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ON THE ABC SPECTRAL RADIUS OF CACTUS GRAPHS

ZHIBIN DU AND BO ZHOU *

(Communicated by Y.-T. Poon)

Abstract. Let G be a graph with vertex set V(G). Denote by d, the degree of vertex u in G.
The ABC matrix of G, proposed by Estrada, is the matrix (ABCwy), ey (c)> Where ABCy, =
% if u and v are adjacent, and O otherwise. The ABC spectral radius of G is the

largest eigenvalue of the ABC matrix of G. In this paper, we determine the unique cactus graph
with the largest ABC spectral radius among all cactus graphs with fixed order and number of
cycles, and the cactus graphs of order n with the first a few largest ABC spectral radii for n > 4.

1. Introduction

We consider simple (connected) graphs. For a graph G, denote by V(G) the vertex
set, and E(G) the edge set of G. For u € V(G), denote by dg(u), or simply d, when
only one graph is under consideration, the degree of u in G. An edge uv of G is called
apendentedgeif d, =1 or d, = 1, and a vertex v is called a pendent vertex if d, = 1.

The ABC matrix of G, put forward by Estrada [6] in a molecular context, is de-
fined to be the matrix ABC(G) = (ABCyy),vev (G)» Where

ABC,, — dtd 2 ity € E(G),
0 if uv & E(G).

As pointed out in [6], for an edge uv of the graph G, the (u,v)-entry of the ABC
matrix indicates the polarizing capacity of the bond uv in a molecular context, as it
represents the probability of visiting a nearest neighbor edge from one side or the other
of a given edge in a graph. Actually, Estrada [6] provided a probabilistic interpretation
of a graph invariant called the generalized ABC index, which is a generalization of
the much studied atom-bond connectivity index [9] (abbreviated ABC index [12]) and
then introduced a matrix representation of these probabilities in the form of generalized
ABC matrices.

For a graph G, the largest eigenvalue of ABC(G) is called the ABC spectral radius
of G, denoted by p(G). Although initiated in 2017, the ABC spectral radius of graphs
has already attracted much attention. The study of the ABC spectral radii of trees,
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unicyclic graphs and bicyclic graphs may be found in [4, 13, 15], respectively. More
results on the ABC spectral radius of graphs may be found in [3, 5, 6, 11, 13, 16].
We mention that Estrada [6] also studied some other graph parameters related to the
eigenvalues of the ABC matrices, such as the ABC energy and the ABC Estrada index
(see [8] and [7] for a look on the ordinary energy and Estrada index, respectively). One
may find some results on the ABC energy in [3, 11, 10].

A cactus graph is a connected graph in which any two cycles have at most one
common vertex. Let C(n) be the set of cactus graphs of order n, and C(n,k) the set
of cactus graphs of order n with k cycles, where 0 < k < L”z;lj . In this article, we
determine the graph in C(n,k) that uniquely maximizes the ABC spectral radius for
0 <k < [%51], and we further determine the graphs in C(n) with the first three largest
ABC spectral radii for 4 < n < 23, and with the first four largest ABC spectral radii for
n>=?24.

2. Preliminaries

For an edge subset M of a graph G, let G — M denote the graph obtained from
G by deleting the edges in M, and for an edge subset M* of the complement of G, let
G + M* denote the graph obtained from G by adding the edges in M*. In particular,
if M = {uv}, then we write G —uv for G — {uv}, and if M* = {uv}, then we write
G+ uv for G+ {uv}.

Note that the graphs in C(n,0) are trees, and graphs in C(n,1) are unicyclic
graphs. For n > 4, let D, be the tree of order n with a path of length 2 and n —3
edges attached at a common end vertex. Let 7, ; be the tree of order n > 6 with one
path of length 3 and n —4 edges attached at a common end vertex, and T, > the tree
of order n > 6 obtained from D,_; by adding a new edge incident with the vertex of
degree 2. All these trees are illustrated in Figure 1.

n—4
—
n-3 n—4
—_— PR Lo
[ ]
(]
[ ]
Dn T;l,l 1—:1,2

Figure 1: The trees Dy, T, 1 and T,».

Let C, x be the cactus graph obtained from the n-vertex star S, by adding k inde-
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pendent edges, where 0 < k < L%j , see Figure 2.

n—2k—1
f—%

k triangles

Cn,k
Figure 2: The cactus graph C, .

LEMMA 1. [1, 14] Among the trees C(n,0) with n > 6,

(i) if n=06,7,8, then Cy,p, Dy, and T, » are, respectively, the unique trees with the
first three largest ABC spectral radii;

(i) if n>=9, then Cno, Dy, and T, are, respectively, the unique trees with the first
three largest ABC spectral radii.

