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PROJECTIONS AND PROPER INFINITENESS FOR CORONA ALGEBRAS
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(Communicated by Y.-T. Poon)

Abstract. Let B be a nonunital separable simple Jiang–Su-stable C*-algebra with stable rank
one. We show that M (B) is the closed linear span of its projections, which implies Property I
for B .

We also show that the corona algebra C (B) is properly infinite if and only if T (B) is
weak* compact. We also provide a number of other equivalent characterizations.

1. Introduction

Let B be a separable, stable C*-algebra. It is an elementary fact from operator
theory that

1M (B) ∼ 1M (B) ⊕1M (B),

where M (B) is the multiplier algebra of B and ∼ here is Murray–von Neumann
equivalence of projections in M2 ⊗M (B) . This is the basic observation underly-
ing the Brown–Douglas–Fillmore (BDF) sum which led to the extension semigroup
Ext(A ,B) , which is a group when A is separable and nuclear. When B = K and
A = C(X) for X a compact subset of the plane, BDF used the functorial properties
of this object in their outstanding classification of all essentially normal operators via
Fredholm indices ([3]).

Perhaps, as witnessed above, one of the reasons for the success of the BDF theory
is that their multiplier algebra M (K ) = B(l2) and corona algebra B(l2)/K have par-
ticularly nice structure. For example, the BDF–Voiculescu absorption theorem, which
roughly says that all essential extensions are absorbing, would not be true if the Calkin
algebra B(l2)/K were not simple ([38]).

Thus, structural properties of multiplier and corona algebras are indispensible for
the advancement of extension theory and the associated operator theory beyond the
small number of successful classical cases. This idea was well understood by previous
researchers, and has had its most successful realizations in the definitive work of Lin
(see, e.g., [15], [17], [18], [19], [20], [23]). One problem of the current moment is
the case where the canonical ideal need not be stable. One of the insights of previous
researchers is that, while this nonstable case is very interesting in itself, it is also in-
dispensible for progress in the classical case of stable canonical ideals (see, e.g., [17],
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[20], [23]). For instance, in the classical stable case, under a nuclearity hypothesis,
Kasparov’s KK1 only classifies the absorbing extensions – a very thin class, and thus
misses many relevant essential extensions. To delve further, even in the classical stable
case, requires finer examination of the structure of the corona algebras and more del-
icate nonstable absorption theory. Following in the footsteps of previous researchers,
this has been the program that we have been pursuing (e.g., [14], [27], [29], [32]).

A unital C*-algebra C is said to be properly infinite if

1C � 1C ⊕1C ,

where here � is Murray–von Neumann subequivalence of projections in M2 ⊗C . It
was observed in [8] that when a corona algebra C (B) =def M (B)/B was properly
infinite, there is a generalized BDF sum on the class of extensions which may serve the
needs of extension theory even for nonstable B . This anticipated later works (e.g., [17],
[19], [20], [29]) where definitive nonstable generalizations of the BDF index theorem
were achieved.

We note that aside from connections to extension theory, proper infiniteness of
a C*-algebra (especially a corona algebra) is in itself an interesting and fundamen-
tal structural property, which is connected to many other interesting properties. For
example, it is an open question whether every properly infinite unital C*-algebra is K1 -
injective ([2]). Among other things, K1 -injectivity of the Paschke dual algebras (which
are properly infinite) imply interesting uniqueness theorems and generalizations of the
BDF essential codimension result (e.g., see [25]).

In [33], it was proven that for B a separable simple nonunital Z -stable C*-
algebra with an approximate unit consisting projections and Property I, C (B) is prop-
erly infinite if and only if T (B) is weak*-compact. In fact, for B with hypotheses as
in the previous statement, we proved that proper infiniteness of C (B) is equivalent to
a number of other interesting statements, generalizing the main result of [8] which was
for the case where B was a simple nonelementaryAF algebra. In this paper, we remove
the strong restriction that B has an approximate unit consisting of projections, and we
show that B always has Property I (see Theorem 2.14 and Theorem 3.5). In a related
direction, we prove the interesting property that when B is a nonunital separable sim-
ple Z -stable C*-algebra, M (B) is the (norm) closed linear span of its projections
(see Theorem 2.12).

Theorem 2.12 is an intriguing result in many ways, with connections to multiple
interesting phenomena in operator theory and K theory. Firstly, this result is true even
for the multiplier algebra of a stably projectionless C*-algebra. But also, it immediately
leads to the question of whether, for any nonunital separable simple Z -stable C*-
algebra B , the corona algebra C (B) has real rank zero. This question generalizes
some conjectures of Brown and Pedersen, which ask whether, for a nonunital separable
simple real rank zero C*-algebra B , i. C (B) has real rank zero, and ii. if, in addition,
K1(B) = 0 then M (B) has real rank zero (see [4]). These conjectures were proven
for the case where B is simple purely infinite by Zhang (see [42] Corollary 2.6) and
the case where B has, additionally, stable rank one by Lin (see [16] and [18]).

Perhaps one reason for the interest in the Brown–Pedersen Conjectures, was the
result, due to Zhang, that when B is a separable real rank zero C*-algebra, real rank



PROPERLY INFINITE CORONA ALGEBRAS 673

zero for M (B) is equivalent to a number of interesting properties, including a Weyl–
von Neumann theorem for self adjoint operators in M (B) (see [40] and [41]). Indeed,
the real rank zero property has been implicitly present in the subject since the beginning,
even though the terminology “real rank zero” was introduced before the original BDF
paper – for instance, the original BDF proof of the uniqueness of the neutral element
was essentially the Weyl–von Neumann–Berg theorem, and this phenomenon reoccurs
all over the place. In another direction, the Kasparov technical lemma implies that the
corona algebra of a σ -unital C*-algebra is an SAW* algebra – a property with formal
similarities and interesting connections to real rank zero.

