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SCALING POSITIVE DEFINITE MATRICES

TO ACHIEVE PRESCRIBED EIGENPAIRS

GEORGE HUTCHINSON

(Communicated by R. Vandebril)

Abstract. We investigate the problem of scaling a given positive definite matrix A to achieve a
prescribed eigenpair (λ ,v) , by way of a diagonal scaling D∗AD . We consider the case where D
is required to be positive, as well as the case where D is allowed to be complex. We generalize
a few classical results, and then provide a partial answer to a question of Pereira and Boneng
regarding the number of complex scalings of a given 3×3 positive definite matrix A .

1. Introduction

The study of (diagonal) matrix scalings began in earnest in 1964, when Richard
Sinkhorn introduced a method for scaling a given entry-wise positive matrix A into a
matrix with unit row and column sums (i.e. scaling A into a doubly stochastic matrix).
In the decades that followed, the problem of scaling a given matrix to obtain desired
row sums became a widely studied problem (see [8], [1], [6] or the excellent survey
paper [5]).

In this paper, we seek to generalize the above work, investigating the problem of
scaling a given positive definite matrix to have desired eigenpairs. This can indeed be
seen as a generalization of the usual (doubly) stochastic scaling, as a matrix has unit
row sums if and only if it preserves the all-ones vector.

We will begin by restricting ourselves to real entries only. In Section 3.1, we
will prove that for any given real n× n positive definite matrix A and pair (λ ,v) ,
where λ > 0 and v ∈ R

n with no zero components, we can find a unique positive
diagonal matrix D such that DAD has eigenpair (λ ,v) . While the proof of this result
is a relatively straightforward consequence of a classical scaling result of Marshall and
Olkin, it does not seem to appear anywhere in the literature.

After establishing the above result, we then consider the case where v is permitted
to be a complex eigenvector in Section 3.2. This is easily seen to be equivalent to the
problem of finding positive D such that DAD has a repeated eigenvalue, which is the
primary focus of Section 3.2. In particular, we solve the problem in low dimensions
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(n � 3), providing precise conditions for when a given 3×3 positive definite real ma-
trix can be scaled to have repeated eigenvalues (and, as a consquence, certain complex
eigenvectors).

In Section 4.1, we relax our assumptions on A and D , and consider a slightly
different type of scaling, formally introduced by Pereira and Boneng in [11] (though
considered earlier in such papers as [10]). In particular, we prove that for any given
positive definite complex matrix A and pair (λ ,v) , where λ > 0 and v ∈ Cn with
no zero components, we can find a complex diagonal matrix D such that D∗AD has
eigenpair (λ ,v) . It is worth noting that (unlike in the case where D is positive, above)
there is no guarantee that the desired D∗AD scaling is unique. Indeed, motivated by a
question posed in [11], the remainder of the paper is dedicated to the question of how
many of these “complex scalings” exist for a given A .

In Section 4.2, we provide proof that for 3×3 real matrices A , there are at most
6 complex scalings with the desired eigenpair. Although this is a generalization of a
result in [3], our proof is shorter and more concise.

Lastly, the purpose of Section 4.3 is to provide a bound on the number of complex
scalings when A is allowed to be a complex 3× 3 matrix. This is an open problem,
considered in [3] and [11], to which we provide a partial answer. Our method of proof
also gives a method for finding all scalings of a given matrix, as we represent the set
of scalings as intersection points of two particular plane curves. In cases where these
curves have no common component, an application of Bezout’s Theorem then provides
the desired upper bound. As in the real case, this bound is found to be 6.

2. Definitions and notation

We take this opportunity to establish some notation and conventions that will we
use.

Given a vector v ∈ C
n , we denote the j− th component of v as v j . We will make

frequent use of the following notation:

R
n
+ = {v ∈ R

n|v j � 0 for all j ∈ {1,2, . . . ,n}}
R

n
++ = {v ∈ R

n|v j > 0 for all j ∈ {1,2, . . . ,n}}.
When the dimension is obvious from context, we will denote the all-ones vector as e
(that is, e = (1,1,1, . . . ,1)T ). We will use capital roman letters (A,B,C , etc.) to rep-
resent matrices, with their entries denoted by their lower-case counterparts (ai j,bi j,ci j ,
etc.). Absolute value bars around a matrix ( |A|) will be used to indicate the entry-wise
absolute value function (i.e. If C = |A| , then ci j = |ai j| for all i, j ).

When we are discussing eigenvectors v , it will make our arguments significantly
more concise to make the following assumption:

Let v be an eigenvector of a matrix A, where it is known that v has no zero entries.
Then we will always assume that v1 = 1 .

This will be a safe assumption to make, as we take care to make no arguments that
concern the norm of v , nor any other property that might be affected by multiplying v
by a scalar.
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Lastly, for any positive definite (i.e. Hermitian with positive eigenvalues) matrix
A ∈ Cn×n , we use Aj j to denote the (positive definite) (n−1)× (n−1) principal sub-
matrix obtained by removing the j th row and j th column from A .

3. Positive (DAD) scalings

3.1. Real matrices, real eigenvectors

In 1968, Marshall and Olkin proved the following:

PROPOSITION 3.1. ([7], Corollary 2) Let A be an n× n positive definite real
matrix, and let r ∈ Rn

++ . Then there exists a unique positive diagonal matrix D such
that DAD has i-th row (and column) sum equal to r j for all j ∈ {1,2, . . . ,n} .

We will use this result to show that any positive definite real matrix can be scaled
to a matrix with a desired (real) eigenpair (λ ,v) , provided λ > 0 and v has no zero
components. While this is a relatively straightforward consequence of Proposition 3.1,
it does not seem to appear anywhere in the literature:

THEOREM 3.2. Let A be an n× n positive definite, real matrix. Then for any
λ > 0 , and any v∈ Rn with no zero components, there exists a unique, positive definite
diagonal matrix D such that DADv = λv.

Proof. Existence: Let us define p ∈ Rn
++ as the vector satisfying pk = |vk| for

all k ∈ {1,2, . . . ,n} . Further, let us define U to be the diagonal orthogonal matrix
satisfying Ukk = vk

|vk| for all k ∈ {1,2, . . . ,n} . A moment’s thought should convince the
reader that U p = v .

Now we define B = UAU . As B is positive definite, Proposition 3.1 guarantees
the existence of a unique positive definite diagonal matrix F such that FBF has row
sums rk = (pk)2 . Defining P = diag(p) , we can express this as FBFe = P2e , whence
we obtain the following:

FBFe = P2e

P−1FBFe = Pe

P−1FBFP−1Pe = Pe

Recalling that B = UAU , and then exploiting the fact that diagonal matrices commute,
this yields:

FP−1UAUFP−1Pe = Pe

UFP−1AFP−1UPe = Pe
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As U is orthogonal and diagonal, U−1 = U . Thus:

FP−1AFP−1UPe = UPe

FP−1AFP−1v = v

where the last equality uses the fact that UPe = v . Defining D :=
√

λFP−1 , we see
that DADv = λv , as desired.

Uniqueness: Suppose now that there is another n× n positive definite diagonal
matrix E satisfying EAEv = λv . Then:

EAEv = λv

EAEPUe = λPUe

UEAEPUe = λPe

Again, we use the fact that diagonal matrices commute to obtain:

E(UAU)EPe = λPe

EBEPe = λPe

(P−1P)EBEPe = λPe

Multiplying by P :

PEBEPe = λP2e

(EP)B(EP)e = λP2e(
1√
λ

EP

)
B

(
1√
λ

EP

)
e = P2e.

As F is the unique matrix satisfying FBFe = P2e , this means that EP =
√

λF ,
yielding E =

√
λFP−1 = D , as desired. �

Now that we know that we can scale a given real positive definite matrix to achieve
any desired real eigenvector with no zero components, we turn our attention to the more
difficult problem of complex eigenvectors.

3.2. Real matrices, complex eigenvectors

We now discuss the problem of, given a positive definite real matrix A , finding a
positive diagonal matrix D such that DAD has a desired complex eigenvector v with
no zero entries. We immediately see that (unlike when v is real), there will be vectors
v that are unachievable (e.g. It is easy to see that one can never scale a non-diagonal
2×2 positive definite real matrix to obtain the eigenvector (1, i)T ). Thus, we wish to
discover which complex eigenvectors are achievable via our DAD scaling.