‘We mention that the above ordering was given in [1] for n > 11. As to the small n
with 6 < n < 10, one can deduce the corresponding ordering by considering maximum
degree as in [14] or as what we used for unicyclic graphs in [16].

Note that p(C,0) =+vn—2, and p(D,), p(T,,1), and p(T,2) are, respectively,
the largest roots of the equations on x:

2(n—2)x* —2(n* = 5n+ 1)+ (n—3)* =0,

4(n—3)x*—2(2n° — 130+ 23)x* + 4n> = 31n+ 61 =0,

and
3(n—3)x* — (3n* — 190 +34)x* + 4(n — 4)* = 0.

Let U, be the unicyclic graph of order n > 5 obtained from a quadrangle by
adding n —4 edges incident with a common vertex, and U, > the unicyclic graph of
order n > 5 obtained from C,_; 1 by adding an edge incident with a vertex of degree
two, see Figure 3.

LEMMA 2. [16] Among the graphsin C(n,1) with n >3,

(i) if 5<n< 18, then C, and Uy, are, respectively, the unique unicyclic graphs
with the first two largest ABC spectral radii;

(iii) if n > 19, then C,; and U, are, respectively, the unique unicyclic graphs with
the first two largest ABC spectral radii.
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U

n,2
Figure 3: The unicyclic graphs Uy and Up.

Note that p(C,,1), p(Un1), and p(Uy,2) are, respectively, the largest roots of the
equations on x:

2(n— 1) —V2(n—1)x*> = 2(n® —4n+5)x+V2(n—2)(n—3) = 0,
(n—2)x*— (n> —5n+8)x*+ (n—3)(n—4)=0,
and

6(n—2)x* —2(3n> — 15n425)x*> — 2/3(n — 1) (n — 2)x+ Tn> —47n+80 = 0.

3. The ABC spectral radius of cactus graphs

For an n-vertex graph G, we introduce the revised of ABC matrix of G, denoted
by ABC(G), is the matrix (ABCy),vev () Where
n—2

71 ifuvisapendentedge of G,

ABCyy = \/g if uv is an edge of G, but not a pendent edge,
0 ifuv ¢ E(G).

Let p(G) be the largest eigenvalue of ABC (G), which we call the revised ABC spectral
radius. Note that, if n > 3, then A/BVC(G) has the same zero-nonzero pattern as the
adjacency matrix of G, so fﬁ?JC(G) is irreducible if and only if G is connected. In this
case, by Perron-Frobenius theory (see, e.g., [2, Theorem 1.4, p. 27]), corresponding to
p(G), there is a unique positive unit eigenvector, say x. For any v € V(G), denote by
x, the entry in x corresponding to vertex v throughout this paper. Particularly, for any
ueV(G),
P(Gxu= Y ABCux,.
veV(G)

LEMMA 3. Let G be a graph. Then ABC,, < ABC,, forany vertices u,v € V(G).

Proof. When uv is not an edge of G, ABC,, = A/BVCW =0, it is already done.
Suppose that uv is an edge of G in the following. Assume that d, > d,, and set

dy+dy,—2
f(dude) =\ ;u—d]
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It is easy to verify that f(d,,d,) increases in d, when d, = 1, and decreases in d,,
for fixed d, > 2. As a consequence, if uv is a pendent edge of G, then

fldy,dy) = fldy,1) < f(n—1,1)=

n—1’

and if uv is not a pendent edge of G, then

f(du,dv)gf(zz):\/;

In either case, the corresponding inequality is equivalent to our desired result that
ABC,, < ABC,,. O

LEMMA 4. Let G be a graph. Then p(G) < p(G) with equality when G is con-
nected if and only if ABC(G) = ABC(G).

Proof. Tt is a direct consequence of Lemma 3 and part of the famous Perron-
Frobenius theory (see, e.g., [2, Corollary 1.5, p. 27]). U

LEMMA 5. Let G be a connected graph of order n > 4, where vw; € E(G) and
uw; & E(G) for 1 <i<r. Assume that dg(v) =2 r+1 > 2 and dg(u) > 2. Denote by
X the unique positive unit eigenvector of AB/?/C(G) corresponding to p(G). Consider
G =G —{vwi,vwa,...,vw.} +{uwy,uwy, ... ;uw, }. If x, = x,, then p(G) < p(Gy).

