2(n−1)x2−2(n2−5n+8)x+
√

2(n−2)(n−5).

For 6 � n � 23, ρ(Dn) < ρ(Cn,2) follows from direct calculations. Suppose that
n � 24. It is easy to verify that

(n−1) f (x)− (n−2)g(x)
(

x+
1√
2

)
= −(n2−9n+16)x2 +2

√
2(n−2)(n−1)x+2n2−9n+11,

in which the larger root of the right-hand side polynomial on x is

x = x0 :=
√

2(n−1)(n−2)+
√

(n2−5n+8)(4n2−19n+23)
n2−9n+16

,

so

(n−1) f (x)− (n−2)g(x)
(

x+
1√
2

)
< 0 if x > x0.

On the other hand, we have by a tedious but straightforward calculation that g(x0) < 0
(for n � 24), which implies that ρ(Cn,2) > x0 . It thus follows that

(n−1) f (ρ(Cn,2)) = (n−1) f (ρ(Cn,2))− (n−2)g(ρ(Cn,2))
(

ρ(Cn,2)+
1√
2

)
< 0,

so f (ρ(Cn,2)) < 0, implying that ρ(Dn) > ρ(Cn,2) . �
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LEMMA 9. For n � 6 ,
ρ(Cn,1) > ρ(Dn)

and
ρ(Cn,2) > max{ρ(Tn,1),ρ(Tn,2),ρ(Un,1),ρ(Un,2)}.

Proof. Note that ρ(Cn,1) and ρ(Dn) are, respectively, the largest roots of h(x) = 0
and f (x) = 0, where

h(x) = 2(n−1)x3−
√

2(n−1)x2−2(n2−4n+5)x+
√

2(n−2)(n−3)

and
f (x) = 2(n−2)x4−2(n2−5n+7)x2 +(n−3)2.

It is easy to see that

(n−2)h(x)
(

x+
1√
2

)
− (n−1) f (x) = −(n2−n−4)x2−

√
2(n−1)(n−2)x+n−3,

in which, for x � 1, the right-hand side decreases, so

(n−2)h(x)
(

x+
1√
2

)
− (n−1) f (x) � (n−2)h(1)

(
1+

1√
2

)
− (n−1) f (1)

= −(
√

2+1)n2 +(3
√

2+2)n−2
√

2+1

< 0.

Clearly, ρ(Dn) � 1. Thus

(n−2)h(ρ(Dn))
(

ρ(Dn)+
1√
2

)
= (n−2)h(ρ(Dn))

(
ρ(Dn)+

1√
2

)
− (n−1) f (ρ(Dn))

< 0,

which implies that ρ(Cn,1) > ρ(Dn) .
Note that ρ(Cn,2) , ρ(Tn,i) and ρ(Un,i) for i = 1,2 are, respectively, the largest

roots of fn,2(x) = 0, fi(x) = 0 and gi(x) = 0, where

fn,2(x) = 2(n−1)x3−
√

2(n−1)x2−2(n2−5n+8)x+
√

2(n−2)(n−5),

f1(x) = 4(n−3)x4−2(2n2−13n+23)x2+4n2−31n+61,

f2(x) = 3(n−3)x4− (3n2−19n+34)x2+4(n−4)2,

g1(x) = (n−2)x4− (n2−5n+8)x2 +(n−3)(n−4),

and

g2(x) = 6(n−2)x4−2(3n2−15n+25)x2−2
√

3(n−1)(n−2)x+7n2−47n+80.
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By direct calculations, we have

2(n−3) fn,2(x)
(

x+
1√
2

)
− (n−1) f1(x)

= −4(3n−11)x2−4
√

2(n−1)(n−3)x−2n3+15n2−30n+1,

(1)

3(n−3) fn,2(x)
(

x+
1√
2

)
−2(n−1) f2(x)

= (n2−20n+67)x2−6
√

2(n−1)(n−3)x−5n3+42n2−99n+38,

(2)

(n−2) fn,2(x)
(

x+
1√
2

)
−2(n−1)g1(x)

= (n2−7n+14)x2−2
√

2(n−1)(n−2)x−n3+7n2−14n+4,

(3)

and

3(n−2) fn,2(x)
(

x+
1√
2

)
− (n−1)g2(x)

= (3n2−19n+40)x2−2(n−1)
(
3
√

2(n−2)−
√

3(n−1)(n−2)
)

x

−4n3 +27n2−55n+20.

(4)

Further, one can check that as a quadric function on x , the right-hand side of (1) is
always negative for n � 6 by noting that its discriminant is negative. As quadric func-
tions on x , the right-hand sides of (2), (3), and (4) are negative if x = 0,

√
n , so they

are always negative for 0 < x <
√

n . As f2(x) increases if x � √
n , we have f2(x) �

f2(
√

n) > 0 if x �√
n , implying that ρ(Tn,2) <

√
n . Similarly, ρ(Un,1),ρ(Un,2) <

√
n .

From (1)–(4), we have fn,2(x) < 0 for x = ρ(Tn,1),ρ(Tn,2),ρ(Un,1),ρ(Un,2) . Therefore,
ρ(Cn,2) > max{ρ(Tn,1),ρ(Tn,2),ρ(Un,1),ρ(Un,2)}. �

Now we can present an ordering of cactus graphs by large ABC spectral radii. If
n = 3, then C(n) = {C3,0,C3,1} , where ρ(C3,0) = 1 and ρ(C3,1) =

√
2.

THEOREM 2. Let G ∈ C(n) , where n � 4 .

(i) If n = 4 , then C4,1 , C4,0 and the 4 -vertex cycle C4 , and the 4 -vertex path P4 are,
respectively, the unique graphs with the first three largest ABC spectral radii.

(ii) If n = 5 , then C5,2 , C5,1 , and C5,0 are, respectively, the unique graphs with the
first three largest ABC spectral radii.

(iii) If 6 � n � 23 , then Cn,0 , Cn,1 , and Cn,2 are, respectively, the unique graphs with
the first three largest ABC spectral radii.

(iii) If n � 24 , then Cn,0 , Cn,1 , Dn , and Cn,2 are, respectively, the unique graphs with
the first four largest ABC spectral radii.
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Proof. When n = 4,5, the result follows trivially, since there are exactly 4 and 9
graphs in C(n) , respectively. Assume that n � 6 and G ∈ C(n,k) in the following.

If k � 2, then we have Theorem 1 and Lemma 7 that ρ(G) � ρ(Cn,2) with equality
if and only if G ∼= Cn,2 . By Lemma 7 again,

ρ(Cn,2) < ρ(Cn,1) < ρ(Cn,0).

If k = 1, then G is a unicyclic graph, and by Lemma 2,

ρ(G) � max{ρ(Un,1),ρ(Un,2)} < ρ(Cn,1)

when G �∼= Cn,1 .
If k = 0, then G is a tree, and by Lemma 1,

ρ(G) � max{ρ(Tn,1),ρ(Tn,2)} < ρ(Dn) < ρ(Cn,0)

when G �∼= Cn,0,Dn .
Finally, the result follows from Lemmas 8 and 9. �
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