Recall that we always assume that eigenvectors with no zero entries satisfy v1 = 1.
This ensures that when we discuss eigenvectors in Cn \Rn , we do not risk discussing
scalar multiples of real vectors.

A moment’s thought yields the following lemma:
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LEMMA 3.3. Let B be a positive definite real matrix, and suppose that λ > 0 and
v ∈ Cn \Rn . If Bv = λv, then λ is a repeated eigenvalue for B.

Proof. Since B is a positive definite real matrix, we may choose the eigenvectors
of B to be real. As v lies in the eigenspace of λ , but is not a scalar multiple of a
real vector (as v1 = 1 and v /∈ R

n ), it must be the case that the eigenspace of λ has
dimension at least 2. �

Thus, if we wish to scale a given real matrix A to have a specified complex eigen-
vector, we must find a diagonal matrix D such that DAD has a repeated eigenvalue.
This allows us to answer the question for certain sets of matrices, starting with the easy
2×2 matrices. We use the following result, which will also be useful later:

PROPOSITION 3.4. ([9], Lemma 7.7.1) Let T be a symmetric tridiagonal matrix,
such that ti j �= 0 whenever |i− j|= 1 . Then all eigenvalues of T are simple.

This yields the following result. (It is fairly obvious, but we include it here for
completeness.)

COROLLARY 3.5. Let A be a 2×2 positive definite real matrix. Then A cannot
be scaled to have a non-real complex eigenvector unless it is diagonal.

Proof. If A has non-zero off-diagonal entries, then any scaling of A will also
have non-zero off-diagonal entries. By Proposition 3.4, this means that any scaling of
A cannot have a repeated eigenvalue, nor (by Lemma 3.3) a complex eigenvector. �

REMARK 1. Of course, If A is diagonal, then it can be scaled to λ In , achieving
any eigenpair we wish.

Now let us consider the case of 3× 3 matrices. We first consider the case where
A has zero entries.

PROPOSITION 3.6. Let A be a 3×3 positive definite real matrix with zero entries,
and let λ > 0 . Then the following conditions hold:

1) If A has only two zero entries, then A cannot be scaled to a matrix with repeated
eigenvalue λ .

2) If A has four zero entries, then A can be scaled to infinitely many matrices with
repeated eigenvalue λ .

3) If A is diagonal, then it can be scaled to four matrices with repeated eigenvalue λ .

Proof. The first case follows from Proposition 3.4 and the observation that A is
permutationally equivalent to a tridiagonal matrix.

The third case is trivial, as A is a diagonal matrix, and we simply scale A to
a diagonal matrix with (at least) two identical diagonal elements in order to achieve
repeated eigenvalues. There are four such matrices.
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For the second case, let us assume without loss of generality that a12 = a13 = 0,
and let C be the 2×2 principal submatrix C = A11 .

Now, suppose we want to scale A to have repeated eigenvalue λ . In this case,

we may let D = diag(d1,d2,d3) , where d1 =
√

λ√
a11

, and d2,d3 are any values such that

E = diag(d2,d3) scales C into a matrix with eigenvalue λ . Theorem 3.2 guarantees
that we have infinitely many of these scalings - one corresponding to each choice of
real eigenvector with no zero components. �

REMARK 2. We note that in case 2 of Proposition 3.6, the achievable complex
eigenvectors v (with no zero entries) are those that satisfy the condition that (v2,v3)T

is a (complex) scalar multiple of some vector w ∈ R2 . We simply by choose E so that
ECEw = λw , which guarantees that v is in the eigenspace of λ , i.e. the space spanned
by {(1,0,0)T ,(0,w1,w2)T} .

The case where A has no zero entries is a bit more difficult, and we will use the
following lemma of Olaf Dietrich:

LEMMA 3.7. ([2]) Let A be a 3× 3 real symmetric matrix with characteristic
polynomial p(x) = (x−λ1)2(x−λ2) . Then the entries of A satisfy both of the following
conditions:

a11 = a33 +a13

(
a12

a23
− a23

a12

)

a11 = a22 +a12

(
a13

a23
− a23

a13

)
.

While Dietrich proved that the above conditions are necessary for an eigenvalue to
be repeated, we will prove that they are sufficient as well:

LEMMA 3.8. Let A be a real 3×3 symmetric matrix satisfying:

a11 = a33 +a13

(
a12

a23
− a23

a12

)

a11 = a22 +a12

(
a13

a23
− a23

a13

)
.

Then the characteristic polynomial of A is given by (x−λ1)2(x−λ2) , where:

λ1 = a11− a13a12

a23
λ2 = a11 +

a13a23

a12
+

a12a23

a13
.

Proof. It is well-known that the characteristic polynomial of a 3×3 matrix A can
be written as

p(x) = x3− tr(A)x2 +
1
2

(
(tr(A))2− tr(A2)

)
x−det(A).
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Thus, it suffices to show that tr(A) = 2λ1+λ2 , tr(A2) = 2λ 2
1 +λ 2

2 , and det(A)= λ 2
1 λ2 .

We will make frequent use of the following equalities, which are just rearrange-
ments of the conditions on A given in the statement of the lemma:

a22 = a11−
(

a12a13

a23
− a12a23

a13

)

a33 = a11−
(

a13a12

a23
− a13a23

a12

)

tr(A) = 2λ1 + λ2 : Using the above expressions for a22 and a33 , we obtain:

tr(A) = a11 +a22 +a33

= a11 +
(

a11− a12a13

a23
+

a12a23

a13

)
+
(

a11− a13a12

a23
+

a13a23

a12

)

= 3a11− a12a13

a23
+

a12a23

a13
− a13a12

a23
+

a13a23

a12

= 2

(
a11− a13a12

a23

)
+
(

a11 +
a13a23

a12
+

a12a23

a13

)
= 2λ1 + λ2.

We can likewise show that tr(A2) = 2λ 2
1 + λ 2

2 , and det(A) = λ 2
1 λ2 , but these are

a bit more tedious to work through, and for this reason, we relegate the proof of these
equalities to Appendix A.1. �

From this result, we obtain the following:

THEOREM 3.9. Let A be a 3×3 positive definite real matrix with no zero entries.
Then (up to multiplication by a scalar) there is at most one positive definite diagonal
matrix D such that DAD has a repeated eigenvalue. Further, such a D exists if and
only if:

a11− a13a12
a23

a33− a13a23
a12

> 0 and
a11− a12a13

a23

a22− a12a23
a13

> 0.

Proof. Let us denote D = diag(d1,d2,d3) , where (multiplying D by an appropri-
ate scalar, if necessary) we may assume that d1 = 1. By Lemma 3.7 and Lemma 3.8,
we know that DAD will have a repeated eigenvalue if and only if it satisfies the two
conditions in those lemmas. i.e. DAD has a repeated eigenvalue if and only if:

a11 = d2
3a33 +d3a13

(
d2a12

d2d3a23
− d2d3a23

d2a12

)

and

a11 = d2
2a22 +d2a12

(
d3a13

d2d3a23
− d2d3a23

d3a13

)
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which simplifies to

a11 = d2
3a33 +

a13a12

a23
−d2

3
a13a23

a12
and a11 = d2

2a22 +
a12a13

a23
−d2

2
a12a23

a13

or, equivalently:

d3 =

√√√√a11− a13a12
a23

a33− a13a23
a12

and d2 =

√√√√a11− a12a13
a23

a22− a12a23
a13

This completely determines the matrix D , and hence our result is proven. �

REMARK 3. We originally introduced the question of repeated eigenvalues in or-
der to see which complex eigenvectors were attainable. We now have a way of answer-
ing that question for 3× 3 real matrices. If the conditions in Theorem 3.9 hold, then
we simply scale A by the unique (up to scalar multiplication) D that yields a repeated
eigenvalue, given in the above proof. The only attainable complex eigenvectors are
those in the associated (two-dimensional) eigenspace.

In higher dimensions, the problem of scaling a real matrix to have a repeated
eigenvalue seems quite difficult. We pose the following:

OPEN PROBLEM. Find an upper bound kn ∈ N such that for any n× n positive
definite real matrix A , there are at most kn positive definite diagonal matrices D (up to
multiplication by a scalar) such that DAD has a repeated eigenvalue (or prove that no
such bound exists).

