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ON M — class — ¢ — wA}(a,b) OPERATORS

P. SHANMUGAPRIYA*, P. MAHESWARI NAIK AND ABDELKADER BENALI

(Communicated by R. Curto)

Abstract. Let L be a bounded linear operator on a complex Hilbert space H . If
‘L*k‘Zaz‘ < ME(‘L*k‘a‘Lk‘Zh‘L*k‘a)ﬁ
and o
ME‘Lk‘ZhE > (\Lk\”\L*k\z“\Lk\”) Ka+b) ,
then L is called M -class-c-wAj (a,b) for some positive integers ¢,k,M and a,b € (0,1]. This
study aims to derive the structural relationship of the operators using some of the well-known in-

equalities. Then the study focuses on M — class —c —wAj(a,b) operator’s spectral and algebraic
properties in L?>(A) space. Furthermore, the Kronecker product results are also explored.

1. Introduction

Let H denotes a non-zero complex Hilbert space and B(H) denotes C* algebra
on H. Throughout this article ker(L), R(L) denotes null space and range of L on
B(H) respectively. If L is an operator then its adjoint is denoted by L*. Furuta [10],
defined class A operators as |L?| > |L|*>. Panayappan [13], defined class A; operators
as |L[2 < (|L¥*!|FT) for some positive integer k. Panayappan [14], studied spectral
‘2

. 2 s
properties of class A} operators as |L¥|% > |L*|?, where k takes positive integer values.

Uchiyamma [25], defined class A(s,) operators as |L(s,7)| o > |L|* and derived some
spectral properties. As an extension of w-hyponormal operators, class wA(s,#) oper-
ators is defined as |L*|* < (|L*\’|L|2"'\L*\’)st? and |L|> > (|L|*|L*|¥|L|*)77 . Prasad
[16], introduced class p —wA(s,t) operators and Cho [4, 5, 6], worked on the spectrum,
Putnam-Fuglede (P-F) theorem, and Quasi-similarity of class — p —wA(s,t) operators.
Shanmugapriya [21], defined M — class — A} operators as |L*|> < M(|L¥| %) where M
and k are positive integers. Pradeep [15], defined m — quasi —totally — (o, ) - normal
operators and studied the structural, spectral properties of the operators. The above
studies motivated us to work on M — class — Aj(a,b) and M — class —wAj(a,b) oper-
ators.
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An operator L is called M — class — Aj(a,b) if
L™ 20 < ML |2 2P| )
for each (a,b) € (0, 1] and for some positive integer k and M.
For each (a,b) € (0,1] and for some positive integrs k and M, an operator L is

called M — class — wAj(a,b) if

|L*k‘2a <M(|L*k| |Lk|2b‘L*k‘ ) a+b

and
MILFR > ([LHP Loy Fem
If L= (l) (l) ,a=b=k=1 and M =2 then using simple calculation, it is ob-
served that L is M — class — wAj (a,b).
(102
IfL=|021]|,fora=b=k=1, Lis M—class—wAj(a,b) forany M > 0. If
001

a=b=1and k=2 then L is not M — class — A} (a,b) forany M < 7.

REMARK 1.1. If a =b =k =1 then M — class — Aj(a,b) coincides with M —
class —A; and if M =1 then the operator coincides with class-A; which obviously
coincides with class-A; and class-A.

Hence,

class —A C class — Ay C class — Ay C M — class — Ay C M — class — Aj(a,b).

REMARK 1.2. If M =k=1 then M —class—Aj(a,b) coincides with class A(s,?)
and M — class —wAj(a,b) coincides with class-wA(s,1).
Hence,

class — A(s,t) C M — class — Aj(a,b), class—wA(s,t) C M — class — wAj(a,b).

In this article, we focused on to define M — class — ¢ —wAj(a,b) operators which
coincides with M — class —wAj(a,b) for ¢ =1 and derive its structural relationship.
The next sections deals with M — class — c — wAj(a,b) operator’s spectral and alge-
braic properties in L?(4) space. Furthermore, the Kronecker product results are also
explored.