Finally, we note that when B is a separable nonunital simple Z -stable C*-
algebra with quasicontinuous scale, then C (B) has real rank zero ([30]). For such
B , C (B) is purely infinite and T (B) is weak*-compact, giving independent confir-
mation of our characterization of properly infinite corona algebras. Quasicontinuity of
the scale (like continuity of the scale) was developed to provide a “nice setting” for
generalizing BDF theory beyond the classical stable cases. (E.g., see [17], [28] and
[32].)

We end this introduction by introducing some notations that are to be used in
this paper. This paper uses only elementary techniques and should be accessible to a
reader with basic knowledge of C*-algebra theory – modulo knowing about multiplier
algebras, strict topology, Choquet simplexes, lower semicontinuous affine functions on
compact convex sets, and basic notions and regularity properties (like AF-algebras,
irrational rotation algebras, real rank zero, strict comparison, stable rank one) from the
current theory of simple C*-algebras. We recall some notation here, and recall others
in later parts of the paper.

For a nonunital C*-algebra B , M (B) and C (B) =def M (B)/B denote the
multiplier and corona algebras (resp.) of B . Recall that the multiplier algebra M (B) ,
of B , is roughly speaking, the largest unital C*-algebra containing B as an essential
ideal. Good references for multiplier algebras, corona algebras, strict topology and
associated subjects are [21] and [39].

For a compact convex set K , let A f f (K) denote the vector space of all affine
continuous functions from K to R . Note that, with the uniform norm, A f f (K) is a
Banach space. LA f f (K) denotes the semigroup of all lower semicontinuous, affine
functions from K to (−∞,∞] . A f f (K)+ (resp. LA f f (K)+ ) denotes all f ∈ A f f (K)
(resp. LA f f (K)) such that f � 0. A f f (K)++ (resp. LA f f (K)++ ) denotes all f ∈
A f f (K)+ (resp. LA f f (K)+ ) such that f (x) > 0 for all x ∈ K . References for the
above material are [1], [12], [13], [14], [33] and the references therein.

For a C*-algebra D (unital or nonunital), we let T (D) denote the tracial state
space of D , given the weak* topology. We will be interested in T (B) , T (M (B))
and T (C (B)) (some or all of which could be empty) for some nonunital B . Note that
when D is unital, then T (D) is a compact convex set – in fact, if D is additionally
separable, then T (D) is a metrizable Choquet simplex. Suppose that D is addition-
ally separable. For an element e ∈ Ped(D)+ −{0} , we let Te(D) denote all densely
defined, norm-lower semicontinuous traces D+ → [0,∞] which are normalized at e .
Recall that Ped(D) denotes the Pedersen ideal of D ; and when D is separable, then
Te(D) , with the topology of pointwise convergence on Ped(D) , is a metrizable Cho-
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quet simplex. Recall also that any densely defined, norm lower semicontinuous trace
τ on D has a unique extension to a strictly lower semicontinuous trace on M (D)+ .
Unless otherwise specified, we will also denote this extension trace by “τ ”. We also
recall that if τ ∈ T (D) then this extension trace is actually an element of T (M (D)) .

For any element A ∈ M (D)+−{0} , A induces an element Â ∈ LA f f (Te(D))++
via

Â(τ) =def τ(A)

for all τ ∈ Te(D) . In a similar manner, A induces elements in A f f (T (M (D)))+ and
A f f (T (D))+ , which we will also denote by Â .

Also, for all τ ∈ Te(D) (or T (D) or T (M (D))), recall that the dimension func-
tion dτ is defined by

dτ(A) =def lim
n→∞

τ(A1/n),

for all A ∈ M (D)+ .

For any C*-algebra C , and a,b∈ C+ , a � b if there exists a sequence {xn} in C
such that xnbx∗n → a . Note that when a and b are projections, the above � is the same
as Murray–von Neumann subequivalence of projections. Also, a ∼c b if a � b and
b � a . Note that when a and b are projections, ∼c need not be the same as Murray–
von Neumann equivalence of projections which (following longstanding convention)
we denote by ∼ .

References for the above material are again [12], [13], [14], [33] and the references
therein.

We will assume that, in all relevant places, all our simple, separable C*-algebras
have the property that every quasitrace is a trace.

We caution the reader that in this paper, we use one terminology different from
what is in the papers [12], [13], [14], and other works: In [12], [13], and [14], T (D)
means Te(D) for some e ∈ Ped(D)+−{0} , but that is NOT the case in this paper.

We note that in this paper, when we write “Te(D)”, we just mean the aforemen-
tioned object with some element e ∈ Ped(D)+−{0} . For our results, it will not matter
which positive nonzero element e of the Pedersen ideal is used.

Good basic references for the theory of simple C*-algebras are [7] and [21].

Finally, many of the ideas of this paper, are generalizations of those from the paper
[8], though we need the comparison theory for multiplier algebras as from [14], [24]
and the references therein.

The above give the basic references required for understanding the contents of this
paper. To understand, for example, the connections with KK theory, extension theory
and operator theory, which requires a bit more work, we recommend beginning with
the basics in [3], [11], [17], [20], [21], [22], [38], and moving on to the more advanced
theory from later references.
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2. Projections and Property I

Throughout this section, B is a nonunital, separable, simple, finite, Z -stable
(see paragraph after Definition 2.9), stable rank one C*-algebra for which every qua-
sitrace is a trace. We call the aforementioned the standing assumptions on or standing
properties of B .

DEFINITION 2.1. Let K be a compact convex set, and let f ,g ∈ LA f f (K)++ .
f is said to be complemented under g if there exists an h ∈ LA f f (K)++ such that
f +h = g .

With the above, we also say that h complements f under g .

LEMMA 2.2.

1. B has projection surjectivity. I.e., suppose that f ∈ LA f f (Te(B))++ is comple-

mented under 1̂M (B) . Then there exists a projection P ∈ M (B)−B such that

P̂ = f .

2. B has projection injectivity. I.e., suppose that P,Q ∈ M (B)−B are projec-
tions for which P̂ = Q̂ on Te(B) . Then P is Murray–von Neumann equivalent
to Q in M (B) .

3. B has stable projection surjectivity. I.e., suppose that f ∈ LA f f (Te(B))++ .
Then there exists a projection P ∈ M (B⊗K )− (B⊗K ) such that P̂ = f .