4. Complex (D∗AD) scalings

4.1. Complex matrices, complex eigenvectors

Given a positive definite real matrix A , we have just seen that there are complex
eigenvectors that are unobtainable via our DAD scalings. In order to remedy this, we
now consider a generalization of these scalings, where we allow D to be a complex
diagonal matrix, and consider D∗AD scalings. This type of scaling (which we will
henceforth call a “complex scaling”) was originally introduced in [11], where the au-
thors demonstrated a relationship between complex scalings and the geometric measure
of entanglement of certain symmetric states. Further results on complex scalings were
developed in [3] and [4]. We prove the following:

THEOREM 4.1. Let A be an n×n positive definite (complex) matrix. Then for any
λ > 0 and v ∈ Cn with no zero components, there exists an n× n complex diagonal
matrix D such that D∗ADv = λv.

In order to prove Theorem 4.1, we will need the following result, the proof of
which is just a very slight generalization of the argument used to prove the more re-
strictive Lemma 2.9 in [10]:
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PROPOSITION 4.2. Let A be an n× n positive definite matrix, and suppose we
have a positive vector a = (a1,a2, . . .an)T ∈ Rn

++ . Then there exists a diagonal matrix
D such that D∗ADe = a (i.e. D∗AD has ith row sum ai .)

Proof. Define Ω = {v ∈ Cn : ∏n
j=1 |v j|a j = 1} . We will show that the vector w ,

defined as w := min
v∈Ω

v∗Av , satisfies (Dw)∗ADwe = ta , where Dw = diag(w) and t is

some positive constant. In order to do this, we must first show that such a minimimizing
vector w exists:

Pick any v∗ ∈ Ω , and let λ1 denote the smallest eigenvalue of A . We immediately

see that (v∗)∗Av∗ � λ1‖v∗‖2 . Rearranging, we obtain ‖v∗‖ �
√

(v∗)∗Av∗
λ1

=: k . Define

the set M = {v ∈ Ω : ‖v‖ � k} . This set is compact (it is closed and bounded), and
it contains at least one element (v∗ ). By the extreme value theorem, the function
f (v) = v∗Av has a minimum over M . Further, we claim that this must be a minimum
over all of Ω , since for any element v ∈ Ω\M , we must have

f (v) = v∗Av � λ1‖v||2 � λ1k
2 = λ1

(v∗)∗Av∗
λ1

= f (v∗).

Now that we know that w necessarily exists, we are going to show that B = (Dw)∗ADw

satisfies Be = ta for some t > 0 (i.e. B is a positive scalar multiple of a matrix with the
desired row sums). We begin by showing that B has all real row sums:

Indeed, suppose that one of the rows of B has non-real row sum, r j ∈ C\R , and
let r j −b j j = seiθ . Now define y ∈ Ω to be the vector identical to w , except with j th
component equal to wje−i(π−θ) . Then

y∗Ay = w∗Aw−2(r j −b j j)+2(r j −b j j)ei(π−θ)

= w∗Aw−2(r j −b j j)−|2(r j −b j j)|
< w∗Aw

contradicting the definition of w . Thus, B cannot have any non-real row sums.
We will now show that for any two row sums of B , ri and r j , it must be the case

that ri
ai

= r j
a j

. Without loss of generality, we show that r1
a1

= r2
a2

:

To this end, let ε > 0, and suppose without loss of generality that r2
a2

� r1
a1

. We

consider the vector s =
(
(1− ε)

1
a1 ,(1− ε)

−1
a2 ,1,1, . . . ,1

)T ∈ Ω . Then:

f (s) = s∗Bs =(1− ε)
2
a1 b11 +2(1− ε)

(
1
a1

− 1
a2

)
ℜ(b12)+2(1− ε)

1
a1

n

∑
j=3

ℜ(b1 j)

+ (1− ε)
−2
a2 b22 +2(1− ε)

−1
a2

n

∑
j=3

ℜ(b2 j)

+
n

∑
j=3

n

∑
i=3

ℜ(bi j)
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Making use of the Maclaurin series expansions of (1− ε)
2
a1 , (1− ε)

(
1
a1
− 1

a2

)
, (1− ε)

1
a1 ,

(1− ε)
−2
a2 , and (1− ε)

−1
a2 , the above expression becomes:

f (s) =
(

1− 2
a1

ε +O(ε2)
)

b11 +2

(
1−
(

1
a1

− 1
a2

)
ε +O(ε2)

)
ℜ(b12)

+2

(
1− 1

a1
ε +O(ε2)

) n

∑
j=3

ℜ(b1 j)+
(

1+
2
a2

ε +O(ε2)
)

b22

+2

(
1+

1
a2

ε +O(ε2)
) n

∑
j=3

ℜ(b2 j)+
n

∑
j=3

n

∑
i=3

ℜ(bi j)

Rearranging (and dropping the “ℜ”, as we know row sums of B are real), we obtain. . .

f (s) =
n

∑
j=1

n

∑
i=1

bi j

− 2
a1

ε(b11 +b12 +b13 +b14 + . . .+b1n)

+
2
a2

ε(b21 +b22 +b23 +b24 + . . .+b2n)

=
n

∑
j=1

n

∑
i=1

bi j +2ε
(

r2

a2
− r1

a1

)
+O(ε2)

As we know the minimum is obtained when ε = 0, we must have r2
a2

− r1
a1

= 0, i.e.
r2
a2

= r1
a1

. Repeating this argument for all other pairs of rows, we find that ri
ai

= r j
a j

for

all i �= j , as desired.
To finish the proof, we define t := r j

a j
> 0. Then r j = ta j , and thus Be = ta .

We finish by noting that the diagonal matrix D = Dw√
t

satisfies D∗ADe = Be
t = a , as

desired. �
We can now prove Theorem 4.1

Proof of Theorem 4.1. The proof is identical to that of the “Existence” proof of
Theorem 3.2, replacing all instances of UAU (and DAD) with U∗AU (and D∗AD)
where required, and using Proposition 4.2 in place of Proposition 3.1. �

An important part of Theorem 3.2 was the uniqueness of the diagonal matrix D . In
Theorem 4.1, however, we had to sacrifice uniqueness in order to guarantee existence.
It is therefore worth asking how many matrices D (up to multiplication by a scalar)
exist that provide the prescribed eigenpair.

4.2. How many complex scalings exist – real A , real eigenvectors

The problem of ennumerating complex scalings is a difficult one, and the case
where the desired eigenpair is (1,e) has been considered before. Indeed, the authors
of [11] posed the following question (though they framed it as a conjecture which was
later falsified in [3]):
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QUESTION 4.3. ([11]) Given an n×n positive definite matrix A, how many com-
plex scalings B = D∗AD exist that preserve the all-ones vector?

REMARK 4. The above question is equivalent to searching for complex scalings
that have all row and column sums equal to one (a property known as being “doubly
quasi-stochastic”).

In [3], it was shown that when A is a real, 3× 3 matrix, the answer to the above
question is 6. Here, we provide a much simpler (and shorter) proof of this fact, while
also generalizing the statement to arbitrary real eigenpairs (with no zero entries):

PROPOSITION 4.4. Let A be a 3×3 positive definite real matrix, and let λ > 0
and v∈R3 with no zero entries. Then there are at most six complex scalings B = D∗AD
such that Bv = λv.

Proof. We first consider the case where A has zero entries. If A is diagonal,
then the only scaling is D∗AD = λ I3 . If A has four zero entries, let us assume that
a12 = a13 = 0. We must have two scalings, where b11 = λ and the submatrix B11 is a
real matrix satisfying B11(v2,v3)T = λ (v2,v3)T , of which there can only be two, by the
uniqueness of D in Theorem 3.2 (one for each possible sign pattern of B11 ). Lastly, if
A has two zero entries, let us assume that a13 = 0. If Bv = λv , then (since v is real),
we must have that B12 is real, which means that B23 must also be real, and hence B is
real matrix. Again, we see that (by the uniqueness of D in Theorem 3.2), there can only
be as many scalings as possible sign patterns of B , i.e. four. As we have now proven
the result for matrices with zero entries, hereafter we will assume that A has no zero
entries.

Suppose that D∗ADv = λv . Multiplying D by a scalar ω from the complex unit
circle will not affect the scaling D∗AD , and so we may assume d11 > 0. Further,
let D = PU be the polar decomposition of D (so P is a diagonal matrix with strictly
positive entries and U is a diagonal unitary matrix with u11 = 1). Then D∗ADv = λv
is equivalent to U∗PAPUv = λv , or PAP(Uv) = λ (Uv) .