For each (a,b) € (0,1] and for some positive integrs ¢,k and M, an operator L is
called M — class — ¢ —wAj(a,b) if

|L*k|2ac < MC(‘L*k|u‘Lk‘2h|L*k‘a) Ka+D)

and
ME[L P > (I I P L Py * s (1.2)
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Clearly, M — class — wAj(a,b) C M — class — ¢ —wAj(a,b).
102
If L= |020]|,fora=b=k=1, then L is M — class — c —wAj(a,b) for any
002
c,M > 0.

2. Structural inequalities of M — class — c — wAj(a,b) operators

This section deals with some of the structural properties of the operators which are
derived from the well-known inequalities. Let us start with the following Lemma.

LEMMA 2.1. If L=U|L| then |L7'| = |L*|! and |(L71)*| = |L|7'.

THEOREM 2.2. If L is M — class — c — wA}(a,b) and it is invertible, then L™!
M — class — c —wAj(b,a).

Proof. Consider,
{Mee ey P I | = e w2 |
{L*k| 2ac} |L—k‘2ac

be
L@y Py Page 4y pymam = {2 ) e |
M¢ ‘Lk‘ —2bc MC‘( ) |2bc 0

N

WV

THEOREM 2.3. If L is M — class — c — wAj(a,b) then

|L*k|2ac_MC(|L*k|a|Lk|2b|L*k‘a)k(;i,,) <MC‘Lk‘2bC (|Lk| |L*k‘2a‘Lk‘ ) ”,, .

Proof. Consider
A= {|L*k‘2ac [MC(|L*]<| |Lk|2b|L*k‘ ) a+b ﬂ
B = MC[[IAPY > (AP Lo 4 )y e

By definition A < B, then

L0 < (M (L L P | L) e ﬂ < [M"\L"\z”‘ (L Lo Py ) R

‘L*k|2ac_MC(|L*k|a|Lk|2b|L*k‘a)k(;ib) <MC‘Lk‘2bC (|Lk| |L*k‘2a‘Lk‘ ) a+b 0



718 P. SHANMUGAPRIYA, P. M. NAIK AND A. BENALI

PROPOSITION 2.4. The generalized Aluthge transformation is L(a,b) = |L|*U|L|".
For M — class — c —wAj(a,b), L enjoys the following property

MC|Lk(a b)| a“, > |L*k|2ac

and

2bc

|Lk|2bc>M C|Lk(a b) | K(a+b) |
PROPOSITION 2.5. If L is M — class — ¢ — wAj(a,b) then
_2p
M| (a,b) T > L2 > M| (L¥(a, b))
forall p € (0,min(ac,bc)].

THEOREM 2.6. If L is M — class — c — wAj(a,b) then for M = 1
(al) For A €10,1]

{1t @by

> (= 1)+ |4 @) o7 |14 (a by % )

2

2p
7 — |4 (a, by 7o |

(a2) For > 1
ﬂﬁwbnwb|ﬁwM|iwﬁ
> 4{|5(@.b) T — |L(a,b)" o7 } 4 (1),
(a3) For A <0
A4, b) T — |4 (a,b)" T 4 (1 - 1)
< {14, ) T |40, by )

Further, (al), (a2) and (a3) are mutually equivalent.

Proof. Consider f(x) = Ax+1—A —x* for a positive x and A € [0,1].

Since, f(x) is a positive function, for positive operator L and A € [0, 1], we have
the inequality, AL+ (1—24) > L*,

Hence,

ac bc
A{[|L*k|2uc —MC(|L*k|a|Lk|2h|L*k|u)k(‘“rb)] < [Mc|Lk|2hc _ (|Lk|b|L*k|2“|Lk|h|k(a+b)]}
+(1-2)
ac A
> {1 e — M (P49 A P24 R ) < (e 422 — (K ¥ e s
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By Proposition 2.5,

A{JL4 @) (a5 |
> (- 1)+ {14 (@B) 5 (A by )
for A € [0,1].

