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ON 2 x 2 POSITIVE MATRICES OF 7-MEASURABLE OPERATORS

BAHARGUL NURAHEMET AND MYRZAGALI N. OSPANOV *

(Communicated by F. Hansen)

Abstract. Let .4 be a semi-finite von Neumann algebra. We proved the following inequalities
are hold and equivalent:

@) If x,y € Liog, () are self-adjoint operators such that -y < x, then y <joq X.
(i) If a.b € A, x,y € Ligg, (.#) and <Zx i) >0, then

a*zb+ b7 a <o a*xa+b*yb.

(iii) If x,y.2 € Liog, (#) and <Zx i) >0, then 2 +2 <iog X .

(iv) If x,y € Liog, («4) are positive operators, then x —y <jog X+ .
(V) 1f %,9,2 € Ligg, (.#¢) and <Zx i) >0, then % &2 Sjog X B .

(vi) If x,y € Liog, (') are normal operators and z € Liog n () is positive operator, then for any contraction
ae M,

|za(x+y)a*z| Siog za(|x| + [y])a"z.
1. Introduction

We denote the set of all n X n complex matrices by M, and by M, (M,,) the set
of all 2 x 2 block matrices, i.e.,

Mz(MH) e {(xll x12> , xl‘,j c M}’H l,] e 1’2} .

X2,1 X22

We use the direct sum notation x @y for the block-diagonal matrix (g 2) . Bourin

*

proved that if (:i Z) and (Z Cb ) are positive block-matrix with entries in M, , then

k

k
1_[1sj(c) < Hsj(a
.

Jj=1

Nl—
Bl—

b )7 k:1727"'7n7 (1)
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where s;(x) (j=1,2,---,n) is singular value of x € M, (see [12, Theorem 4.17).
Let x,y € M,, be Hermitian matrices such that +y < x. In general,

sj(y)gsl(x% j:1727"'7n

not holds (see [3, p. 121]). But, Bourin, Hirzallah and Kittaneh [1] proved that the
following relation holds.

k k
H <]si), k=1,2,--,n. 2)

Jj=1

Notice that (2) can also be concluded from the inequality (2.4) in [10] (also see [3,
Theorem 4.1]). On the other hand,

0<L L—1\(x+y 0 \ 1 /1 1\ _ /(xy

VAN IR! 0 x—y)2\-11) \yx
| i is a unitary operator in M (.#), where 1 is the identity matrix in
M,,. Hence, we have that for x,y € M, are Hermitian matrices +y < x if and only if

(;C i) > 0 (see [7]). Therefore, (2) also follows from (1).

and\f<l

If x,y € M, are positive matrices, then x —y,x+ y are Hermitian matrices such

that £(x—y) <x+y. By (2),
X =Y <log X+ . 3)
Conversely, if x,y € M, are Hermitian matrices +y < x, then 5* 7x+y € M, are pos-

itive matrices. Using (3), one get (2). In [2, Proposition 1.1], Bourin and Lee proved
that if a € M, is positive and x,y € M,, are normal matrices, then forall p > 1,

k
[1si(la(x+y)a Hs @F el ([P + |ylP)a?), k=12, n (4
Jj=1 Jj=

It is clear that (4) implies (3).

Let (.#,t) be a semi-finite von Neumann algebra. We denote by Lo(.#) the
set of all T-measurable operators and by L, (x) the generalized singular number of
x € Lo(«#). In this paper, we generalize (4) for operators in Liog, (.#) (see next
section for definition). We prove the following inequalities are equivalent:

() If x,y € Liog, (-#) are self-adjoint operators such that £y < x, then y <jog X.
(i) If a,b € .4, x,y € Liog, (#) and (Zx i) > 0, then

a*zb+b*7"a <i0g a*xa+ b*yb.

(iii) If x,y € Liog, (.#) and (Zx i) >0, then z* 42 <1og X+
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(iv) If x,y € Liog, (') are positive operators, then x —y <jog X+ .