If U is real, then it must be one of U1 := diag(1,1,1) , U2 := diag(1,1,−1) ,
U3 := diag(1,−1,1) or U4 := diag(1,1,−1) . Theorem 3.2 states that for each of these
Uk , there is exactly one Pk that yields PkAPk(Ukv) = λ (Ukv) . Thus we have (exactly) 4
real scalings, corresponding to Dk = PkUk for each k ∈ {1,2,3,4} . These scalings will
necessarily be distinct, as each D∗

kADk has a different sign pattern (by the definitions
of Uk ).

If U is non-real, then PAP has a complex eigenvector Uv = (1,z1,z2)T where
at least one of z1 , z2 is non-real. Thus, by Lemma 3.3, PAP must have a repeated
eigenvalue λ . By Theorem 3.9, there is at most one P such that PAP has repeated
eigenvalue λ . Supposing that such a P exists, we claim that there are at most two U
satisfying PAP(Uv) = λ (Uv) . To this end, let us observe that PAP must also have
a simple eigenvalue λ2 (as this matrix has no zero entries, it is not a multiple of the
identity matrix). Let us denote the (real) eigenvector associated with λ2 as w ∈ R

n . If
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U satisfies PAP(Uv) = λ (Uv) , then it must be the case that Uv is in the orthogonal
complement of w . i.e.

(Uv,w) = 0

1w1 +u22v2w2 +u33v3w3 = 0 (∗)
For the purposes of contradiction, suppose that exactly one of the components

of w is zero. (If more than one component satisfies this, then PAP must have a zero
entry, contradicting our assumptions on A .) Without loss of generality, we will assume
w1 = 0. As the eigenspace associated with λ is 2-dimensional, it must contain a vector
s ∈ C3 with first component 0 (and other components nonzero, for the same reason
given above for why w cannot have two zero entries). However, denoting C = PAP ,
this means that (Cw)1 = 0 and (Cs)1 = 0 i.e.

0 = c11(0)+ c12w2 + c13w3 = c11(0)+ c12s2 + c13s3,

yielding c12 = − c13w3
w2

= − c13s3
s2

, and thus w3
w2

= s3
s2

. But this means that w3 = w2s3
s2

,
whence we obtain:

〈w,s〉 = 0+w2s2 +w3s3

= w2s2 +
w2s3

s2
s3

= w2

(
s2 +

|s3|2
s2

)

= w2

( |s2|2 + |s3|2
s2

)
�= 0

which cannot be the case, as w and s are orthogonal. Thus, we conclude that w cannot
have any zero components.

As none of the wj are 0, then we may assume that w1 = 1. The equality (∗ ),
above, is then equivalent to {1, |v2w2|, |v3w3|} being the side lengths of a triangle.
There are, then, at most two solutions for U = diag(1,u22 , u33) (corresponding to the
only possible angles of a triangle with fixed side lengths and first side lying on the
horizontal). Further, our two choices of U are complex conjugates of each other.

Thus, we have seen that we have at most six complex scalings, corresponding to
the 4 real choices of U and the 2 complex choices of U . Further, the non-real scalings
are, in fact, complex conjugates of each other. �

REMARK 5. In the above proof, note that the four real scalings are always guaran-
teed to exist, while the two complex scalings will exist if and only if two easily-checked
conditions are satisfied:

1) There exists a positive diagonal matrix P such that PAP has repeated eigenvalue λ
(checked via Theorem 3.9).

2) A triangle exists with side lengths {1, |v2w2|, |v3w3|} , where (once P is known) w
is defined as in the above proof.
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This result is easily extended to complex eigenvectors:

COROLLARY 4.5. Let A be a 3× 3 positive definite real matrix, and let λ > 0
and v∈C3 with no zero entries. Then there are at most six complex scalings B = D∗AD
such that Bv = λv.

Proof. Let v =U p , where U is the diagonal unitary matrix diag
(
1, v2

|v2| ,
v3
|v3|
)

and

p = |v| . Then D∗ADU p = λU p if and only if (DU)∗A(DU)p = λ p . The result follows
from Proposition 4.4. �

As mentioned at the beginning of this section, Proposition 4.4 is a generalization
of the following corollary, originally found in [3]. Recall that we say that a positive
definite matrix is doubly quasi-stochastic if it has all row and column sums equal to 1
(or, equivalently, if it preserves the all-ones vector):

COROLLARY 4.6. Let A be a 3× 3 positive definite real matrix. Then there are
at most 6 doubly quasi-stochastic matrices B of the form B = D∗AD for some diagonal
(possibly complex) matrix D.

4.3. How many scalings exist – complex A , complex eigenvectors

In Proposition 4.4, we provided a proof that at most 6 scalings exist when A is a
real, 3×3 matrix, and we wish to obtain a real eigenpair. We mentioned that the case
where the desired eigenpair is (1,e) was already proven in [3], where the author was
motivated by Question 4.3. The case where A is allowed to be a complex 3×3 matrix,
however, remained open. We will once again generalize the question to arbitrary eigen-
pairs (λ ,v) (where v no zero entries), and then provide a partial answer. In particular,
we will prove the following:

THEOREM 4.7. Let A be a 3×3 (possibly complex) positive definite matrix, and
let λ > 0 and v ∈ C3 with no zero entries. If there are finitely many complex scalings
B = D∗AD such that Bv = λv, then there are at most six such scalings.

Before we prove Theorem 4.7, we note that we may force A to be of a particular
form. First note that if A can be scaled to a real matrix (which it can if A has any zero
entries), we may appeal to Corollary 4.5. Henceforth, we assume that A has no zero

entries, and cannot be scaled to a real matrix. We define E = 1√
a22

diag
(√

a22√
a11

,1, a12
a13

)
.

Then

C := E∗AE =

⎛
⎜⎝

1 a12√
a11a22

a12√
a11a22

a12√
a11a22

1 ∗
a12√
a11a22

∗ ∗

⎞
⎟⎠

where ∗ denotes entries we are not concerned with at the moment.
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Now define F = diag(eiθ ,1,1) , where θ is the argument of c12 . Then

G := F∗CF =

⎛
⎝ 1 |c12| |c12|

|c12| 1 ∗
|c12| ∗ ∗

⎞
⎠ ,

whence we see that (by applying the appropriate scaling) we may assume that our ma-
trix A is of the form ⎛

⎝1 b b
b 1 f
b f g

⎞
⎠ (†)

where b,g > 0, and f ∈ C\R (as A cannot be scaled to a real matrix).
For the remainder of the paper, we will assume that our given matrix A is of the

form (†) . We simplify our problem further with the following lemma. Note that the
following argument can be deduced by inspecting the proof of Theorem 4.1, but we
include the proof here for completeness.

LEMMA 4.8. Let A be a n×n complex matrix, of the form (†) and suppose that
λ > 0 and v ∈ Cn with no zero entries. Define the diagonal matrices P and U , where

Pkk = diag(|vk|) and Ukk = diag
(

vk
|vk|
)

, and let C = U∗AU . Then the set of scalings

L = {B | B = D∗AD for some diagonal D ∈ C
n×n and Bv = λv}

is in one-to-one correspondence with set of scalings

K = {B | B = E∗CE for some diagonal E ∈ C
n×n with E11 = 1 and Be = tP2e for some t > 0}.

Proof. We begin by defining a function f : K →L , defined as f (E∗CE) = D∗AD ,

where D =
√

λ√
t
EP−1 . We will first show that f does indeed have range L , and then

we will show that it is a bijection.
Let E∗CE ∈K . By the definition of the set, we know that E∗CE = tP2e for some

t > 0, and that E11 = 1. Then

E∗CEe = tP2e

1
t
E∗(U∗AU)Ee = P2e

1
t
P−1E∗U∗AUEP−1Pe = Pe

U∗ 1√
t
P−1E∗AE

1√
t
P−1UPe = Pe

where the last line follows from the fact that P,E, and U are all diagonal, and therefore
commute. Left multiplying both sides by U and by λ (which we break up into

√
λ
√

λ
on the left side of the equality):

√
λ√
t
P−1E∗AE

√
λ√
t
P−1UPe = λUPe.
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As UPe = v , we see D∗ADv = λv , where D =
√

λ√
t
EP−1 . As D∗AD = f (E∗CE) , this

demonstrates that f (E∗CE) ∈ L . We now show that this function is injective and
surjective.