Proof. Among vwy,vw»,...,vw,, assume that there are s edges which are pendent
in G, where 0 < s < r. Further we may assume that vw; is a pendent edge of G for
i=1,2,...,s,and vw; is not a pendent edge of G for i =s+1,542,...,r. Itis easy to
see that vw; is a pendent edge of G if and only if uw; is a pendent edge of G|, which
implies that the (v,w;)-entry in A/BVC(G) coincides with the (u, w;)-entry in A/BVC(Gl),
for 1 <i<r.

First suppose that dg(v) > r+2. Under this condition, dg, (v) > 2, thus wy is a
pendent edge of G if and only if wy is a pendent edge of Gy, for each wy € E(G)
{vwi,ywa,...,vw, }, that is to say, the (w,y)-entries in ABC(G) and ABC(Gl) are the
same. Itis standard to get by Rayleigh’s principle that

p(G1)—p(G) > x" (ABC(Gy) — ABC(G))x

n_2 N
= 2(xy —xy) (\/ 1 ExW,—I— 2 xwl>
n—1;0 2,550

20,

ie., p(G) < p(Gy). In particular, if p(G;) = p(G), then x is also an eigenvector of
ABC(G)) corresponding to p(Gy). However, such situation would result in

_ ~ In—23
p(G1)xu — p(G)xu = 11—2xwz'+\/7 2 X =0,
n—15 i=s+1



62 Z.DU AND B. ZHOU

which is impossible, since x,,, > 0. Therefore, p(G) < p(G) follows.

Next suppose that dg(v) = r+ 1. At this time, dg, (v) = 1. Assume that z is the
unique neighbor of v in G different from wy,wy,...,w,. Note that vz is a pendent edge
in G| whether dg(z) = 1 or not. When dg(z) = 1, the above proof (about dg(v) >
r—+2) is still valid. But when dg(z) > 2, there exists some difference, which comes
from the fact that vz would be changed from a non-pendent edge in G into a pendent

edge in G (in the aspect of entries, the (v,z)-entry in ABC(G) is \/g , but is %

n
in ABC(Gl)) In this case, as |/ 4= \/7, one has

B(G1)~B(G) > x" (ABC(G:) — ABC(G))x

= 2(x,— (\/72)% ,%1XWI>
=R
> 2(xy —Xy) (ngwi+ HEHXW')

20,

0 B(G) < p(Gr).
In conclusion, we can get p(G) < p(G}) in either case. [J

LEMMA 6. Let G be a graph in C(n,k) that maximizes the revised ABC spectral
radius, where n > 4 and uv € E(G). If dg(u),dg(v) > 2, then uv is an edge of a
triangle, and at least one of u,v is of degree 2.

Proof. Let x be an eigenvector of ABC(G) corresponding to p(G). We always
assume that x, > x,.

First suppose that uv is a cut edge of G. Then uv lies outside any cycle of
G and in particular, # and v have no common neighbor. Denote by wi,wy,...,w,
the neighbors of v in G different from u, where r = dg(v) —1 > 1. Let G| =
G—{wwi,vwa,...,vw } +{uwi,uwy, ..., uw,}. As G € C(n,k), we have G| € C(n,k).
By Lemma 5, we get p(G) < p(Gy), which is a contradiction to the maximality of
p(G). This shows that uv is not a cut edge.

As uv is not a cut edge of G, we may assume that u and v lie on some cycle, say
C, of G. Denote by w the other neighbor of v lying on C different from u. If C is of
length at least 4, then clearly u and w are not adjacent. Let G, = G —vw+uw. Clearly,
G, is still in C(n,k). By Lemma 5, p(G) < p(Gz) follows, which is a contradiction
to the maximality of p(G) again. Thus C is of length 3, i.e., vu is an edge of some
triangle.

We are remaining to show that at least one of u,v is of degree 2. Suppose to the
contrary that dg(u),dg(v) = 3. Denote by z1,22,. ..,z the neighbors of v in G but out-
side C, where t =dg(v)—2> 1. Let G3 =G —{vz1,vz2,...,vz } +{uzi,uz, ... ,uz } €
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C(n,k). It follows from Lemma 5 that p(G) < p(G3), which is a contradiction to the
maximality of p(G). 0

THEOREM 1. Let G € C(n,k), where n > 4. Then p(G) < p(Cy ) with equality
if and only if G = C, ¢, where p(C, ) is equal to the largest root of f, x(x) =0 with

For () =2(n—1)x> = V2(n—1)x> = 2(n% — (k+3)n+3k+2)x+V2(n—2)(n—2k—1).