) Ifx,y€L10g+(///) and (zjf‘ )Z]) >0, then 2" Dz <Kpg X P Y.

(vi) If x,y € Liog, (A) are normal operators and z € Liog, (.#) is positive operator,
then for any contraction a € .Z ,

|za(x+y)a*z| Siog za(|x| + |y|)a*z.

Using this result and an Araki-Lieb-Thirring type inequality in the T-measurable oper-
ator case ([8, Lemma 3.1]), we extend the (4) and [2, Corollary 2.10 and 2.13] to the
T-measurable case.

2. Preliminaries

Let Q= (0,0) (0 < o < o) be equipped with the usual Lebesgue measure [ .
We denote by Lo(Q) the space of p-measurable real-valued functions f on Q such
that u({w € Q: |f(®)| > s}) < o for some s. The decreasing rearrangement function
f1[0,00) = [0,00] for f € Lo(Q) is defined by

Ff)=inf{s>0: y{oeQ: |f(o)|>s}) <1}

for1>0.1If f,g € Lo(Q) such that [ f*(s)ds < [ g*(s)ds forall >0, f is said to be
majorizedby g, denotedby f < g. Let E be a quasi-Banach subspace of Ly(€2), simply
called a quasi-Banach function space on € in the sequel. E is said to be symmetric
if, for f € E and g € Ly(Q) such that g*(r) < f*(z) forall > 0, one has g € E and
lglle < ||flle; E is fully symmetric if, for f € Ly(Q) and g € E such that f < g, we
have f € E and || f||e < ||g][&-

We always denote by .# a semi-finite von Neumann algebra with a faithful normal
finite trace 7 and by Lo(.#) the set of all T-measurable operators associated with
(A ,7). For x € Lo(#), the distribution function A.(x) of x is defined by A,(x) =
T(e(,00)(|x])) for £ >0, where e(; ..)(|x|) is the spectral projection of |x| in the interval
(t,00), and the generalized singular numbers L. (x) of x by

U (x) =inf{s > 0: Ay(x) <7} for 1>0.
Let E be a symmetric quasi-Banach function space on (0,0) (7(1) = ¢t). Define
E(A 1) ={xelo(A): |H@)|e <}, [xle=lL@)]E

Then (E(#,7),]|-||£) is a quasi-Banach space. We call it noncommutative symmetric
space and denote by E(.Z) (see [15, 17]).

If x,y € Lo(#), then we shall say that x is submajorized by y, written x < y, if
and only if p(x) < u(y).

Let

Liog, (M) ={x € Lo(A) : log, |x| € Li(A)+ .4},
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where log, t = {log#,0}, > 0. We recall that Liog, (.#) is a *-algebra and
Li(AM)+ M C Liog, (M) C Lo(A ).

For x € Liog, (1#) and t € (0,7(1)), the determinant function associated with x is
defined by
A(x) = elologhs(x)ds

From the definition and [6, Lemma 2.5], we easy deduce that if x € L, (.#) and
t > 0, then
A(x) = A (x") = A ([x]) S)

and
A(xX") =A(x)", ifr>0andx is positive. (6)

For the determinant function, we have the following Weyl inequality:
Ar(xy) < A () A (), Vx,y € Liog, (A), Vi >0 (7

(see [4, Theorem 4.2]). Recall that if x,y € Liog, () and the product xy is self adjoint,
then

A(xy) <A(x),  1>0. ®)
If X,y € Liog, («#) such that

! !
/ log us(x)ds < / log s (y)ds, t>0,
0 0
x is said to be logarithmically submajorized by y, denoted by x <jo¢ y. Itis clear that
X <1og y if and only if A;(x) < A(y) forall # > 0. For f(r) = ¢ using [5, Lemma 4.1],

we get that x <j0g y implies x < y.
We recall the well-known equality:

1t 1 i
L [s10g1£(5)lds — i (L ) ?
e ,1336(;/0 |/ (s] ds) ; 9)

1
if/ | f(s|Pds < 4o for some p > 0
0

(see page 71 of [13]).
We remark that if .# = M, and 7 is the standard trace, then

lit(X):sj(X), relj—1,)), j=1,2,---,m.