Injective: Suppose that f (E∗
1CE1)= f (E∗

2CE2) . This means that D∗
1AD1 = D∗

2AD2 ,

where D1 =
√

λ√
t1

E1P−1 and D2 =
√

λ√
t2

E2P−1 . It is easy to show (see, for example,
Proposition 2.1 in [11]) that this can only be the case if D1 = ωD2 for some ω from

the complex unit circle. This yields
√

λ√
t1

E1P−1 = ω
√

λ√
t2

E2P−1 . We note that the (1,1)

entry of both
√

λ√
t1

E1P−1 and
√

λ√
t2

E2P−1 are necessarily positive real (by the definition

of K ), demonstrating that ω = 1. Rearranging, and multiplying both sides by
√

t2√
λ
P ,

we obtain: √
t2√
t1

E1 = E2

This shows that E1 is a positive scalar multiple of E2 , and since both matrices
have (1,1) component equal to 1, we see that they must be equal.

Surjective: Suppose that D∗AD ∈ L , so that D∗ADv = λv . We show that there
exists a scaling E∗CE ∈ K such that f (E∗CE) = D∗AD . Indeed, defining t = λ

d2
11

,

then E =
√

t√
λ
PD satisfies f (E∗CE) = D∗AD (this is easy to see, by the definition of

f ). It remains to show that E∗CE ∈ K i.e. that E11 = 1 and E∗CEe = tP2e . Indeed,
recalling that p11 = |v1| = 1, we see:

E11 =
√

t√
λ

p11d11 =

√
λ

d11
√

λ
d11 = 1

and, recalling that v = UPe , we see:

D∗ADv = λv

D∗ADUPe = λUPe

U∗D∗ADUPe = λPe(
1

d11

)
D∗(U∗AU)

(
1

d11

)
DPe =

λ
d2

11

Pe

P

(
1

d11

)
D∗(U∗AU)

(
1

d11

)
DPe =

λ
d2

11

P2e

E∗CEe = tP2e

as desired. �
By the above lemma, we conclude that the following is equivalent to Theorem 4.7:

THEOREM 4.7B. Let A be a 3×3 positive definite matrix of the form (†) , and
let p ∈ R3

++ . If there are finitely many complex scalings B = D∗AD such that d11 = 1
and Bv = t p for some t > 0 , then there are at most six such scalings.
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This is the form of Theorem 4.7 that we will work towards proving. Combining
the assumed form of A given by † with our assumption that d11 = 1, we see that our
scalings take the following form, where D = diag(1,d2,d3) :

D∗AD =

⎛
⎝ 1 d2b d3b

d2b |d2|2 d2d3 f
d3b d3d2 f |d3|2g

⎞
⎠ .

where b,g > 0, and f ∈ C \R . We invite the reader to make note of the above, as it
will be a useful reference going forward. For the remainder of the section, we will use
the above notation.

We now work towards our proof of Theorem 4.7. We begin by introducing a
special case that we will need to consider separately. Recall that we use ℑ(z) and ℜ(z)
to denote the imaginary and real part of a complex number z , respectively.

LEMMA 4.9. Suppose that D∗ADe = t p for some t > 0 and p ∈ R3
++ . If D

satsfies d3 = −b
f , then it must be the case that

g =

(
2ℜ
(

b2

f

)
+2kb+1+ t (p3− p1)

)
∣∣∣ bf ∣∣∣2

,

where k is one of:

k =

−b
(
2ℜ
(

1
f

)
−1
)
±
√(

b
(
2ℜ
(

1
f

)
−1
))2 −4

(∣∣∣ bf ∣∣∣2−1+ t (p1 − p2)
)

2
.

Proof. Suppose that d3 = − b
f , then our second row sum becomes

t p2 = d2b+ |d2|2 +d2

(
− b

f
f

)
= d2(b−b)+ |d2|2 = |d2|2.

As we know that our first row sum must be real, we see that (d2 + d3)b ∈ R ,
yielding d2 = −d3 + k for some k ∈ R . (We will show further down that this k is
indeed given by the expression in statement of the lemma.) We may then conclude that
the sum of the elements in the first row is

t p1 = 1+d2b+d3b = 1−bd3 + kb+bd3 = 1+ kb.

Subtracting the first row sum from the second, we obtain:

t (p2− p1) = |d2|2− (1+ kb) = |k−d3|2− (1+ kb).

We let d3 = r+ is , so that r = ℜ
(
−b
f

)
and s = ℑ

(
−b
f

)
, and obtain

t(p2− p1) = (k− r)2 + s2− (1+ kb)

t (p2− p1) = k2−2kr+ r2 + s2−1− kb
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0 = k2 + k (−2r−b)+ |d3|2 −1+ t (p1− p2)

0 = k2 + k

(
2ℜ
(

b
f

)
−b

)
+
∣∣∣∣bf
∣∣∣∣
2

−1+ t (p1− p2)

0 = k2 +b

(
2ℜ
(

1
f

)
−1

)
k+

(∣∣∣∣bf
∣∣∣∣
2

−1+ t (p1− p2)

)

whence we obtain

k =

−b
(
2ℜ
(

1
f

)
−1
)
±
√(

b
(
2ℜ
(

1
f

)
−1
))2 −4

(∣∣∣ bf ∣∣∣2−1+ t (p1 − p2)
)

2
.

(Note: This may fail to be real, but if this is the case, then we may conclude that
d3 �= − b

f , contradicting the assumption of the lemma.)
Lastly, we subtract row 1 from row 3, obtaining:

t(p3− p1) = d3b+d2d3 f + |d3|2g− (1+ kb)

t(p3− p1) = −b2

f
−d2b+

∣∣∣∣bf
∣∣∣∣
2

g−1− kb

t(p3− p1) = −b2

f
− (−d3 + k)b+

∣∣∣∣bf
∣∣∣∣
2

g−1− kb

t(p3− p1) = −b2

f
− b2

f
− kb+

∣∣∣∣bf
∣∣∣∣
2

g−1− kb

g =

(
2ℜ
(

b2

f

)
+2kb+1+ t (p3 − p1)

)
∣∣∣ bf ∣∣∣2

as desired. �

The condition in the lemma above is, of course, very specific. We will consider
the matrices that do not satisfy this condition first. We proceed via a series of lemmas.

LEMMA 4.10. Suppose that D∗ADe = t p for some t > 0 and p ∈ Rn
++ , and

suppose that d3 �= − b
f . Then d2 = lb+ ld3 f , where l = − ℑ(d3)

ℑ(d3 f )

Proof. As in the proof of Lemma 4.9, we may use the fact that row 1 is real to
see that d2 = −d3 + k for some k ∈ R . Substituting this into the second row sum and
recognizing that the off-diagonal elements must sum to a real number, we see that:

d2b+d2(d3 f ) = d2(b+d3 f ) = (−d3 + k)(b+d3 f ) ∈ R\ {0}

(we know this cannot be zero, since d3 �= − b
f , and of course d2 �= 0).
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Thus, we may conclude that −d3 + k = l(b+ d3 f ) , for some l ∈ R \ {0} . Rear-
ranging, we obtain k = lb+ ld3 f +d3 , yielding d2 = lb+ ld3 f , as desired.

To obtain the value of l , we recall that k ∈ R and inspect the imaginary parts of
k = lb+ ld3 f +d3 to obtain 0 = lℑ(d3 f )+ℑ(d3) , or l =− ℑ(d3)

ℑ(d3 f ) . We note that ℑ(d3 f )
cannot be zero, as this would make l(b+d3 f ) real, and (since −d3 + k = l(b+d3 f ))
this would mean that d2 = −d3 + k is also real, meaning that d3 and (by extension) f
must be real, contradicting our assumptions on f from (†) . �

LEMMA 4.11. Suppose that D∗ADe = t p , for some t > 0 , p∈ R3
++ and suppose

that d3 �= − b
f . If d3 = r+ is and f = m+ in , then it must be the case that:

0 = s3 (mg− (m2 +n2))+ s2 (rng)+ s
(
mgr2 − r2m2− r2n2 +b2−m+Rm

)
+
(
r3ng− rn+Rrn

)
where R = t(p1− p3).

Proof. We subtract row 3 from row 1 to obtain

1+d2b+d3b−
(
d3b+d2d3 f + |d3|2g

)
= t(p1− p3).