Proof. By a direct calculation of the characteristic polynomial of ABC(C, ), it is
not hard to verify that p(C, ) is the largest root of f;, x(x) =0.

It is easy to see that ABC(C,, ) = f@JC(ka) . By Lemma 4, we have p(G) < p(G)
with equality if and only if ABC(G) = A/BVC(G) So it suffices to show that p(G) <
p(Cyx) with equality if and only if G = C, ;. Suppose that G is a graph in C(n,k) that
maximizes the revised ABC spectral radius. It suffices to show that G = G, ;.

Some forbidden structures are revealed in Lemma 6. Assume that uv is an edge
of G, where dg(u),dg(v) > 2. Lemma 6 asserts two properties related to uv: (i) uv is
an edge of a triangle; (ii) at least one of u,v is of degree 2.

If £ = 0, then there is no cycle in G, so property (i) forces every edge of G to be
a pendent edge, i.e., G = C, . Next we assume that k > 1, and analyze the structures
related to cycles in G.

From (i), it is known that each cycle of G is a triangle, and from (ii), exactly one
vertex of each triangle in G is of degree at least 3, thus all the triangles of G converge
at a common vertex, say v. As to the remaining vertices outside the cycles, they can
be only pendent vertices adjacent to v, which is guaranteed by (i). So G is actually
Cn.k .0

As a consequence of Theorem 1, we conclude that C, o is the unique n-vertex
tree that maximizes the ABC spectral radius of trees (see [4]), while C, 1 is the unique
n-vertex unicyclic graph that maximizes the ABC spectral radius of unicyclic graphs
(see [13]).

In what follows we determine the graphs in C(n) for n > 4 with the first a few
largest ABC spectral radii.

LEMMA 7. For n>6 and k> 1, we have p(C, 1) < p(Cyp—1).

Proof. Recall that p(C,, ) is the largest root of f, x(x) =0, where

Fri(®) =2(n—1)x* —=vV2(n—1)x® = 2(n® — (k+3)n+3k+2)x+vV2(n—2)(n—2k—1).

<0,

V2(n—=2)\  V2(n—2)(n—1)*(n® —8n+13)
I\ =3 )= (n—3)
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On the other hand, it is easy to see that

Juk(X) = fuk—1(x) =2(n—3) (JC— @> ;

n—3

which is positive if x > ‘/Zn(+§2) As p(Cux) > \/En(+§2), we have

0= fn,k(p (Cn,k)) > fn,kfl (P (Cn,k))’

SO p(Cn,k) < p(ka—l)' U

LEMMA 8. For 6 <n<23, p(D,) <p(Cy2), andfor n =24, p(Dy) > p(Cpn2).

Proof. Recall that p(D,,) is the largest root of f(x) =0, and p(C, ) is the largest
root of g(x) =0, where

fx)=2(n—2)x* = 2(n* = 5n+7)x* + (n — 3)*
and
gx)=2(n—1)x* =vV2(n—1)x* =2(n* =51+ 8)x +V2(n—2)(n—5).

For 6 <n <23, p(D,) < p(Cpp) follows from direct calculations. Suppose that
n > 24. Itis easy to verify that

(= 1)£(x) — (n— 2)(x) (x+ %)
= (" =9+ 16)x> +2V2(n—2)(n— 1)x+2n> = 9n+ 11,

in which the larger root of the right-hand side polynomial on x is

V2(n—1)(n—2)++/(n? — 5n+8)(4n* — 19n+23)
n2—9n+ 16 ’

X=X0 .=

SO

(n—=1)f(x)— (n—2)g(x) (x—i— %) < 0if x> xp.

On the other hand, we have by a tedious but straightforward calculation that g(xg) <0
(for n > 24), which implies that p(C,2) > xo. It thus follows that

(1= DF(p(Cr2)) = (n—1)f(p(Cu2)) — (n—2)g(p(C2)) (p (Cu) + \%) <0,

so f(p(Cn2)) <0, implying that p(D,) > p(C,2). O
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LEMMA 9. Forn > 6,
p(Cn1) > p(Dn)

and
p(Cu2) > max{p(T.1),p(Tn2),P (Un1),p(Un2)}-

Proof. Note that p(C,,1) and p(D,) are, respectively, the largest roots of (x) =0
and f(x) =0, where

h(x) =2(n—1)x> =V2(n—1)x> = 2(n® — 4n+5)x+V2(n—2)(n—3)

and
fx) =2(n—2)x* —2(n* = 5n+7)x* + (n— 3)%

It is easy to see that

(n—2)h(x) (x—i— %) —(n=1)f(x)=—(m*—n—4)x*—V2(n—1)(n—2)x+n—-3,

in which, for x > 1, the right-hand side decreases, so

(=240 (x5 ) = (1= 1709 < (0=20401) (14 ) = (0= D70

V2
~(V24+1D)n*+(3V2+2)n—2v2+1
< 0.
Clearly, p(D,) > 1. Thus
1
(n—2)h(p(D,) (p(Dn> T ﬁ)
1
(- 2)h(p(Dy) (p(D )+ ﬁ) (n— 1)f(p(D))