Result (al) <= (a2).
To show the result (a2), assume A > 1. Then (al) is equal to

: : ac . . 1/
I o e b 5 PO ) T < bt oo (A L P4 ) R

1
< LML LA PP ) ] < (e 4P (4P| Py

(-}

~ 2,{[|L*k|2uc—MC(|L*k|u|Lk|2b|L*k|)a)k

>l

W] < [P (| P e ) e |
< {1 oM (LA P ) T < (ML 2o (4 4 P 4 o] |
H(A—1).

By Proposition 2.5,

>

A{ L0, [T — L,y 75 )

”}+@—u

< {4 @.0) [ — |4 (a,b)"

1
Now, substitute L2 = §

ﬂﬁwbnwb|ﬁww|” V

>A“ﬁmbﬂ“b\ﬁmbﬂ

Therefore, (al) <= (a 2).

Similarly, by using the inequality A + (1 —A)L~' < L*~! for any A > 1 and
taking u =1—24 <0 and S = L', (a3) will be attained.

Thus (a2) <= (a3).

So, (al), (a2) and (a3) are mutually equivalent. [
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THEOREM 2.7. If L is M-class c-wAj(a,b) then

o |L*k|2ai|

[MC(|L*k|a|Lk|2b|L*k|a)k(‘ﬁb)
> (ML — (LI P ) o]
+2,{[MC(|L*]<| |Lk|2bC|L*k| )k(a+h) _ ‘L*k|2ac]

—[MEILE PR — (LI eI ) R ”*”)]}

Proof. Let
A= Mc(|L*k| |Lk|2b|L*k| ) a+b |L*k|2ac

and
B= ML — (LA P | P ) o

Consider the well known inequality, (1 —A)A+AB>[(1—-A)A~ '+ AB~ 1|71

(1 —)L) {MC(|L*k|a|Lk|2b|L*k|a)k(:ih) o ‘L*k|2ac}

) [MC|Lk|2hC (|Lk| |L*k|2u|Lk| ) a+b):|

> [(l —)L)[MC(|L*k|a|Lk|2b|L*k|a)k(””’) o |L*k|2ac]—1

A ML — (LK L P 4y

[MC(|L*k| |Lk|2b|L>kk| | a+b |L*k|2ac}

_2 [{Mc(|L*k| LK o || ) Taimy |k 2ae
_{MC|Lk|2bc_(|Lk|b|L*k|2a|Lk|b)k(Tih)}]
> [(1= A) ML LA PO L) T — 4 2]
A MR — (AP Py e 1|
on simplification we get the desired result. [l

THEOREM 2.8. If L is M — class — c — wAj(a,b) operator then

pa
MC(|L*k|u|Lk|2b|L*k|a)k(”+b)} > [ [|Lk| |L*k|2a|Lk| ] a+b:|
Sforany o € (0,1].

Proof. Let
Ly = MO — (LA P L e 4y |
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and

L, = [MC(|L*k|a|Lk|2b|L*k|a)k(;i”)} o ‘L*k|2ac'

By Proposition 2.5,

(b= L P ) 5 | > (bR e .

By Lowner-Heinz inequality, if L; > Ly > 0 ensures (L;)* > (Ly)* for any o €
0,1. O

THEOREM 2.9. If L is M — class — c — wAj(a,b) operator then

() 4% > |,

0)

(id) [LAP > |24
Proof. Given L is M — class — c — wAj(a,b) operator then
(:ib):|

Mc|Lk|2hc [(|Lk| |L*k|2a|Lk| ) a+b:|

|L*k|2ac > [Mc(|L*k|u|Lk|2h|L*k|a) 7

and

By Proposition 2.5,

p p
Mc<|L*k|a|Lk|2h|L*k|a> k(a+b) > |Lk|2p >M <|Lk| |L*k|2u|Lk| ) (a+b)

forall p € (0,min(ac,bc)].
P
Let A = M¢(|L*|¢|LF|?P|L**|*)¥a] and B = |LF|?P.
Let s=r= k(“+b) for p € (0,min(ac,bc)] and take M = 1.
(1) By Furuta 1nequa11ty,

Itr

J A A A A DL R AT L S A B

Take B =k(a+b) and o =p+ .
w2
Then simple calculation yields |L*| 5 > [|L¥[>®].
(if) Let A= |L*% and B = M~¢(|L¥?|L™* 24| L}?) @71