We set R = t(p1 − p3) , substitute d2 = lb + ld3 f from Lemma 4.10, and inspect the
real parts of the expression (losing no information, as the right side of the equation is
real). We obtain:

1+ lb2 + lbℜ(d3 f )+bℜ(d3)−bℜ(d3)− lbℜ(d3 f )− l|d3 f |2 −|d3|2g = R,

which simplifies to
1+ lb2− l|d3 f |2 −|d3|2g = R.

Substituting d3 = r+ is , f = m+ in , and l = − ℑ(d3)
ℑ(d3 f ) = −s

rn+ms , this becomes

1− sb2

rn+ms
+

s(r2 + s2)(m2 +n2)
rn+ms

− (r2 + s2)g = R.

Multiplying by rn+ms , we have

rn+ms− sb2 + s
(
r2 + s2)(m2 +n2)− (r2 + s2)g(rn+ms) = Rrn+Rms.

Expanding and moving all terms to the right side of the equation, we obtain our desired
expression. �

LEMMA 4.12. Suppose that D∗ADe = t p , for some t > 0 , p∈ R3
++ and suppose

that d3 �= − b
f .Using the notation of Lemma 4.11, it must be the case that:

0 =s4 (m2 +n2−m2g
)
+ s3 (mnb−2bn−2gnmr)

+ s2 (rn2b−mb2−2rbm2 +2rbm+b2 + r2m2 + r2n2− r2n2g− r2m2g−R2m
2)

+ s
(−rnb2−3r2bnm−2r3nmg−2R2rnm

)
+
(−r3n2b− r4gn2−R2r

2n2)
where R2 = t(p2− p3) .
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Proof. We subtract row 3 from row 2 to obtain

t(p2− p3) = d2b+ |d2|2 +d2d3 f − (d3b+d2d3 f + |d3|2g)

Defining R2 := t(p2− p3) , and inspecting the real parts of the expression:

R2 = ℜ(d2)b+ |d2|2 + ℜ(d2d3 f )−ℜ(d3)b−ℜ(d2d3 f )−|d3|2g
R2 = b(ℜ(d2)−ℜ(d3))+ |d2|2−|d3|2g.

As d2 = lb+ ld3 f , we obtain

R2 = b(ℜ(lb+ l(d3 f ))−ℜ(d3))+ |lb+ ld3 f |2 −|d3|2g
= lb2 + lbℜ(d3 f )−bℜ(d3)+ (lb+ lℜ(d3 f ))2 +(lℑ(d3 f ))2 −|d3|2g
= lb2 + lb(rm− sn)−br+(lb+ l(rm− sn))2 +(l(rn+ sm))2− (r2 + s2)g.

Substituting l = − s
rn+ms , this becomes:

R2 =
( −s

rn+ms

)
b2 +

( −s
rn+ms

)
b(rm− sn)−br+

( −s
rn+ms

)2

(b+(rm− sn))2

+
( −s

rn+ms

)2

(rn+ sm)2− (r2 + s2)g.

Multiplying by (rn+ms)2 , we obtain:

R2(rn+ms)2 =− sb2(rn+ms)− sb(rm− sn)(rn+ms)−br(rn+ms)2

+ s2 (b+(rm− sn))2 + s2(rn+ sm)2− (r2g+ s2g)(rn+ms)2.

Expanding:

0 =− sb2rn− s2b2m− sbr2mn+ s2brn2− s2brm2 + s3bnm−br3n2−2br2nms

−brm2s2 + s2b2 +2brms2−2bs3n+ r2m2s2−2rms3n+ s4n2 + s2r2n2

+2rns3m+ s4m2 − r4gn2−2r3nmsg− r2gm2s2 − s2gr2n2−2rnms3g

− s4m2g−R2r
2n2−2R2rnms−R2m

2s2.

Rearranging (and cancelling the −2rms3n+ 2rns3m terms), we obtain the expression
given in the statement of the lemma. �

Lemma 4.11 and Lemma 4.12 give us the following characterization of our scal-
ings:

PROPOSITION 4.13. Suppose that D∗ADe = t p , for some t > 0 , p ∈ R
3
++ and

suppose that d3 �= − b
f . If we denote d3 = r+ is and f = m+ in , then (r,s) must be an

intersection point of the plane curves:

0 = s3(mg− (m2 +n2))+ s2(rng)+ s(mgr2 − r2m2− r2n2 +b2 −m+Rm)+(r3ng− rn+Rrn)
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and

0 = s4(m2 +n2 −m2g)+ s3(mnb−2bn−2gnmr)

+ s2(rn2b−mb2 −2rbm2 +2rbm+b2 + r2m2 + r2n2 − r2n2g− r2m2g−R2m
2)

+ s(−rnb2 −3r2bnm−2r3nmg−2R2rnm)+(−r3n2b− r4gn2 −R2r
2n2).

Let us denote the first curve by C1 and the second as C2 . If C1 and C2 have no
common component, Bezout’s Theorem tells us that there are 12 intersection points,
counted with multiplicities and including points at infinity. We will show, however,
that some of these intersection points do not yield scalings. Our next three lemmas
demonstrate the existence of such intersection points.

LEMMA 4.14. C1 and C2 have exactly two intersection points at infinity.

Proof. Setting z = 0 in the homogenized equations of C1 and C2 , we obtain:

H1 : 0 = s3 (mg− (m2 +n2)
)
+ s2(rng)+ s

(
mgr2− r2m2− r2n2)+ r3ng

= s2 (smg− sm2− sn2 + rng
)
+ r2 (smg− sm2− sn2 + rng

)
=
(
s2 + r2)(smg− sm2− sn2 + rng

)
and

H2 : 0 = s4 (m2 +n2−m2g
)
+ s3 (−2gnmr)+ s2 (r2m2 + r2n2− r2n2g− r2m2g

)
+ s
(−2r3mng

)−gr4n2

= s2 (s2m2 + s2n2− s2m2g−2sgnmr−gr2n2)
+ r2 (s2m2 + s2n2− s2m2g−2sgnmr−gr2n2)

=
(
s2 + r2)(s2m2 + s2n2− s2m2g−2sgnmr−gr2n2)

By inspection, we see that (r,s) = (i,1) and (r,s) = (−i,1) are solutions to both of
these curves.

It is easy to verify that these are the only common solutions at infinity. Indeed, the

third solution to H1 , (r,s) =
(

m2+n2−mg
ng ,1

)
does not solve H2 , as plugging this into

the second factor of H2 yields

m2 +n2−m2g−2m(m2 +n2−mg)− (m2 +n2−mg)2

g

=| f |2 −m2g−2m| f |2 +2m2g− (| f |2 −mg)2

g

=| f |2 −2m| f |2 +m2g− | f |4
g

+2| f |2m−m2g

=| f |2 − | f |4
g

=| f |2
(

1− | f |2
g

)
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which cannot be 0, as this would require | f |2 = g , contradicting the fact that A is
positive definite. �

LEMMA 4.15. C1 and C2 intersect at (r,s) = (0,0) , with intersection multiplicity
at least 2.

Proof. It is easy to see that (0,0) is an intersection point of both curves. We see
that the multiplicity is (at least) 2, as the partial derivatives ∂C2

∂ s and ∂C2
∂ r vanish at (0,0)

(see Appendix A.2 for details). �

LEMMA 4.16. C1 and C2 intersect at (r,s) =
(

−mb
m2+n2 ,

nb
m2+n2

)
, with intersection

multiplicity at least 2.

Proof. It can be verified that this point falls on both curves. Again, we see that
the partial derivatives ∂C2

∂ s and ∂C2
∂ r vanish at this point (see Appendix A.2 for details),

demonstrating that the multiplicity of this point is at least 2. �

We can now prove Theorem 4.7B for matrices that do not satisfy the special case
in Lemma 4.9:

PROPOSITION 4.17. Theorem 4.7B holds for matrices that do not satisfy the con-
dition in Lemma 4.9.

Proof. From Proposition 4.13, we know that for every D satisfying D∗ADe = t p ,
(r,s) = (ℜ(d3),ℑ(d3)) is an intersection point of C1 and C2 . If C1 and C2 have a
common component, then there are infinitely many intersection points. Let us suppose
that this is not the case for the remainder of the proof.

From Bezout’s Theorem, we know that there are twelve such intersection points
counted with multiplicity. Lemma 4.14, Lemma 4.15, and Lemma 4.16 give 6 of these
intersection points, but (as we show below) it is easy to see that none of these can
correspond to (ℜ(d3),ℑ(d3)) for a scaling matrix D :

Lemma 4.14 gives points at infinity with imaginary components. Of course, points
at infinity do not give a meaningful intersections of our curve (and (ℜ(d3),ℑ(d3)) must
be real). Thus these two points do not correspond to a valid d3 .