Hence, if x,y € M, , then x < y is equivalent to

k
D80 < Y si()s 1<k<m,
J=1 j=1
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X <log ¥ 18 equivalent to

k k
[Ts;0 <[Is0), 1<k<m,
J=1 j=1
We will denote the semi-finite von Neumann algebra

My () = { (x“ x“) X €M, iy = 1,2}

X2,1 X22

on Hilbert space .77 & ¢ by My (.#'), which is associated with the semi-finite trace
Tr®T.
We will use the following result (see [14, Proposition 3]), if x € Lo(.# ), then

U (xDx™) = e (x), t>0. (10)

5
3. Main results

First, we extend (2) to the semi-finite von Neumann algebra case.

LEMMA 1. Let x,y € A be self-adjoint operators such that +y < x. Then

Y <log X-

Proof. We use the method in the proof of [1, inequality (1.6)]. It is clear that

()02 EC-()

> — .
( 0 x—y) >0 and 7 (_1 | ) 1S & unitary operator in My (). 1t follows that
xi > 0. Using [9, Lemma 2.2], we obtain that there exists a contraction a such

that y = x%ax% . By (7) and (8), we get that

A(y) =N (x%ax%) < A (xa)
— elologus(xa)ds < eJologlallus(a)ds

< elotogps(xds A (x), t>0. O
LEMMA 2. Let x,y € Liog, () be positive operators. Then x —y <jog X+ Y.
24 g

Proof. First assume that x,y are self-adjoint operators in .# . Since +(x —y) <
x—+y, by Lemma 1, the result holds.
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If x, y € Liog, (A). Set xy = xe[g ) (X), yn = yejo o) (v) for n € N. Then xp,y, € A
are positive operators, x, < x, y, <y, X, — x and y, — y in measure. Using [6, Lemma
3.4 and 2.5 (iii)], Fatou’s lemma and the first case, we get

1 t 1
/ log tts(x— y)ds < | Timinflog s (x, — yn)ds < liminf / 1og s (X — yn)ds
0 0 n—ee n—oo Jo

! !
< liminf | log s (xn +yn)ds < / log s (x+y)ds. O
0 0

n—oo

THEOREM 1. The following statements are equivalent:

() If x,y € Liog, () are self-adjoint operators such that &y < x, then y <og X.
(i) If a,b e M, x,y € Liog, (A) and (Z)i )Z]) >0, then

a*zb+b"z"a <Ko a*xa+b*yb.

(iii) 1f x,y,2 € Liog, (.#¢) and (Zx i) >0, then z* 42 <iog X +.

(iv) If x,y € Liog, (.#) are positive operators, then X —y <1og X+ .

V) If x,y,2 €L10g+(¢//1) and (Z)i )Z}) 20, then 7" ®© 2 <10g XD Y.

(Vi) If x,y € Liog, (-#) are normal operators and z € Liog, (.#) is positive operator,
then for any contraction a € M,

|za(x+y)a*z| <iog za(|x]| + [y)a*z.

Xz
7y

Proof. (1) = (ii) If (
3.2 and 4.4] to obtain that

a‘xa+b*yb+a*zb+b*z'a0\ (a* b X z a0 >0
0 0/ \0O 'y b0~

a‘xa+b*yb—a*zb—b*z7'a 0\ (a* —b* Xz a0 >0
0 0/ \0 0 'y -b0 )~

Hence, a*xa+b*yb > +(a*zb+ b*z*a), so by (i), we obtain (ii).