Let M=1and s=r= @ for p € (0, min(ac,bc)].
By Furuta’s inequality,

k(a+b)
P

1 (a+b) w120 k(a (+b) o
(EAPPY 5 o Ao 5 (AP Pty ) 5 e )

2
fod
= |L**° > 4P, O



722 P. SHANMUGAPRIYA, P. M. NAIK AND A. BENALI

3. Spectral and algebraic properties of M — class — c —wAj(a,b) operators

In this section, the spectral and algebraic properties of M — class — c —wAj(a,b)
operators are studied using the Althuge transformation.The following references are
used to derive the results [6], [7], [8], [10], [11], [14], [16], [17], [18], [19], [20], [21],
[22], [23], [24].

DEFINITION 3.1. Take L = U|L| be the decomposition of L and let a,b > 0.
Then, the generalized Aluthge transformation is defined as follows:

L(a,b) = Loy = |LI*U|L)"

and B B
L*(a,b) =L}, = (Lp)" = [LIPU*|L*.

THEOREM 3.2. Assume the polar decomposition of L. Then, L is M — class —
c—wAj(a,b), if and only if

|:MC|L]< | a+b |Lk‘2ac} 0

and "
0> | MLk | Mo — L2,

COROLLARY 3.3. If L is M — class —c — wAj(a,b) then Ly is mi‘gifﬁ;c) M-

min(ac,bc)

hyponormal. For M =k =1 itis — 7

— hyponormal.

LEMMA 3.4. Let A,B > 0. For each p,r > 0, the Furuta inequality implies that
(i) (B2APB?)»7* > B’ and
(if) (ASBA%)PT < AP,

LEMMA 3.5. (i) Forany py > 1 and ry 20, if A} > By, then Furuta inequality
1+

implies th B%Al’le P e > glitn
implies that (B AV'BF )P171 > B ™'

(if) For any p22 1 and ry 20, if Ay > By then Furuta inequality implies that
o l+4r

(A2)"*72 > (A; ? ByP2Ay )

THEOREM 3.6. If L is M — class — c —wAj(a,b) and 0 < a < ay, 0 <b < by,
then L is My — class — 1 —wAj(a1,b1).

Proof. Let L be M — class — ¢ —wAj(a,b). Then

|L*k|2ac< [MC(|L*k| ‘Lk‘2b|L*k‘ ) a+,,]
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and
MILFPe > [<|Lk| LRy T

Let Al [M‘(|L*k| |Lk|2b‘L*k‘ ) “/, |L*|2ac
o 4
Since A} > B; by Lemma 3.5 2A“”B 2 ) & > B“r ' for any p; > 1 and
rt 2 0.
Let B >a, p1 = >1, r1: >0andc=k=1.
Then [MllL*\ﬁ\le”\L*\ﬁ]“ﬁ > |L Izﬁc-
Let

£(B) = [ILIILPPILP] T (for B > a)

O

b
> L Pl PP PILp L = £(B+6).

Therefore, f;(f) is decreasing for 3 > a.
b
Then M|L*[?> > [(|LMP|L* P LA ) Feii)] = fi(a) > folar) = [|LIPIL* [Pt |L]P] e
_be
Let Ay = M¢|L¥|?¢ and B, = [|L¥|P|L** 21 |LK|P)prar
Since Ay > By, by Lemma3.5forany c=k=1, po > 1 and r, >0, (Ay)!*"2 >

n n I+ry
(A 2 ByP2A; z YP2Fr
Let pp=224 > 1, =222 > 0.
Then Ml\L|2b1 > [|L|bl‘L*|2a1‘L|b1]al+bl '

Similarly, [M;|L*|41|L|* ‘L*‘al]aﬁrbl > L P, O

Let o(L),0,(L) and o,(L) be the spectrum and approximate point spectrum of
L € B(H) respectively. Let A be a approximate eigen value of L if there exist unit
vectors x;, such that (L—A)x, — 0, (L—A4)*x, — 0. Let 0,,4(L) denotes the set of all
approximate eigenvalues of L.