4. B has stable projection injectivity. I.e., suppose that P,Q ∈ M (B ⊗K )−
(B⊗K ) are projections for which P̂ = Q̂ on Te(B) . Then P is Murray–von
Neumann equivalent to Q in M (B⊗K ) .

Proof. Statements (3) and (4) follow from [24] Proposition 4.2 and Corollary 4.6
(see also [5] and [35] 6.2.3).

Let {e j,k}1� j,k<∞ be a system of matrix units for K . We identify M (B) with the
hereditary C*-subalgebra M (B)⊗e1,1 = (1M (B)⊗e1,1)M (B⊗K )(1M (B)⊗e1,1)⊆
M (B⊗K ) . Then (2) follows immediately from (4).

We now prove (1). Suppose that f ,g ∈ LA f f (Te(B))++ with f + g = 1̂M (B) .
Again identifying M (B) with the hereditary C*-subalgebra M(B)⊗ e1,1 ⊂ M (B⊗
K ) , we have that f + g = (1M (B)⊗e1,1

)̂ . By (3), we can find projections P′,Q′ ∈
M (B ⊗K )− (B ⊗K ) such that P̂′ = f and Q̂′ = g . Moreover, since M (B ⊗
K ) is properly infinite, replacing P′ and Q′ with Murray–von Neumann equivalent
projections if necessary, we may assume that P′ ⊥ Q′ . Now (P′ ⊕Q′)̂ = (1M (B)⊗e1,1

)̂ .
Hence, by (4), we must have that P′ ⊕Q′ ∼ 1M (B)⊗e1,1

. Hence, there must be pairwise
orthogonal projections P,Q ∈ M (B)⊗ e1,1 −B⊗ e1,1 such that P ∼ P′ , Q ∼ Q′ and
P+Q = 1M (B)⊗e1,1

. Hence, P̂ = f . �
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REMARK 2.3. The proof of Lemma 2.2 actually shows that for all n � 1, for all
f ∈ LA f f (Te(B))++ which is complemented under ̂1M (Mn(B)) , there exists a projec-

tion P ∈ M (Mn(B))−Mn(B) such that P̂ = f .
This latter property is sometimes called n projection surjectivity. .

Recall that, by [15] Remark 2.9, there exists a (necessarily unique) smallest ideal
Imin of M (B) such that Imin properly contains B . (See also [13] Theorem 4.7, Propo-
sition 5.4 and Theorem 5.6.)

LEMMA 2.4. Let A ∈ Imin+ −B be such that ‖A‖ � 1 and Â is continuous on
Te(B) .

Then there exists a projection P ∈ AM (B)A−B for which P̂ = Â on Te(B) .

Proof. If A is a projection, then we can take P = A .
Hence, we may assume that A is not a projection, and hence, sp(A) contains a

point in (0,1) . Hence, since B is simple, dτ(A) > τ(A) for all τ ∈ Te(B) . Since
B has projection surjectivity, and since ̂1M (B)−A complements Â under 1̂M (B) ,

let Q ∈ M (B)−B be a projection for which Q̂ = Â on Te(B) . Hence, by [13]
Theorem 5.6, Q ∈ Imin −B . Also, dτ(A) > τ(Q) = dτ(Q) for all τ ∈ Te(B) . Hence,
by [13] Theorem 6.4, Q � A . Hence, there exists a projection P ∈ AM (B)A−B =
AIminA−B such that P is Murray–von Neumann equivalent to Q in M (B) . Hence,
P̂ = Â on Te(B) . �

Recall that for any C*-algebra C and for any x,y ∈ C , the commutator [x,y] is
defined by [x,y] =def xy− yx .

THEOREM 2.5. Let D be a σ -unital simple purely infinite C*-algebra. Then for
every self-adjoint element a ∈ D , there exist x j ∈ D (1 � j � 5) such that

a =
5

∑
j=1

[x j,x
∗
j ]

and
‖x j‖ � 3‖a‖1/2

for all 1 � j � 5 .
As a consequence, for all x ∈ D , there exist x j,y j ∈ D (1 � j � 10) such that

x =
10

∑
j=1

[x j,y j]

and
‖x j‖,‖y j‖ � 3‖x‖1/2

for all 1 � j � 10 .



PROPERLY INFINITE CORONA ALGEBRAS 677

Proof. Recall, by [42], that D is either unital or stable.
The result follows from the arguments of [9] Theorems 1.1 and 2.1. �
Recall that for any C*-algebra C , [C ,C ] ⊆ C is the linear subspace spanned by

the commutators of C , i.e., [C ,C ] =def Span{[x,y] : x,y ∈ C } . Recall also that

[C ,C ] =
⋂
{ker(τ) : τ ∈ T (C )}. (2.1)

(See [6] Theorem 2.9; see also the proof of [36] Lemma 3.1.)

THEOREM 2.6. There exists a universal constant C (that applies to all C*-algebras
with the standing properties of B ) such that for all x ∈ B , if τ(x) = 0 for all τ ∈
T (B) , then there exist x j,y j ∈ B (1 � j � 7) such that

x =
7

∑
j=1

[x j,y j]

and
‖x j‖,‖y j‖ � C‖x‖1/2

for all 1 � j � 7 .

Proof. This follows from [31] Theorem 1.1. (See also (2.1).) �
Recall that an element x in a C*-algebra C has a local unit a∈C+ if ax = xa = x .
Recall that every element τ of T (B) extends to an element of T (M (B)) (which

we also denote by “τ ”), and this is the unique (strict) lower semicontinuous extension.

LEMMA 2.7. Let C be the universal constant from Theorem 2.6.
Let A ∈ Imin+−B be such that ‖A‖ � 1 . Suppose that P ∈ AM (B)A−B is a

projection for which P̂ = Â on T (B) .
Then there exist Xj,Yj ∈ AM (B)A (1 � j � 12) such that

A−P =
12

∑
j=1

[Xj,Yj]

and
‖Xj‖,‖Yj‖ � max{

√
161C,4}‖A−P‖1/2

for all 1 � j � 12 .