<0,

which implies that p(C,,,1) > p(Dp).
Note that p(C,2), p(Tni) and p(U,,;) for i = 1,2 are, respectively, the largest
roots of f,2(x) =0, fi(x) =0 and g;(x) =0, where

Fan(X) =2(n—1)x* = vV2(n—1)x> = 2(n* = 5n+8)x+V2(n—2)(n - 5),
fi(x) =4(n—3)x* —2(2n> — 130+ 23)x* + 4n* — 31n 461,
fo(x) =3(n—3)x* — (3n> — 19n434)x> +4(n — 4)?,
g1(x)=(n— )x4—(n —5n+8)x +(n—=3)(n—4),
and

22(x) = 6(n—2)x* —2(3n® — 150 +25)x* — 2/3(n — 1) (n — 2)x + Tn* — 47n + 80.



66 Z.DU AND B. ZHOU

By direct calculations, we have

2n—3) fyal) (x+ %) - DA

(1
= —4Bn—11)> —4V2(n—1)(n—3)x — 2+ 150> = 30n + 1,
1
3(0= 30 (x+ 5 ) ~20n= D) o
= (n* —20n+67)x> — 6v/2(n—1)(n— 3)x — 5n°>+ 42n> — 99n + 38,
1
(n—=2)fn2(x) (x—f— E) —2(n—1)g(x) &

= (> —Tn+14)x* =2V2(n—1)(n —2)x —n*+7n® — 14n + 4,

and

31— 2)fua() (x+ %) (- D)
= (3%~ 191+ 40)% ~2(n— 1) (3V2(n —2) = VA~ 1)(n—2) ) x “)
— 43 +27n% — 551+ 20.

Further, one can check that as a quadric function on x, the right-hand side of (1) is
always negative for n > 6 by noting that its discriminant is negative. As quadric func-
tions on x, the right-hand sides of (2), (3), and (4) are negative if x = 0,/n, so they
are always negative for 0 < x < \/n. As f>(x) increases if x > y/n, we have fo(x) >
f2(v/n) >0 if x > \/n, implying that p(T,,2) < /n. Similarly, p(Uy.1),p (Unz2) < v/n.
From (1)—(4), we have f;,2(x) <0 for x=p(T,,.1),p(T12),P(Un.1),p (Unz2). Therefore,
P(Cu2) > max{p(Tp1),p(Tp2),p(Un1),p(Un2)}. O

Now we can present an ordering of cactus graphs by large ABC spectral radii. If
n=3, then C(n) = {C30,C31}, where p(Cs0) =1 and p(C3;) = V2.

THEOREM 2. Let G € C(n), where n > 4.

(i) If n=4, then Cs,, Csp and the 4-vertex cycle Cy, and the 4 -vertex path Py are,
respectively, the unique graphs with the first three largest ABC spectral radii.

(if) If n =15, then Csy, Cs1, and Cs are, respectively, the unique graphs with the
first three largest ABC spectral radii.

(iii) If 6 <n <23, then Cuo, Cu1, and Cy, 5 are, respectively, the unique graphs with
the first three largest ABC spectral radii.

(i) If n =24, then Cu0, Cu1» Dy, and C,, 5 are, respectively, the unique graphs with
the first four largest ABC spectral radii.
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Proof. When n =4,5, the result follows trivially, since there are exactly 4 and 9

graphs in C(n), respectively. Assume that n > 6 and G € C(n, k) in the following.

If k> 2, then we have Theorem | and Lemma 7 that p(G) < p(C,2) with equality

if and only if G=C,». By Lemma 7 again,

p(Cn72) < P(le) < p(CmO)'
If k=1, then G is a unicyclic graph, and by Lemma 2,

p(G) < max{p(Uy1),p(Un2)} < p(Cu1)

when G2 C, ;.

If k=0, then G is a tree, and by Lemma 1,

p(G) < max{p(T,1),p(Th2)} < p(Dy) < p(Cno)

when G2 C,0,D,.
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