) > 0, we use the method in the proof of [3, Theorem
and

(i) = (iii) is clear.
(iii) = (i) If x,y € Liog, (.#) are self-adjoint operators such that £y < x, then

(; fc ) > 0. By (iii), we deduce that (i) holds.
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() = (v) If x,y € Liog, () are positive operators, then +(x—y) < x+y. By
(i), we obtain (iv).

(iv) = (i) If x,y € Liog, (#) are self-adjoint operators such that -y < x, then
x—y>=0,x+y>0. By (iv), we obtain (i).

X

x0 0z
()-+(23)

Hence, by (i), 2" © 2z S10g XD Y.

(i) = (v) Since (Z)i )Z)) >0 and ( " —yz) > 0, we get that

(v) = (vi) Let x = ulx| be the polar decomposition of x. Then x = |x| 2 u|x|% and

<|x|x>_ X2 0 <lu> X2 0
x* x| 0 )\ 1)\ o |xz)

It is clear that N “ >0, and so <|)i| * ) > 0. Similarly, (bﬂ Y ) > 0. Hence,
u 1 x* x| oyl
x|+ v x+y )
« > 0. Therefore,
(x*+y x| + ||

za(lx|+l)a’z zalxty)a'z \ _ (za 0\ (x| x+y | (a2 0 _
za(x* +y*)a*z za(|x| + |y])a*z 0 za ) \ x*+y* |x|+]y| 0 a'z)”
Using (v) and (10), we obtain that

A (za(x+y)a‘z)® = A(za(x+y)a'z®za(x" +y")a"z)
< Ar(za(lx] + [y[)a"z @ za(|x| + y[)a"z)
A

(za(|x| +|y[)a*z)?,  t>0.

t
2

L
2

It follows that
za(x+y)a'z <iog za(|x| + |y|)a"z.
(vi) = (iv)is trivial. [

REMARK 1. From (v) of Theorem 1 it follows that [11, Theorem 3.1] holds for
operators in Liog, ().

Now, we extend [2, Corollary 2.10 and 2.13] to the T-measurable case.
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PROPOSITION 1. Let p > 1, z € Liog, (-#) be positive operator and a € ./ be
a contraction.

() If xi € Liog, (A ), i =1,2,---,m are normal operators, then
"X P e P "o x|P
)Za<¢>a*z <tog (ZQ<M)a*Z> <iog Zpa(M>a*zp,
m m m
(i) If x € Liog, (4, then

x+x* P x|+ [x* p x|P + |x*|P
‘m< . )a*z <og (Za(ll | \)a*z> <1ngpa<|| | |>a*zp~

2 2
ZO cee 0 xl 0 cee 0 ada---d
00 --- 0 0xp---0 00---0
Proof. LetZ=| .. . |.X=| . "~ [ A=l .
00---0 00 --x, 00---0

By (vi) of Theorem 1,
|ZAXA™Z| <109 ZA|X|AYZ,

m i P m i « \?
o (o )are]" < (s )as)”
m m
Using [8, Lemma 3.1], we deduce that for any r > 0,
[(ZA|X|A*Z)P]" < (ZPA|X|PA*ZP)".
Applying (9), we obtain that |[ZAXA*Z|P <o (ZA|X|A*Z)? ,i.e.,

i | P iy |xl?
(Za(Z,_I i )a*z> <1og Zpa(zl_l x| )a*zp
m m

(i1) From the proof of (v) = (vi) of Theorem 1, we know that (x | x ) > 0. Hence,

hence,

x* x|
x| x* 01 |x*| x 01
pr— >
(x |“x| 10 x* x| 10 >0,
z (|x|+\x \) za(* +x)
and so +2 . I ‘2+| | > 0. Using (iii) of Theorem 1, we deduce that
za(*5-)za" za(*5)za

*

(x +x> . <| x|+ | *I)
za| —— )za <log 2a

So, it follows that ’za(”x )a*z]” Ko (za(‘ ‘+2|x |)a*z)p.