Proof. Recall that π : M (B) → C (B) is the quotient map. Then, by [13] Theo-
rem 4.8 (see also [15]), π(Imin) is a simple purely infinite C*-algebra.

So π(A−P)∈ π(AIminA) , which is a σ -unital, simple purely infinite C*-algebra.
So by Theorem 2.5, let X̃ j,Ỹj ∈ π(AIminA) (1 � j � 5) be such that

π(A−P) =
5

∑
j=1

[X̃ j,Ỹj]
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and
‖X̃ j‖,‖Ỹj‖ � 3‖A−P‖1/2

for all 1 � j � 5.
Let Xj,Yj ∈ AM (B)A be such that π(Xj) = X̃ j and π(Yj) = Ỹj and

‖Xj‖,‖Yj‖ � 4‖A−P‖1/2

for all 1 � j � 5.
Let b ∈ ABA be such that A−P = ∑5

j=1[Xj,Yj] + b . Therefore, τ(b) = τ(A−
P)−∑5

j=1 τ([Xj,Yj]) = 0 for all τ ∈ T (ABA) .
Let us next find an upper bound for the norm of b . Firstly, for all 1 � j � 5,

‖[Xj,Yj]‖ � 2‖Xj‖‖Yj‖ � 32‖A−P‖ . So

‖b‖ = ‖A−P−
5

∑
j=1

[Xj,Yj]‖

� ‖A−P‖+160‖A−P‖
= 161‖A−P‖.

So by Theorem 2.6, there exist Xj,Yj ∈ ABA , for 6 � j � 12, such that

b =
12

∑
j=6

[Xj,Yj]

and
‖Xj‖,‖Yj‖ � C‖b‖1/2 � C

√
161‖A−P‖1/2

for all 6 � j � 12. �

LEMMA 2.8. Let C be the universal constant from Theorem 2.6.
Let a ∈ B+ be such that ‖a‖ � 1 . Suppose that P ∈ Imin+ −B is a projection

for which P̂ = â on T (B) .
Then there exist Xj,Yj ∈ Imin (1 � j � 12) such that

a−P =
12

∑
j=1

[Xj,Yj]

and
‖Xj‖,‖Yj‖ � max{

√
161C,4}‖a−P‖1/2

for all 1 � j � 12 .

Proof. The proof is essentially the same as that of Lemma 2.7, except that we
replace π(AIminA) with π(PIminP) . �

We will use a definition of bidiagonal decomposition that is slightly stronger than
those in [12] and [13]. However, the existence of such a stronger decomposition is
actually proven in these papers.
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DEFINITION 2.9. Let D be a nonunital C*-algebra. An element A ∈ M (D)+
is said to be bidiagonal or have a bidiagonal decomposition if there exist a sequential
approximate unit {en} for D , a bounded sequence {al} in D+ and positive integers
nk+1 < mk < nk+2 < mk+1 for all k such that the following statements are true:

1. en+1en = en for all n ,

2. ak ∈ (emk − enk)D(emk − enk) for all k � 1, and

3. A = ∑∞
n=1 an , where the sum converges strictly in M (D) .

The Jiang–Su algebra Z [10] is the unique simple unital nonelementary inductive
limit of dimension drop algebras with K theory invariant being the same as that for the
complex numbers C , i.e.,

(K0(Z ),K0(Z )+,K1(Z ),T (Z ))= (Z,Z+,0,{pt})= (K0(C),K0(C)+,K1(C),T (C)).

We let τZ denote the unique tracial state of Z . A C*-algebra D is said to be Z -
stable (or Jiang–Su-stable) if D ∼= D ⊗Z . Z -stability is a regularity property which
is an axiom in the classification program for simple amenable C*-algebras.

LEMMA 2.10. Let D be a Z -stable C*-algebra and let ι : D → D ⊗Z be the
*-embedding given by

ι : d �→ d⊗1Z .

Then there exists a *-isomorphism Φ : D → D ⊗ Z such that ι and Φ are
approximately unitarily equivalent, i.e., there exists a sequence {un} of unitaries in
M (D)⊗Z ⊂ M (D ⊗Z ) for which

unι(a)u∗n → Φ(a)

for all a ∈ D .

Proof. This follows from [10] Theorems 7.6 and 8.7. �

LEMMA 2.11. Let A∈M (B)+−B have a bidiagonal decomposition. Then for
every ε > 0 , there exist 4 bounded sequences {Ak,n}∞

n=1 in Imin+ −B (1 � k � 4)
such that the following statements are true:

1. For all 1 � k � 4 , for all n � 1 , ‖Ak,n‖ � ‖A‖ .

2. For all 1 � k � 4 , for all n � 1 , Âk,n is continuous on Te(B) .

3. For all 1 � k � 4 , for all n �= n′ , Ak,n ⊥ Ak,n′ .

4. For all 1 � k � 4 , if {Xn} is a bounded sequence in M (B) such that Xn ∈
Ak,nM (B)Ak,n = Ak,nIminAk,n for all n , then ∑∞

n=1 Xn converges strictly in
M (B) .
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5. A−∑4
k=1 ∑∞

n=1 Ak,n ∈ B .

6. ‖A−∑4
k=1 ∑∞

n=1 Ak,n‖ < ε .

Proof. Let {εl}∞
l=1 be a sequence of strictly positive real numbers such that ∑∞

l=1 εl

< ε
2 .

We may assume that ‖A‖ � 1. Since A is bidiagonal, we can choose a bounded
sequence {al} in B+ , as in Definition 2.9, such that the statements in Definition 2.9 are
true. In particular, A = ∑∞

l=1 al , where the sum converges strictly in M (B) . Note also
that the statements in Definition 2.9 imply that whenever {xl} is a bounded sequence in
B such that xl ∈ alBal for all l , then ∑∞

l=1 xl converges strictly in M (B) . Replacing
appropriate terms al with appropriate finite sums ∑l2

j=l1
a j if necessary, we may also

assume that liminfl→∞ ‖a2l‖> 0 and liminfl→∞ ‖a2l+1‖> 0. And hence, ∑∞
l=1 a2l and

∑∞
l=0 a2l+1 are both outside of B . Also, for all l , al has a local unit (which in turn has

a local unit) in B . Hence, for all l ,

sup
τ∈Te(B)

dτ(al) < ∞.