Lemma 4.15 gives (0,0) as a solution, but this of course cannot correspond to a
valid d3 , as D∗AD would have 3rd row consisting of all zeroes (which cannot be the
case, as t p3 > 0).

Lemma 4.16 gives
(

−mb
m2+n2 , nb

m2+n2

)
as a solution. However, this corresponds to

d3 = −b(m−in)
| f |2 = −b f

| f |2 = −b
f , which (by our assumption) does not scale A (as A does

not satisfy the condition in Lemma 4.9).
Thus, we have a maximum of 6 intersection points that may correspond to d3 for

a scaling matrix D . Once d3 is found, D is fully determined, as d2 = lb+ ld3 f (by
Lemma 4.10), and d1 = 1, as in the statement of Theorem 4.7B. Hence, each choice
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of d3 corresponds to exactly one scaling D∗AD . Thus there are at most 6 scalings
satisfying D∗ADe = t p . �

We now investigate the matrices that do satisfy the condition in Lemma 4.9.

PROPOSITION 4.18. Theorem 4.7B holds for matrices that satisfy the condition
in Lemma 4.9.

Proof. Firstly, note that any scaling that does not satisfy d3 = −b
f must still be

an intersection of C1 and C2 . Thus, all of the reasoning found in the proof of Propo-
sition 4.17 still holds, except that we can no longer assume that the intersection point

(p,q) =
(

−mb
m2+n2 , nb

m2+n2

)
does not correspond to a scaling of A . At first, this would ap-

pear to provide us with a maximum of 7 scalings (the six from Proposition 4.17 and the
additional scaling corresponding to (p,q)). However, we will show that in this case,
the intersection multiplicity at (p,q) is at least three (where it was only guaranteed to
be at least two in the proof of Proposition 4.17). Given that we still have the solutions
from Lemma 4.14 and Lemma 4.15 (each of multiplicity two) which do not correspond
to scalings, Bezout’s Theorem tells us that there are at most 5 other solutions, giving
(again) a maximum of 6 scalings.

Thus, it suffices to show that the multiplicity of (p,q) is at least three. To that end,
we note that the argument from the proof of Lemma 4.16 still holds (i.e. ∂C1

∂ s and ∂C2
∂ r

vanish at (p,q)), but we will now also show that C1 and C2 must share a tangent at
this point. This guarantees that we have a multiplicity of at least three.

We leave the details to Appendix A.3, but it can be shown that the tangent to C1

at (p,q) in variables (r′,s′) is given by:

s′ = −
(

p2ng+2pmgq−2pqm2−2pqn2 +3q2ng−n+Rn
3p2mg−3p2m2 −3p2n2 +2pqng+mgq2−q2m2−q2n2 +b2−m+Rm

)
r′

(1)
while the tangents to C2 at (p,q) are the linear solutions to

0 = 6(s′)2p2 (m2 +n2−m2g
)
+3(s′)2p(mnb−2bn−2gnmq)+3s′p2 (−2gnmr′

)
+(s′)2 (qn2b−mb2−2qbm2 +2qbm+b2+q2m2 +q2n2−q2n2g−q2m2g−R2m

2)
+2s′p

(
r′n2b−2r′bm2 +2r′bm+2r′qm2 +2r′qn2−2r′qn2g−2r′qm2g

)
+ p2 ((r′)2m2 +(r′)2n2− (r′)2n2g− (r′)2m2g

)
+ s′

(−r′nb2−6r′qbnm−6r′q2nmg−2R2r
′nm
)

+ p
(−3(r′)2bnm−6(r′)2qnmg

)
+
(−3(r′)2qn2b−6(r′)2q2gn2−R2(r′)2n2) (2)

It is easy to verify (with computer assistance) that (1) is indeed a linear solution
to (2) , provided g satisfies the condition given in Lemma 4.9. Thus, C1 and C2 share
a tangent at (p,q) , and we may conclude that the intersection multiplicity at this point
is at least three, as desired.
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We complete the proof by noting that once we know that d3 = −b
f , D is fully

determined (and so there is only one possible scaling satisfying −b
f ). Indeed, as seen

in the proof of Lemma 4.9, it must be the case d2 = −d3 + k , where k is well-defined
from the (fixed) value of g (and d1 = 1). �

We finally arrive at our proof of Theorem 4.7, which we restate here:

THEOREM 4.7. Let A be a 3× 3 positive definite matrix, and let λ > 0 and
v ∈ C3 with no zero entries. If there are finitely many complex scalings B = D∗AD
such that Bv = λv, then there are at most six such scalings.

Proof. Proposition 4.17 and Proposition 4.18 prove Theorem4.7B, which is equiv-
alent to Theorem 4.7 (by Lemma 4.8). �

REMARK 6. We note that in our proof of Theorem 4.7, we have provided a way
to actually find the scalings of a given matrix A . One can simply use a solver to find the
intersections points of C1 and C2 to find all possible d3 , and then use d2 = lb+ ld3 f .
(In the case where the matrix satisfies the condition of Lemma 4.9, there may also be
a scaling that satisfies d3 = − b

f , with d2 defined accordingly). We may then use the
function from Lemma 4.8 to obtain the desired scalings.

Lastly, we apply the above result to Question 4.3 of Pereira and Boneng, by letting
λ = 1 and v = e (the all-ones vector):

COROLLARY 4.19. Let A be a 3×3 positive definite matrix. If there are finitely
many complex scalings satisfying satisfying D∗ADe = e, then there are six such scal-
ings.

We close by noting that we have not been able to construct a 3× 3 matrix with
infinitely many scalings (i.e. A 3×3 positive definite matrix where the corresponding
curves C1 and C2 have a common component). We make the following conjecture:

CONJECTURE 4.20. Let A be a 3× 3 positive definite matrix, and suppose that
λ > 0 and v ∈ C

3 with no zero entries. Then there are finitely many complex scalings
B = D∗AD such that Bv = λv.

It would be nice to prove this conjecture, as this would fully answer the question
of ennumerating scalings when n = 3. In higher dimensions (n � 4), the problem is
more delicate, as it has been shown that there are certain matrices and eigenpairs with
infinitely many scalings (see [3]), and we must thus place more restrictions on A or v
if we are to obtain interesting results.
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A. Appendix

Here, you will find details that were left out of certain proofs, for the sake of
brevity.

A.1. Proofs of the equalities from Lemma 3.8

tr(A2) = 2λ 2
1 + λ 2

2 : Examining the diagonal elements of A2 and exploiting sym-
metry, we obtain:

tr(A2) = a2
11 +2a2

12 +2a2
13 +2a2

23 +a2
22 +a2

33

= a2
11 +2a2

12 +2a2
13 +2a2

23 +
(

a11−
(

a12a13

a23
− a12a23

a13

))2

+
(

a11−
(

a13a12

a23
− a13a23

a12

))2

= a2
11 +2a2

12 +2a2
13 +2a2

23

+
(

a2
11−

2a11a12a13

a23
+

2a11a12a23

a13
+

a2
12a

2
13

a2
23

+
a2

12a
2
23

a2
13

−2a2
12

)

+
(

a2
11−

2a11a13a12

a23
+

2a11a13a23

a12
+

a2
13a

2
12

a2
23

+
a2

13a
2
23

a2
12

−2a2
13

)

We see that the 2a2
12 and 2a2

13 cancel out, and we collect like terms to obtain:

tr(A2) = 3a2
11 +2a2

23−
4a11a12a13

a23
+

2a11a12a23

a13
+

2a2
12a

2
13

a2
23

+
a2

12a
2
23

a2
13

+
2a11a13a23

a12
+

a2
13a

2
23

a2
12

.