LEMMA 3.7. Let L € B(H) be a M — class — ¢ — wAj(a,b) operator. If (L —
A)x, — 0, then

(L— ) %, (|L] — r)xn, (U —eie)x,,, (U —eie)*xn — 0.

Proof. Assume a+b=1,0# A =re'® €C.
By Corollary 3.3
(L(a,b) — re'®)x, = (L — re'®)x, — 0 = (L(a,b) — re’®)*x, — 0.
Hence,

(L(a,b) — reie)*(L(a,b) - reie)x,, —0= (\L(a,b)|2 - rz)xn —0
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and (|L(a,b) |min(ac,bc) _ rmin(ac,bc) )xn =0 similarly, (|L(a7 b)* |min(ac,bc) _ rmin(ac,bc) )xn
— 0. Hence, <(|L|mi“(“"7h") — rmi“(”"’b"))xn,xn> —0.
If r € (0,min(ac, bc)| then 5 € (0,min(ac,bc)]. So, <(|L|—min(3°hv) _ et )xn,xn>
2
— 0. So,

min( a¢ be) min(ac,bc)

0. Then H(\L| T

(L[ = r)xa = 0= (|Lxn, ) — 1

and
(L] = P)xa||* = 2 =27+ 12 = 0= (|L| — r)x, — 0.

Since,
(L—re®)x, — 0=U(|L| — r)x, + r(U —&"%)x, — 0.

We know that r > 0, therefore (U —e'%)x, — 0= (U —€'%)*x, — 0.
Hence, (L — re’®)*x, — 0. O

THEOREM 3.8. Let L= U|L| € B(H) be M — class — c —wAj (a,b) operator for
a,b € (0,1] and M.k,c be any positive integer. Let 0 # A = re'® then ker(L—A) =
ker(L(a,b) — Aqip) where Agrp = r*Pe®.

Proof. Let x € ker(L—A). Then |L|x = rx and Ux = ¢®x. So, L(a,b)x =
ra+bei®x Hence, ker(L —A) C ker(L(a,b) — A44p). Conversely, let x € ker(L(a,b) —
Aatb)-

Since, L is m'(n(‘“ ;“) -hyponormal for M = k = 1 (Corollary 3.3). So, (L(a,b) —
Aarp) x =0 and |L(a,b)| = r**’x,|L(a,b)*|x = r*x.

2 min(ac,bc) 2min(ac,bc)

Since, |L(a,b)| @b > |LP™n@cbe) > |1 (a,b)*| " @5 . We have,

2mm(ac bc) 2 be) 2 min(ac,bc) 2min(ac,bc)
|L(a,b)] — Lt L(a,b)| T @~ |L(a,b)*| e >0
Hence |L‘2min(ac,bc)x _ r2min(ac,bc)x.
Since, r**Pe~x = L(a,b)*x = |L|PU*|L|*x = r*|L|PU*|L|*x. So, L*x = Ax and
2
(L= 2A)x([" =0.
This implies that ker(L(a,b) — Agip) C ker(L—2). O

THEOREM 3.9. Let L is M — class — c —wA}(a,b). Let A = re'® be an isolated
point of o(L)and r > 0. Then the Riesz idempotent E for L with respect to re'? is
self adjoint with ran(E) = ker(L — re'®) = ker(L — re®)* and coincides with Riesz
idempotent E(a,b) for L(a,b) with respect to re'®.

Proof. The proof of this theorem is immediate by using the above theorem. []
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THEOREM 3.10. If L is M — class — c —wA{(a,b), then L* is M — class — ¢ —
wA}(a,b).