Hence, for all l , let nl � 1 be an integer such that

dτ(al) < nl for all τ ∈ Te(B).

For each l , let {el, j}2l+1nl
j=1 be finitely many norm one, positive elements in Z

such that the following statements are true:

1. For all j , el, j has a local unit in Z , which itself has a local unit in Z ; i.e.,
there exist contractive positive elements e′l, j,e

′′
l, j ∈ Z for which e′l, jel, j = el, j

and e′′l, je
′
l, j = e′l, j .

2. 1Z = ∑2l+1nl
j=1 el, j .

3. e′′l, j ⊥ e′′l, j′ for | j− j′| � 2.

4. dτZ
(e′′l, j) < 1

2lnl
, for all j . (Recall that τZ is the unique tracial state of Z .)

To simplify the notation in our proof, for all j > 2l+1nl , we let

el, j =def 0.

For all l , let Bl =def alBal . Recalling that every hereditary C*-subalgebra of
a separable, Z -stable C*-algebra is Z -stable ([37]), for each l , we may work with
Bl ⊗Z instead of Bl and identify al with a′l ∈ (Bl ⊗Z )+ . (So Bl ⊗Z = a′lBa′l .)
By Lemma 2.10, for every l , there exists an element dl ∈ (Bl)+ , with ‖dl‖ = ‖a′l‖ =
‖al‖� 1, and a unitary ul ∈M (Bl)⊗Z such that ‖ul(dl ⊗1Z )u∗l −a′l‖< εl . In fact,
we require that dl ⊗1Z and a′l be approximately unitarily equivalent in M (Bl)⊗Z .
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Let {A′
j}∞

j=1 and {A′′
j}∞

j=1 be the two contractive sequences in M (B)+ given by

A′
j =def

∞

∑
l=1

u2l(d2l ⊗ e2l, j)u∗2l and A′′
j =def

∞

∑
l=0

u2l+1(d2l+1⊗ e2l+1, j)u∗2l+1,

for all j , where the sums converge strictly in M (B) .
Then it follows that A′

j,A
′′
j ∈ Imin+ −B , Â′

j and Â′′
j are both continuous on

Te(B) , and A′
j ⊥ A′

j1
and A′′

j ⊥ A′′
j1

for all | j− j1| � 2. Moreover, if {X ′
j}∞

j=1 and

{X ′′
j }∞

j=1 are bounded sequences such that X ′
j ∈ A′

jM (B)A′
j and X ′′

j ∈ A′′
jM (B)A′′

j
for all j , then both ∑ j X

′
j and ∑ j X

′′
j converge strictly in M (B) .

Finally, A−∑ j A
′
j −∑ j A

′′
j ∈ B and ‖A−∑ j A

′
j −∑ j A

′′
j‖ < ε .

Define A1, j =def A′
2 j , A2, j =def A′

2 j+1 , A3, j =def A′′
2 j and A4, j =def A′′

2 j+1 , for all
j . �

THEOREM 2.12. M (B) is the (norm) closed linear span of its projections.

Proof. It suffices to prove that every positive element in M (B) is the norm limit
of finite linear combinations of projections in M (B) .

Suppose that A ∈ M (B)+ . We may assume that ‖A‖ = 1.

Case 1: Suppose that A /∈ B . By [12] Theorem 4.2 and its proof, A is the norm
limit of bidiagonal operators as in Definition 2.9. Hence, we may assume that A is
bidiagonal.

Let ε > 0 be arbitrary. Plug the given operator A and the given ε into Lemma
2.11 to get four bounded sequences {Al,n}∞

n=1 (1 � l � 4) in Imin+ −B .
Let 1 � l � 4 and n � 1 be arbitrary. If Al,n is a projection, then we let Pl,n =def

Al,n .

Suppose that Al,n is not a projection. (1M (B) − Al,n)̂ complements Âl,n under

1̂M (B) . By Lemma 2.2, let Ql,n ∈ M (B)−B be a projection such that Q̂l,n = Âl,n

on Te(B) . We have that Âl,n is a continuous function on Te(B) . Hence Q̂l,n is a
continuous function on Te(B) . Hence, by [13] Theorem 5.6, Ql,n ∈ Imin −B . Note
that, by the definition of Al,n in Lemma 2.11, ‖Al,n‖ � 1. Hence, since Al,n is not a
projection, dτ(Al,n) > τ(Al,n) = τ(Ql,n) for all τ ∈ Te(B) . Hence, by [13] Theorem
6.4, let Pl,n ∈ Al,nM (B)Al,n −B be a projection such that Pl,n ∼ Ql,n .

Hence, for all 1 � l � 4 and all n � 1, we have a projection Pl,n ∈Al,nM (B)Al,n−
B = Al,nIminAl,n−B such that P̂l,n = Âl,n on Te(B) , and hence, P̂l,n = Âl,n on T (B) .
Hence, by Lemma 2.7, for all l,n , let Xl,n, j,Yl,n, j ∈Al,nM (B)Al,n (1 � j � 12) be such
that

Al,n −Pl,n =
12

∑
j=1

[Xl,n, j,Yl,n, j]

and

‖Xl,n, j‖,‖Yl,n, j‖ � max{
√

161C,4}‖Al,n−Pl,n‖1/2 �
√

2max{
√

161C,4}.
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Here, C is the universal constant from Lemma 2.7.
By the definition of the Al,n s (in Lemma 2.11), for all l , for all n �= n′ , Al,n ⊥Al,n′ ,

and also for all l, j , the sums Xl, j =def ∑∞
n=1 Xl,n, j and Yl, j =def ∑∞

n=1Yl,n, j converge
strictly in M (B) . Also, for all 1 � l � 4, let Pl ∈ M (B) be the projection given by
Pl =def ∑∞

n=1 Pl,n , where the sum converges strictly in M (B) .
Hence,

4

∑
l=1

12

∑
j=1

[Xl, j,Yl, j]

=
4

∑
l=1

12

∑
j=1

[
∞

∑
n=1

Xl,n, j,
∞

∑
m=1

Yl,m, j

]

=
4

∑
l=1

12

∑
j=1

∞

∑
n=1

[Xl,n, j,Yl,n, j] (since Al,m ⊥ Al,n for m �= n )

=
4

∑
l=1

∞

∑
n=1

12

∑
j=1

[Xl,n, j,Yl,n, j]

=
4

∑
l=1

∞

∑
n=1

(Al,n−Pl,n)

=
4

∑
l=1

∞

∑
n=1

Al,n−
4

∑
l=1

Pl

≈ε A−
4

∑
l=1

Pl.