_(z0 (I« _ aa .
Let Z = 00), X = (O x*|> and A = \/_< ) The remainder of the

proof follows exactly the same way as in the proof of (i). [
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COROLLARY 1. The following statements are equivalent:

(1) If x,y € Ml, are Hermitian matrices and +y < x, then

k
SHS,f(x)7 k:1a2a"'an'
=1

~.
Il >~
,_.:

o)

<

—

(i) If x,v,z,a,b € M, and (; ;) >0, then

k k
H a zb+b*z*a <HSJ axa+b*yb) k=1,2,---,n.

\.
._.

(iii) If x,v,€ M, and (zx ;) >0, then

k k
H (z+7%) Hsj(x+y), k=1,2,---.n.

j=

—

@iv) If x,y € M, are positive semi-definite matrices, then

.:l”
’:]»

(X y) S,(X—Fy), k:1a2a"'an'

~.
Il
-
~.
Il
-

W) If x,y,z €M, and (Z)i )Z)) >0, then

k k
H (z®7") HSJ x®Yy), k=1,2,---,n.
j=1 j=1

(vi) If x,y € M, are normal matrix and z € M, is positive matrix, then for any con-
traction matrix a € M,,,

k
sj(za(x+y)a‘z) < H (za(lx|+Da"z),  k=1,2,---.n.

H:»

THEOREM 2. Let E be a fully symmetric Banach function space on (0,0;) and
f be a continuous increasing function on (0,¢) such that f(0) =0 and t — f(e') is
convex. The following holds:

(1) If x,y € Liog, (A ) are self-adjoint operators such that +y < x, then

IFUyDIE < I (xDIle-
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(i) If a,be A, x,y € L10g+(///) and (Z)i )Z)) >0, then

1f(la"zb+ b2 al)|[e < || f(Ja*xa +b7yb]) | £-

(i) If x,y € Liog, (#) and (Z)i f}) >0, then

If(" @ zDlle < (xS yDlle-

COROLLARY 2. Let E be a fully symmetric Banach function space on (0,0) and
f be a continuous increasing function on (0, ) such that f(0) =0 and t — f(e") is
convex. Then for any x,y € E(M),

1 e+ 2Dl < 1 (el + ]l

and

1F (et y +x" 4y Dlle < min{[[f (e +y]+ 3 Dlles 1 (x4 T+ v+ DIES-

In the matrix case, the first inequality of Corollary 2 follows from [2, Corollary
2131

x|+ x| x*+x
IR
4.1], we obtain that || f(|x+x*|) ||z < ||f(Jx*|+ |x|)||z . Similarly,

Proof. Since > 0, by (iii) of Theorem 1 and [5, Lemma

W+ b+ ey Yy
D A & TR A bl N P I R I

and
|xFy[+ [y Xy txty -
Xy 4y | ery)) T

From these we get the second inequality. [l

COROLLARY 3. Let E be a fully symmetric Banach function space on (0,0.) and
f be a continuous increasing function on (0, ) such that f(0) =0 and t — f(e") is
convex. Then for any a,b,c,d € E(M),
1/ (lab™ + ba* +cd* +dc*|) ||,
max { || f(lac” +ca* +bd*+db*|)| e, ¢ < |f(laf* +16P +|c* +[dP])| £
1/ (lad” +da” + be™ + cb”|) ||
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d* cd

* Lk 2 2 % *
Proof. Since (Z ¢ ) (“ b) - ('“' +e[” a’b+c d) >0, using (iii) of The-

b*a+d*c |b|* +|d|?

orem 1 and [5, Lemma 4.1], we obtain that

| f(|ab* +ba* +cd* +dc*|)||e < || f(lal* + b + |c[* + |d]*]) |-

Similarly,

and

| f(|ac* + ca* +bd* +db*|)||e < || f(|la]* + b + |c|* +|d*) ||

I (lad” +da* +be* +cb*)l|e < |1 £(lal* + b + e[+ |d[*]) e O

Acknowledgement. We thank the reviewer for useful comments. This research was

funded by the Science Committee of the Ministry of Science and High Education of the
Republic of Kazakhstan (Grant No. AP14871523).

