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ON COPRODUCTS OF OPERATOR A–SYSTEMS

ALEXANDROS CHATZINIKOLAOU

Abstract. Given a unital CCCCC∗ -algebra A , we prove the existence of the coproduct of two faithful
operator A -systems. We show that we can either consider it as a subsystem of an amalgamated
free product of CCCCC∗ -algebras, or as a quotient by an operator system kernel. We introduce a
universal CCCCC∗ -algebra for operator A -systems and prove that in the case of the coproduct of two
operator A -systems, it is isomorphic to the amalgamated over A , free product of their respective
universal CCCCC∗ -algebras. Also, under the assumptions of hyperrigidity for operator systems, we
can identify the CCCCC∗ -envelope of the coproduct with the amalgamated free product of the CCCCC∗ -
envelopes. We consider graph operator systems as examples of operator A -systems and prove
that there exist graph operator systems whose coproduct is not a graph operator system, it is
however a dual operator A -system. More generally, the coproduct of dual operator A -systems
is always a dual operator A -system. We show that the coproducts behave well with respect to
inductive limits of operator systems.
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