By Lemma 2.2, we can find pairwise orthogonal projections R1,R2,R3 ∈ M (B)
with Rj ∼ Rk for all j,k and R1 + R2 + R3 = 1M (B) . Hence, by [26] Theorem 3.8,

∑4
l=1 ∑12

j=1[Xl, j,Yl, j] is a finite linear span of projections. Hence, A is norm within ε
of a finite linear span of projections. Since ε was arbitrary, A is in the (norm) closed
linear span of projections in M (B) .

Case 2: Suppose that A ∈ B . Since A is the norm limit A = limδ→0+(A− δ )+ ,
we may assume that A has a local unit in B . Now (1M (B)−A)̂ complements Â under

1̂M (B) . By Lemma 2.2, we can find a projection P ∈ M (B)−B for which Â = P̂

on Te(B) . Since A ∈ B+ has a local unit, Â is continuous on Te(B) . Thus, P̂ is
continuous on Te(B) . Thus, by [13] Theorem 5.6, P ∈ Imin −B . Since Â = P̂ on
Te(B) , Â = P̂ on T (B) . By Lemma 2.8 and by [26] Theorem 3.8 (using the same
decomposition of the unit R1 +R2 +R3 = 1M (B) as in Case 1), we have that A−P is
a finite linear combination of projections. Hence, A is a finite linear combination of
projections. �

REMARK 2.13. In Case 1 of the proof Theorem 2.12, by [26] Theorem 3.8,
∑4

l=1 ∑12
j=1[Xl, j,Yl, j] can be expressed as a linear combination of (4)(12)(84) = 4032
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projections. Hence, A can be approximated arbitrarily close, in norm, by a linear com-
bination of 4036 projections.

In Case 2 of the proof of Theorem 2.12, if A has a local unit in B , then by Lemma
2.8, A−P can be expressed as the sum of 12 commutators. Hence, by [26] Theorem
3.8, A−P can be expressed as a linear combination of (12)(84) = 1008 projections.
Hence, A can be expressed as a linear combination of 1009 projections.

Recall that every element, of a C*-algebra, is a linear combination of 4 positive
elements. Hence, in summary, if X ∈ M (B)−B , then X can be approximated arbi-
trarily (norm) close by a linear combination of (4036)(4) = 16144 projections. And if
X ∈ B , then X can be approximated arbitrarily (norm) close by a linear combination
of (1009)(4) = 4036 projections. We do not believe that these numbers are optimal.

THEOREM 2.14. B has Property I. I.e., the usual map

K0(M (B)) → A f f (T (M (B))) : [p]− [q] �→ p̂− q̂

has image which separates the points of T (M (B)) .

Proof. This follows immediately from Theorem 2.12.
Note that by convention, if T (M (B)) = /0 , then B trivially has Property I. In

[33], see Remarks 2.6, 2.14 and the comment after Definition 2.12. �

REMARK 2.15. In the this section, the only places, where the stable rank one
standing assumption on B is used, are in Lemma 2.2 (specifically for proving (stable)
projection injectivity in Lemma 2.2) and all places in this section which appeals to this
lemma.

3. Properly infinite corona algebras

The next lemma should be known, but we exhibit the short computation for the
convenience of the reader.

LEMMA 3.1. Let D be a C*-algebra and suppose that a,b,c∈D are contractive
positive elements, x ∈ D and 0 < δ < 1 such that ab = b and ‖xbx∗− c‖ < δ .

Then there exists a y ∈ D with ‖y‖ � 2 such that ‖yay∗− c‖ < δ .

Proof. Let y =def xb1/2 . Then ‖y‖2 = ‖xbx∗‖ � ‖c‖+ δ � 1+ δ < 2.
Moreover, yay∗ = xb1/2ab1/2x∗ = xbx∗ ≈δ c , as required. �

Let C be a C*-algebra and x ∈ C . Recall that x is full in C means that the (C*-)
ideal Ideal(x) =def C xC +C x∗C = C .

Recall that a simple C*-algebra D has strict comparison or strict comparison
for positive elements if for all a,b ∈ (D ⊗K )+ , dτ(a) < dτ(b) or dτ(b) = ∞ for all
τ ∈ Te(D) implies that a � b in D ⊗K .
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LEMMA 3.2. Let D be a nonunital, separable, simple, stably finite C*-algebra
with strict comparison for positive elements.

Suppose that A ∈ M (D)+ is a full element and d ∈ D+ satisfies that dτ(d) <
dτ(A) for all τ ∈ T (D) .

Then d � A in M (D) .

Proof. Let a ∈ ADA+ be a strictly positive element. Then dτ(a) = dτ(A) for all
τ ∈ Te(D) . Thus, since A is full in M (D)+ , for all τ ∈ Te(D) , either τ|D induces
a nonzero bounded trace on D and dτ(a) = dτ(A) > dτ(d) or dτ(a) = dτ(A) = ∞ .
Hence, since D has strict comparison for positive elements, d � a in D ⊗K (and
thus in D ). Since a � A in M (D) , we have that d � A in M (D) . �

LEMMA 3.3. Let D be a nonunital, separable, simple C*-algebra. Let {en} be
an approximate unit for D such that en �= en+1 and en+1en = en for all n � 1 .