[1]
[2]
[3]

[4

=

[5]
[6]

[7]
[8]

[9

—

[10]
[11]
[12]
[13]
[14]

[15]

REFERENCES

J.-C.BOURIN, O. HIRZALLAH AND F. KITTANEH, Jensen matrix inequalities and direct sums, Lin-
ear and Multilinear Algebra 58, 5 (2010), 645-652.

J.-C. BOURIN, E.-Y. LEE, Matrix inequalities from a two variables functional, Internat. J. Math. 27,
9 (2016), 1650071 (19 pages).

A. BURQAN AND F. KITTANEH, Singular value and norm inequalities associated with 2 X 2 positive
semidefinite block matrices, Electronic Journal of Linear Algebra 32, April (2017), 116-124.

P. DoDDS, T. DODDS, F. SUKOCHEV AND D. ZANIN, Logarithmic submajorization, uniform ma-
Jorization and Holder type inequalities for T-measurable operators, Indag. Math. 31, 5 (2020), 809—
830.

T. FACK, Sur la notion de valeur caractéristique, J. Operator Theory 7, 2 (1982), 307-333.

T. FACK AND H. KOSAKI, Generalized s-numbers of T-measurable operators, Pac. J. Math. 123, 2
(1986), 269-300.

C. H. FITZGERALD AND R. A. HORN, On the structure of Hermitian-symmetric inequalities, J.
London Math. Soc. s2-15, 3 (1977), 419-430.

Y. HAN, On the Araki-Lieb-Thirring inequality in the semifinite von Neumann algebra, Ann. Funct.
Anal. 7, 4 (2016), 622-635.

Y. HAN, Submajorization and p-norm inequalities associated with T-measurable operators, Linear
and Multilinear Algebra 65, 11 (2017), 2199-2211.

R. A. HORN AND R. MATHIAS, Cauchy-Schwarz inequalities associated with positive semidefinite
matrices, Linear Algebra Appl. 142, December (1990), 63-82.

S. JUNIS AND A. OSHANOVA, On submajorization inequalities for matrices of measurable operators,
Adv. Oper. Theory 6, Article 8 (2021).

M. LIN, Inequalities related to 2-by-2 block PPT matrices, Oper. Matrices 9, 4 (2015), 917-924.

W. RUDIN, Real and Complex Analysis, third edition, McGraw-Hill, New York, 1987.

B. K. SAGEMAN AND T. N. BEKJAN, On some inequalities for norms of commutators, Acta Anal.
Funct. Appl. 9, 1 (2007), 21-28.

F. SUKOCHEV, Completeness of quasi-normed symmetric operator spaces, Indag. Math. 25, 2 (2014),
367-388.



704 B. NURAHEMET AND M. N. OSPANOV

[16] O. E. TIKHONOV, Continuity of operator functions in topologies connected to a trace on a von Neu-
mann algebra, 1zv. Vyssh. Uchebn. Zaved. Mat (Soviet Math.) (31), 1 (1987), 77-79 (110-114).

[17] Q. XU, Analytic functions with values in lattices and symmetric spaces of measurable operators, Math.
Proc. Camb. Phil. Soc. 109, 3 (1991), 541-563.

(Received September 17, 2022) Bahargul Nurahemet
School of Mathematics and Statistics

Yili Normal University

Yining 835000, China

e-mail: 2423883975@qq. com

Mpyrzagali N. Ospanov

Faculty of Mechanics and Mathematics

L. N. Gumilyov Eurasian National University
Astana 010008, Kazakhstan

e-mail: Ospanov.mn@enu.kz

Operators and Matrices
www.ele-math.com
oam@ele-math.com