Rearranging, we arrive at our desired equality:

tr(A2) = 2a2
11−4

a11a12a13

a23
+

2a2
12a

2
13

a2
23

+a2
11 +2a2

23 +
2a11a12a23

a13
+

a2
12a

2
23

a2
13

+
2a11a13a23

a12
+

a2
13a

2
23

a2
12

= 2

(
a2

11−
2a11a12a13

a23
+

a2
12a

2
13

a2
23

)

+
(

a2
11 +2a2

23 +
2a11a12a23

a13
+

a2
12a

2
23

a2
13

+
2a11a13a23

a12
+

a2
13a

2
23

a2
12

)

= 2

(
a11− a13a12

a23

)2

+
(

a11 +
a13a23

a12
+

a12a23

a13

)2

= 2λ 2
1 + λ 2

2
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det(A) = λ 2
1 λ2 : Exploiting symmetry, we obtain:

det(A) = a11a22a33 +2a12a23a13 −a11a
2
23 −a22a

2
13 −a33a

2
12

= a11

(
a11 −

(
a12a13

a23
− a12a23

a13

))(
a11 −

(
a13a12

a23
− a13a23

a12

))
+2a12a23a13

−a11a
2
23 −

(
a11 −

(
a12a13

a23
− a12a23

a13

))
a2
13 −

(
a11 −

(
a13a12

a23
− a13a23

a12

))
a2
12

= a3
11 −a2

11

(
a13a12

a23
− a13a23

a12

)
−a2

11

(
a12a13

a23
− a12a23

a13

)

+a11

(
a12a13

a23
− a12a23

a13

)(
a13a12

a23
− a13a23

a12

)
+2a12a23a13 −a11a

2
23 −a11a

2
13

+
a12a3

13
a23

−a13a12a23 −a11a
2
12 +

a13a3
12

a23
−a12a13a23

= a3
11 +

a2
11a13a23

a12
+

a2
11a12a23

a13
− 2a2

11a13a12

a23
+

a11a2
12a

2
13

a2
23

−a11a
2
12 −a11a

2
13

+a11a
2
23 +2a12a23a13 −a11a

2
23 −a11a

2
13 +

a12a3
13

a23
−2a13a12a23 −a11a

2
12 +

a13a3
12

a23

Collecting terms and cancelling, we obtain:

det(A) = a3
11 +

a2
11a13a23

a12
+

a2
11a12a23

a13
− 2a2

11a13a12

a23
+

a11a2
12a

2
13

a2
23

−2a11a
2
12

−2a11a
2
13 +

a3
13a12

a23
+

a13a3
12

a23

We now show that λ 2
1 λ2 is also given by the above expression. Indeed:

λ 2
1 λ2 =

(
a11− a13a12

a23

)2(
a11 +

a13a23

a12
+

a12a23

a13

)

=
(

a2
11−

2a11a13a12

a23
+

a2
13a

2
12

a2
23

)(
a11 +

a13a23

a12
+

a12a23

a13

)

= a3
11 +

a2
11a13a23

a12
+

a2
11a12a23

a13
− 2a2

11a13a12

a23
−2a11a

2
13−2a11a

2
12

+
a11a2

13a
2
12

a2
23

+
a3

13a12

a23
+

a13a3
12

a23
,

which is equivalent to our above expansion of det(A) . Hence det(A) = λ 2
1 λ2 , as de-

sired.
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A.2. Proof that partial derivatives of C2 vanish in Lemma 4.15 and Lemma 4.16

We begin by rewriting our expression for C2 , for reference:

0 = s4 (m2 +n2−m2g
)
+ s3 (mnb−2bn−2gnmr)

+ s2 (rn2b−mb2−2rbm2 +2rbm+b2 + r2m2 + r2n2− r2n2g− r2m2g−R2m
2)

+ s
(−rnb2−3r2bnm−2r3nmg−2R2rnm

)
+
(−r3n2b− r4gn2−R2r

2n2)
We take the partial derivative with respect to r :

0 = −2s3gnm+ s2(n2b−2bm2 +2bm+2rm2+2rn2−2rn2g−2rm2g
)

+ s
(−nb2−6rbnm−6r2nmg−2R2nm

)−3r2n2b−4r3gn2−2R2rn
2,

and the partial derivative with respect to s :

0 = 4s3 (m2 +n2−m2g
)
+3s2 (mnb−2bn−2gnmr)

+2s
(
rn2b−mb2−2rbm2 +2rbm+b2 + r2m2 + r2n2− r2n2g− r2m2g−R2m

2)
+
(−rnb2−3r2bnm−2r3nmg−2R2rnm

)
,

whence one can verify that both of these partial derivatives vanish at (r,s) = (0,0) (as

claimed in the proof of Lemma 4.15) and at
(

−mb
m2+n2 , nb

m2+n2

)
(as claimed in the proof

of Lemma 4.16).

A.3. Proof of the tangents given in Proposition 4.18

Recall that in order to find the tangents to C1 and C2 , at the point (s,r) = (p,q) ,
we first shift the coordinates of our curve to s′ = s− p and r′ = r− q , after which
the tangents are given by the linear factors of the homogeneous part Cm , where m is
the smallest natural number such that Cm is non-zero. (These definitions are standard,
but we encourage the reader to refer to [12] for an excellent introductory treatment of
this material. The pertinent definitions for our purposes are Definitions 2.20 and 2.18
therein).

Tangent to C1 at (p,q): We make the coordinate change s �→ s′ + p and
r �→ r′ +q . We will call this new curve F , so

F(s′,r′) = (s′ + p)3 (mg− (m2 +n2)
)
+(s′ + p)2 ((r′ +q)ng

)
+(s′ + p)

(
mg(r′ +q)2− (r′ +q)2m2− (r′ +q)2n2 +b2−m+Rm

)
+((r′ +q)3ng− (r′+q)n+R(r′+q)n).

Of course, F(0,0) = 0 (since C1(p,q) = 0), so the multiplicity of this point is at
least 1. We look to the homogeneous part F1 (i.e. the degree 1 terms):

F1(s′,r′) = 3s′p2mg−3s′p2m2−3s′p2n2 +2s′pqng+ p2r′ng+ s′mgq2− s′q2m2

− s′q2n2 + s′b2− s′m+ s′Rm+2pmgr′q−2pr′qm2−2pr′qn2 +3r′q2ng

− r′n+Rr′n.
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Factoring out the s′ and the r′ , we obtain:

F1(s′,r′) = s′
(
3p2mg−3p2m2−3p2n2 +2pqng+mgq2−q2m2−q2n2 +b2−m+Rm

)
+ r′

(
p2ng+2pmgq−2pqm2−2pqn2 +3q2ng−n+Rn

)
.

As the tangent at (p,q) is defined to be the linear factors of this curve, we see that
the tangent is given by:

s′ = −
(

p2ng+2pmgq−2pqm2−2pqn2 +3q2ng−n+Rn
3p2mg−3p2m2 −3p2n2 +2pqng+mgq2−q2m2−q2n2 +b2−m+Rm

)
r′

as given in the proof of Proposition 4.18.

Tangent to C2 at (p,q): As above, we make the coordinate change s �→ s′ + p
and r �→ r′ +q , and call this new curve G :

G(s′,r′) =(s′ + p)4(m2 +n2−m2g)+ (s′ + p)3(mnb−2bn−2gnm(r′+q))

+ (s′ + p)2((r′ +q)n2b−mb2−2(r′+q)bm2 +2(r′+q)bm+b2

+(r′ +q)2m2 +(r′ +q)2n2− (r′ +q)2n2g− (r′+q)2m2g−R2m
2)

+(s′ + p)
(−(r′ +q)nb2−3(r′ +q)2bnm−2(r′+q)3nmg−2R2(r′ +q)nm

)
+
(−(r′ +q)3n2b− (r′+q)4gn2−R2(r′ +q)2n2) .

By Lemma 4.16, we know that (0,0) is a zero of G(s′,r′) of multiplicity two (this
corresponds to C2(p,q) in our original coordinates). Thus, we look to the homogeneous
part G2 (i.e. the terms of order 2), and see that the tangents are given by the linear
solutions to:

0 = 6(s′)2p2 (m2 +n2−m2g
)
+3(s′)2p(mnb−2bn−2gnmq)+3s′p2 (−2gnmr′

)
+(s′)2 (qn2b−mb2−2qbm2 +2qbm+b2+q2m2 +q2n2−q2n2g−q2m2g−R2m

2)
+2s′p

(
r′n2b−2r′bm2 +2r′bm+2r′qm2 +2r′qn2−2r′qn2g−2r′qm2g

)
+ p2 ((r′)2m2 +(r′)2n2− (r′)2n2g− (r′)2m2g

)
+ s′

(−r′nb2−6r′qbnm−6r′q2nmg−2R2r
′nm
)

+ p
(−3(r′)2bnm−6(r′)2qnmg

)
+
(−3(r′)2qn2b−6(r′)2q2gn2−R2(r′)2n2)

as given in the proof of Proposition 4.18.
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