Then for all N � 1 , 1M (D)− eN is a full element of M (D) .

Proof. Note that 1M (D) − eN+1 = ∑∞
n=N+1(en+1 − en) where the sum converges

strictly in M (D) . Since D is a simple C*-algebra, we can find L � 1 and x1, . . . ,xL ∈
D such that

L

∑
l=1

xl(eN+2 − eN+1)x∗l ≈ 1
10

eN+1.

Hence,

eN �
(

eN+1 − 1
10

)
+
�

L⊕
(eN+2 − eN+1).

Hence,

1M (D) �
L+1⊕

(1M (D)− eN).

Hence, 1M (D)− eN is full in M (D) . �

LEMMA 3.4. Let D be a nonunital, separable, simple, stably finite C*-algebra
with strict comparison for positive elements and T(D) being weak* compact. Let
{en} be an approximate unit for D for which en+1en = en and en+1 �= en for all n .

Then there exists an N � 1 such that

(1M (D)− eN)⊕ (1M (D)− eN) � 1M (D).

in M2 ⊗M (D) .

Proof. Note that M2 ⊗D is also nonunital, separable, simple, stably finite and
has strict comparison; so we may apply Lemma 3.2 to M2 ⊗D and M (M2 ⊗D) ∼=
M2 ⊗M (D) .

Note that 1M (D) = ∑∞
n=1(en − en−1) , where e0 =def 0 and where the series con-

verges strictly in M (D) . Moreover, for all n � 1, ên is a continuous function on
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T (D) and 1 = 1̂M (D) = ∑∞
n=1

̂(en − en−1) on T (D) , where by Dini’s theorem, the se-
ries converges uniformly on the compact set T (D) . In particular, (1M (D) − em−1)̂ =

∑∞
n=m

̂(en − en−1) → 0 as m → ∞ uniformly on T (D) . Thus, we can choose an N � 1
so that for all τ ∈ T (D) ,

1 > 2
∞

∑
n=N

τ(en − en−1) = 2τ(1M (D)− eN−1).

Let ε > 0 be given. Choose a sequence {εk} in (0,1) such that ∑∞
k=1 εk < ε .

We now construct, by induction, three subsequences {Lk}∞
k=1 , {Mk}∞

k=1 and
{M′

k}∞
k=1 of the positive integers, a sequence {αk}∞

k=1 in (0,∞) , and sequence {xk}∞
k=1

of elements in M2 ⊗D with norm at most 2.

Basis step k = 1. Since, by [33] Lemma 2.10, (1M (D) − eN−1)̂ is continuous on
the compact set T (D) , we can find α1 > 0 so that for all τ ∈ T (D) ,

1 > α1 +2
∞

∑
n=N

τ(en − en−1) = α1 +2τ(1M (D)− eN−1).

Since (1M (D)− em−1)̂ → 0 uniformly on T (D) , choose L1 � 6 so that

τ(eL1+5− eL1−5) < α1

for all τ ∈ T (D) . Hence,

τ(1M (D)− eL1+5 + eL1−5) > 2
∞

∑
n=N

τ(en − en−1) = 2τ(1M (D)− eN−1)

for all τ ∈ T (D) .
Choose M1 > N +5 so that

τ(eL1 − eL1−1) > 2
∞

∑
n=M1−1

τ(en − en−1) = 2τ(1M (D)− eM1−2)

for all τ ∈ T (D) . So

dτ(1M (D)− eL1+5 + eL1−5) � τ(1M (D)− eL1+5 + eL1−5) > 2dτ

(
M1

∑
n=N+1

en − en−1

)
for all τ ∈ T (D) .

By Lemma 3.3, (1M (D) − eL1+5 + eL1−5)⊕ 0 is full in M2 ⊗M (D) . Hence, by
Lemma 3.2,

1M (D)− eL1+5 + eL1−5 � (eM1 − eN)⊕ (eM1 − eN)

in M2⊗M (D) . Therefore, by Lemma 3.1, choose M′
1 � L1 +10 and an element x1 ∈

((eM1 − eN)⊕ (eM1 − eN))(M2 ⊗D)((eM′
1
− eL1+4 + eL1−4)⊕0) with ‖x1‖� 2 such that

x1x
∗
1 ≈ε1 (eM1 − eN)⊕ (eM1 − eN).
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Induction step: Suppose that we have chosen Lk , Mk , M′
k , αk and xk . We now

choose Lk+1 , Mk+1 , M′
k+1 , αk+1 and xk+1 .

By the induction hypothesis, for all τ ∈ T (D) ,

τ((eLk − eLk−1)+ (1M (D)− eM′
k+5)) > 2τ(1M (D) − eMk−2).

Hence, since ((eLk − eLk−1)+ (1M (D)− eM′
k+5))̂ and (1M (D) − eMk−2)̂ are continuous

on the compact set T (D) , choose αk+1 > 0 so that for all τ ∈ T (D) ,

τ((eLk − eLk−1)+ (1M (D)− eM′
k+5)) > αk+1 +2τ(1M (D)− eMk−2).

Since (1M (D)− em−1)̂ → 0 as m → ∞ uniformly on T (D) , choose Lk+1 � M′
k +

20 such that for all τ ∈ T (D) ,

τ(eLk+1+5− eLk+1−5) < αk+1.

Hence, for all τ ∈ T (D) ,

τ((eLk − eLk−1)+ (1M (D)− eLk+1+5 + eLk+1−5− eM′
k+5)) > 2τ(1M (D)− eMk−2).

So for all τ ∈ T (D) ,

dτ((eLk − eLk−1)+ (1M (D)− eLk+1+5 + eLk+1−5− eM′
k+5)) > 2dτ(1M (D)− eMk−1).

Since (1M (D)− em−1)̂ → 0 uniformly on T (D) , choose Mk+1 > Mk +10 so that
for all τ ∈ T (D) ,

τ(eLk+1 − eLk+1−1) > 2τ(1M (D)− eMk+1−2).

By Lemma 3.3, (1M (D)− eLk+1+5 + eLk+1−5− eM′
k+5)⊕0 is full in M2 ⊗M (D) .