Proof. From the definition of M — class — c —wAj(a,b), forevery x € H.
|:MC(|L*k‘ ‘Lk‘2b‘L*k| ) ‘L*k|2ac}
MC |:(LkL>kk)% (L*kLk) LkL*k % :| 2 LkL*k

Mc((LkL*k)*%(L*kLk *b LkL*k *%) “+”) LkL*k)*ac

Mc(|L*k‘*a‘Lk *2b|L*k‘*a> D) > ||,
Likely,
MC|Lk|2bc > [(‘Lk‘ ‘L*k|2a|Lk| ) ,H,,]
ME(LELR > [(L*kLk)g(LkL*k) (L*kLk) } o)
ME||LF|2be > [(‘Lk‘*b|L*k|*2a|Lk‘*b>k(:iih)}'

Therefore, L* is M — class —c —wAj(a,b). O

Now, let us discuss some propertiesin L?(1). Let C be the non-empty set of com-
plex numbers and let f be a complex-valued measurable function on X . The essential
range of f is denoted by eR(f) and eR(f) = {1 € C,u(f~1(G)) # 0}. A point z € C
is in the joint spectrum o, (L) if there exits a vector x such that Lx = zx and L*x = Zx.
For a composition operator L, L = U|L| where |L|f = Vhf and Uf = ﬁ(fo

L). Althuge transformation for composition operator is L(r,1 —r) = |L|"U|L|'~" and
L(r1—r)f= (1~ ) )2(foL). L(r,1—r) is weighted composition operator with weight

m=(74)2 where 0 < r < 1. For a,b >0, L(a,b) = |L|?U|L|" = hi/hh“L foL and
w8 (h3or)

VhoL
Take J; = h[E(w?)]o L™!, Jp = hp[Ea(w3)] oL ™2 and K = w(ho L)E(w).

so L(a,b) is weighted composition opertator with weight w =

THEOREM 3.11. L is M —class— ¢ —Aj(a,b) operator if and only ifMCJl“W >
hee.

1S (3 oL)
VoL

h= d“ be the Radon-Nikodym derivative. Then |L(a,b)| f V/J1f holds by Propo-

sition 2.5. It is known that |L| = h;. Hence, M¢|L(a,D)|T @i 1 > |L|** because L is

M —class — c —Aj(a,b) and MCJl(”Tb) >h*. O

Proof. L(a,b) is weighted composition operator with weight w = , where
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ac

COROLLARY 3.12. L is M —class—c—wAj(a,b) operatorif and only ifMCJl(”b)
> hac

ac

THEOREM 3.13. L is M —class—c—wAj(a,b) operatorif and only ifMCJf'”h) >
_be
h and K@ < MChb.

Proof. The proof is immediate from Proposition 2.5 and Theorem 3.11 [

THEOREM 3.14. If L is M —class — c —wAj(a,b) operator with 0 < a,b,a+b <
1, then (L) Cz€C: |z]> € eR(f).

Proof. Given L is M — class — ¢ —wAj(a,b) with 0 <a,b,a+b < 1. Let L(a,b)
b o ag
is weighted composition operator with weight w = h\z/({;im) , L(a,b)*L(a,b)f = J1f.
Hence,o(L(a,b)"L(a,b)) = eR(J;). If x € eR(J1)then z € 6(L(a,b)) such that
|Z|?> =x and eR(J}) = |z|* : z € 6(L(a,b)).
So, 6(L(a,b)) Cz€C:|z* €eR(J)) = o(L) Cz€C:|Z|* €eR();). O

THEOREM 3.15. Let L be M — class — c — wA}(a,b) operator with 0 < a,b,a+
b< 1. Then 0,(L) Cz€C:|z> =1.

Proof. Let z € 0j,(L(a,b)). There exists a non-zero f such that
L{a,b) L{a,b)f = [2]*/.

Since L(a,b)*L(a,b)f = Jif for f € L*(u) and since o,(L) = o(L(a,b)), it easily
follows that 6,(L) Cz€C:|z>=7,. O

PROPOSITION 3.16. If L is compact, then 6(L) = o,(L).

THEOREM 3.17. Let L*(A) be infinite dimensional, then no M — class — ¢ —
wA} (a,b) operatorin L*(A) is compact.

Proof. Assume that L is compact M — class — c —wAj (a,b) operator and a,b >0
in L*(A). Since 0,(L(a,b)) is contained in the unit circle, o(L(a,b)) is in the unit
circle. Then o(L) is in the unit circle, so L is unitary, which contradicts the assumption.