Hence, by Lemma 3.2,

(eLk − eLk−1)+ (1M (D)− eLk+1+5 + eLk+1−5− eM′
k+5) � (eMk+1 − eMk)⊕ (eMk+1 − eMk)

in M2⊗M (D) . Hence, by Lemma 3.1, choose M′
k+1 > Lk+1 +10 and xk+1 ∈M2⊗D

with
xk+1x

∗
k+1 ∈ HerM2⊗D((eMk+1 − eMk)⊕ (eMk+1 − eMk))

and

x∗k+1xk+1 ∈ HerM2⊗D(((eLk+1− eLk−2)+ (eM′
k+1

− eLk+1+4 + eLk+1−4 − eM′
k+4))⊕0)

and with ‖xk+1‖ � 2 such that

xk+1x
∗
k+1 ≈εk+1 (eMk+1 − eMk)⊕ (eMk+1 − eMk).

This completes the inductive construction.
Let X =def ∑∞

k=1 xk where the sum converges strictly in M2 ⊗M (D) .
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Then
X1M (D)X

∗ ≈ε (1M (D)− eN)⊕ (1M (D)− eN).

Since ε > 0 was arbitrary, (1M (D)− eN)⊕ (1M (D)− eN) � 1M (D) . �
We recall some more terminology from the theory of simple C*-algebras, some

of which have already been reviewed in the introduction. Let D be a separable C*-
algebra. For all n � 1, we have a *-embedding

Mn ⊗D ↪→ Mn+1⊗D

given by
b �→ diag(b,0).

We let M∞(D) denote the *-algebra

M∞(D) =def

∞⋃
n=1

Mn⊗D .

Recall the subequivalence relation � on positive elements, which generalizes
Murray-von Neumann subequivalence of projections, that is given as follows: For all
a,b ∈ M∞(D)+ ,

a � b

means that there exists an N � 1 with a,b ∈ MN ⊗D and a sequence {xk} in MN ⊗D
such that

xkbx∗k → a.

Recall that a ∼c b means a � b and b � a .
Recall also that, when a and b are projections, a ∼c b , as above defined, is not

the same as Murray–von Neumann equivalence of projections (which we denote by ∼ ,
following standard convention). In fact, in any simple purely infinite C*-algebra (e.g.,
O∞ ), any two nonzero positive elements a,b will satisfy a∼c b , as above defined – this
includes the case where a,b are nonzero projections that are not Murray–von Neumann
equivalent.

For all a ∈ M∞(D)+ , we let [a] be the equivalence class of a under ∼c in
M∞(D) .

We let
W (D) =def {[a] : a ∈ M∞(D)+}.

W (D) is a partially ordered semigroup under the order induced by � and with
addition given by

[a]+ [b] =def [diag(a,b)].

Note that W (D) is analogous to the Murray–von Neumann semigroup (which
consists of ∼ -equivalence classes of projections in M∞(D)).

Suppose that D is, additionally, simple. Then for all [a] ∈W (D)−{0} , [a] in-
duces an element

[̂a] ∈ LA f f (Te(D))++
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given by

[̂a](τ) =def dτ(a)

where
dτ(a) =def lim

n→∞
τ(a1/n)

for all τ ∈ Te(D) . By the same procedure, [a] also induces elements in LA f f (T (D))+
and LA f f (T (M (D)))+ which we also denote by [̂a] .

Suppose that D0 ⊆ D is a hereditary C*-subalgebra. Let

M∞(D0 )̂+ =def {â ∈ LA f f (T (M (D)))++ ∪{0} : a ∈ (Mn ⊗D0)+ and n � 1}.

Suppose, in addition, that D is unital. We let S(W (D)) denote the collection of
all order preserving, semigroup maps

ρ : W (D) → [0,∞)

such that
ρ([1]) = 1.

Most of the proof of the next argument is contained in the proof of [33] Theorem
2.15. Thus, in the proof of the next argument, we mainly work on the part that is
different from that of [33] Theorem 2.15.

THEOREM 3.5. Let B be a separable, simple, nonunital, Z -stable C*-algebra
with stable rank one. Then the following statements are equivalent:

1. C (B) is properly infinite.

2. T (B) is weak*-compact.

3. The image of T (B) in T (M (B)) is weak*-compact. (For the definition of the
map T (B)→ T (M (B)) see the previous paper Lemma 2.10 and the paragraph
before it.)

4. T (M (B)) = T (B)

5. T (C (B)) = /0 .

6. For every nonzero nonunital hereditary C*-subalgebra D ⊆ B , M∞(D )̂+ is
uniformly dense in A f f (T (M (B)))++ ∪{0} .

7. DW (C (B)) =def {[a] ∈W (C (B)) : a ∈ C (B)+} is a semigroup.

8. S(W(C (B))) = /0 .
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Sketch of proof. Firstly, we note, for the convenience of the reader, that the degen-
erate case where T (B) = /0 is covered in [33] Remark 2.14.

The above statement is the similar (modulo minor modifications) to that of [33]
Theorem 2.15, with the main differences being that [33] Theorem 2.15 assumes that B
has Property I and B has an approximate unit consisting of projetions.

The requirement that B has Property I is now redundant by (this paper) Theorem
2.14.

By [33] Remark 2.16, the only place, in the proof of [33] Theorem 2.15, where B
having an approximate unit consisting of projections is needed, is in the proof of the
implication (2) ⇒ (1). Thus, to complete the proof, we need only prove this direction:

(2) ⇒ (1): Suppose that T (B) is weak* compact. Since B is separable, let {en}
be a sequential approximate unit for B such that en+1en = en for all n . (Note that {en}
need NOT be a sequence of projections.)

By Lemma 3.4, since T (B) is weak* compact, we can find an integer N � 1 so
that

(1M (B) − eN)⊕ (1M (B)− eN) � 1M (B)

in M2 ⊗M (B) .
Hence,

π(1M (B))⊕π(1M (B)) � π(1M (B))

in M2 ⊗C (B) . I.e., C (B) is properly infinite. �
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