Hence the proof. [J

THEOREM 3.18. Let L be M — class — ¢ —wAj(a,b) operator with 0 < a,b,a+
b<1and 1 ¢ eR(Jy). Then o(L) = o, (L).
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Proof. Given L is M — class — c —wA}(a,b) operator with 0 < a,b,a+b <1
and 1 ¢ eR(J}). Then Weyl’s theorem holds for L and so %(LL)) = myo(L) holds where
moo(L) is the set of all isolated eigenvalues of the infinite multiplicity of o(L). So, it is

enough to show that moy(L) is empty. If 0 € myo(L), then L has a closed range and so
Lis invertible, which contradicts that L is not invertible. Let z # 0 is an eigen value of
o(L) with |z| # 1. Since 0,(L) has symmetry about zero except on |z| = 1. Hence,

z# mo(L). O

4. Kronecker product of M — class — c — wAj(a,b) operators

In this section, the tensor product results of M — class — c — wAj(a,b) are derived
using the references from [1], [2], [3], [4], [5], [9], [12], [13], [15]. The results follow
from the following Lemma:

LEMMA 4.1. Let Ly,L, € B(H), S1,52 € B(K) be non-negative operators.
If L1 #0 and S # 0 then the below conditions are alike

(1) LS Z2Lr®S,.
(2) Ly <cLy and Sy < ¢S, for ¢ > 0.

LEMMA 4.2. Let L= UL|L| and S = Ug|S| be the polar decomposition of L €
S(H) and S € S(K) respectively. Then the following assertions hold:

(1) ILeS|=|L|®]S|.
(2) LoS=(ULeUs)(IL|@|S]).
(3) (Lféfg)mb:m@%for a,b>0.

THEOREM 4.3. Let L€ B(H) and S € B(K). L® S is M — class — c —wA{(a,b)
ifand only if L and S are M — class — c — wAj(a,b).

Proof. Let L€ B(H) and S € B(K) be M — class — c — wAj(a,b) operator.
For convenience take M = 1.
Then

~ 2
|2k | 71 > |42

and "
| Sk | FeBT > |LF[Pe.

|(Lk®Sk) b‘ a+b ‘Lab®Sk | a+b \Lk ‘ a+b ®|Sk | a+b)
_ ‘Lk®Sk‘2m.

2bc

In the same way, |L* @ S¥|?0¢ > \(Lk@)Sk) ALGDN
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Now, suppose that L® S is M — class — c —wA(a,b). Then

2ac 2ac
k(a+b) ik kla+b)

®|Sa7h _ |Lk®Sk|2ac

(L5 @59, |59 = |LE,
and

2ac
|Lk®Sk|2bC > ‘(Lk®Sk) ‘kaer)

~ 2ac ~ 2ac
so for d >0, d‘(Li‘lb‘k(th) > |Lk‘2ac and d_1|(S];_h‘k("+h) > |Sk‘2ac'
Let x be a unit vector. Then
. . ~ 2ac
e = (2xs) < (alEh, P95 )
=d||Lj*)*  for d>1

Also,
111 = (1S2x,x) > < g |> a s

ford ' >1
~ _2ac__ ~, 2ac
Hence, d = 1 and |L][;h|k(a+b) > |LF[24¢ and ‘S§b|k—(a+b) > |§k[2ac,
~ . 2bc ~ 2bc
Similarly, \szb\k(wb) > [LK?b¢ and | Sj;{ch‘k(m) > |Sk|2be.
Thus L and S are M — class — c — wAj(a,b). O

5. Concluding remark

In this article, the M — class — c —wAj(a,b) operator is defined then few examples
are discussed to show the inclusion relation, later the spectral and algebraic properties,
the kronecker product results are determined. Now, considerM =k =1 and |L|*> = P,
|L*|> = R then the equations (1.1) and (1.2) becomes

R < [REPPR%)as (5.1)

and

P > [PERP375 (5.2)

It is obvious to think that (5.1) is equivalent to (5.2) for any a,b,c > 0, but it is
not true for the following example:

100 000
Let P=|000| and R= (000
000 001

Then PP — [P3RP3] a5 > 0 but [R$ PPR%] &% — R < 0 for any a,b,c > 0.
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