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Abstract. An operator A is said to be T -EP if R(A) = R(TA∗) and A = AT∗T , where T is a
partial isometry. In this note, some basic properties of T -EP operators are studied. The invariant
characterizations that sum and product of two T -EP operators still keep to be T -EP are obtained.
As an extension, we obtain necessary and sufficient conditions for a lower triangular operator
matrix to be T -EP.

1. Introduction

EP operators play an important role and have a wide range of applications in
operator generalized inverses. Many scholars have paid attention to EP operators and
obtained a lot of meaningful results. In this note, we study the basic properties of T -
EP operators. Generally, let H and K be two complex infinite dimensional separable
Hilbert spaces. H⊕K is defined as the Cartesian product H×K where the operations
are defined on H×K coordinatewise. If M and N are two closed linear subspaces of
H , then M�N = M∩N⊥ . The set of all bounded linear operators from H to K is
denoted by B(H,K) . We write B(H) for B(H,H) . Let A ∈ B(H,K) . A∗ , R(A) and
N (A) stand for the adjoint, the range and the null space of A , respectively. R(A) is the
closure of R(A) and PM is the orthogonal projection on a closed subspace M [15].
We use asc(T ) and des(T ) to denote the ascent and descent of T , i.e., asc(T ) =min{k :
N (Tk) = N (Tk+1)} and des(T ) = min{k : R(T k) = R(Tk+1)} [14]. It is known to
us all that des(T ) = asc(T ) when asc(T ) and des(T ) are finite and the index of T is
defined by ind(T ) = asc(T ) = des(T ) . Note that 0 is not the accumulated point of

σ(T ) when ind(T ) is finite [4]. Let A ∈ B(H) and |A| = (A∗A)
1
2 . If R(A) = R(A∗) ,

then A is called EP. If (Ax,x) � 0 for all x ∈H , we call A is positive.
We remind the reader that T ∈ B(H,K) is a partial isometry if T = TT ∗T . In [6],

the concept of relative EP matrix of a rectangular matrix relative to a partial isometry
matrix (or, in short, T -EP) and some properties of T -EP are given. The purpose of
this paper is to study the basic properties and obtain some new identifying conditions
for an operator A ∈ B(H,K) on a Hilbert space to be T -EP, where T ∈ B(H,K) is a
fixed partial isometry. The necessary and sufficient conditions are given for the sum and
product of two T -EP operators to be T -EP. As an extension, we then derive necessary
and sufficient conditions for a lower triangular operator matrix to be T -EP.
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The paper is organized as follows. In Section 2, we use block operator matrix
methods to establish serveral necessary and sufficient conditions and obtain many prop-
erties when A ∈ B(H,K) is T -EP. In Section 3, the necessary and sufficient conditions
are given for the sum and product of two T -EP operators to be T -EP. And we obtain
some interesting conclusions when the fixed partial isometry T has special character-
istics.

2. Some basic results

We start with several preliminary results that will be used in our proof. Throughout
this paper we will use T ∈ B(H,K) or T ∈ B(H) as a fixed partial isometry. It is well
known that, if T is a partial isometry, then R(T ) is closed and there exists an isometry
U ∈ B(R(T ∗),R(T )) such that

T =
(

U 0
0 0

)
:

(R(T ∗)
N (T )

)
−→

( R(T )
N (T ∗)

)
, where U∗U = IR(T∗), UU∗ = IR(T). (1)

The following lemma is a standard result.

LEMMA 2.1. [1, Proposition 2.4], [11, Theorem 4] and [12, Theorem 1.1] For
A, B ∈ B(H,K), the following conditions are equivalent:

(i) R(A) ⊆R(A+B) .

(ii) R(B) ⊆R(A+B) .

(iii) R(A)+R(B) ⊆R(A+B) .

(iv) R(A−B)⊆R(A+B) .

The following ranges results are given by Douglas [8] and Fillmore-Williams [9].

LEMMA 2.2. [8, Theorem 1] and [9, Theorem 2.1] Let A, B be bounded linear
operators on a Hilbert space H . Then the following statements are equivalent:

(i) R(A) ⊆R(B) .

(ii) AA∗ � k2BB∗ for some k > 0 .

(iii) There exists a bounded linear operator C such that A = BC.

In Lemma 2.2, the operator C can be denoted by C = B†A+(I−B†B)D for some
bounded linear operator D , where B† (possibly unbounded) is the Moore-Penrose in-
verse of B . And B† exactly bounded when R(B) is closed [2, 3].

Note that A ∈ B(H) is EP if R(A) = R(A∗) . It is obvious that A is EP ⇐⇒ A∗
is EP. If R(A) is closed, A is EP ⇐⇒ A† is EP ⇐⇒ AA† = A†A . The following
Definition 2.1 extends the class of EP operators to a class of T -EP operators.

DEFINITION 2.1. [6, Definition 3] Let T ∈ B(H,K) be a fixed partial isometry.
An operator A ∈ B(H,K) is said to be relative EP to T (in short, T -EP) if

R(A) = R(TA∗), A = AT ∗T.
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For the fixed partial isometry T ∈ B(H,K) and arbitrary A ∈ B(H,K) , it is of
great significance to study properties of T -EP. As we know, for every A ∈ B(H) , there
is a unique partial isometry T0 ∈ B(H) such that A has the polar decomposition A =
T0|A| and N (T0) = N (A) [7, Theorem 4.39]. As for this special T0 ,

A = T0|A| is the polar decomposition of A =⇒ A is T0 -EP and A∗ is T ∗
0 -EP.

In fact, T0T ∗
0 = PR(A) and T ∗

0 T0 = PR(A∗) imply that A = AT ∗
0 T0 and A∗ = A∗T0T ∗

0 .

From T ∗
0 AT ∗

0 = T ∗
0 T0|A|T ∗

0 = |A|T ∗
0 = A∗ , we have R(A∗) = R(T ∗

0 AT ∗
0 ) = R(T ∗

0 A) .
So, A∗ is T ∗

0 -EP by Definition 2.1. Note that A∗ has the polar decomposition A∗ =
T ∗
0 |A∗| . Similarly, we have that A is T0 -EP.

As for Definition 2.1, we make the following detailed explanations.

REMARK 2.1. Note that T is a fixed partial isometry. Definition 2.1 has some
equal descriptions (see [6] for the finite matrix case).

(i)

R(A) = R(TA∗) ⇐⇒R(A) = R(TA∗T ).

In fact, by Lemma 2.2, R(A)=R(TA∗) (resp. R(A)=R(TA∗T )) implies that R(A)⊆
R(T ) . So,

R(A∗) = A∗R(T ) = R(A∗T )

and
R(TA∗T ) = TR(A∗T ) = TR(A∗) = R(TA∗).

Hence,
R(A) = R(TA∗) ⇐⇒R(A) = R(TA∗T ).

(ii) Note that T ∗T = PR(T ∗) and TT ∗ = PR(T) . It follows that

A = AT ∗T

⇐⇒ R(A∗) ⊆R(T ∗)

⇐⇒ N (T ) ⊆N (A)

⇐⇒ A =
(

A11 0
A21 0

)
, where A11 ∈ B(R(T ∗),R(T )), A21 ∈ B(R(T ∗),N (T ∗))).

In addition, if R(A) is closed,

A = AT ∗T ⇐⇒ A† = T ∗TA†.

(iii) Let S1 and S2 be two partial isometries, A be a closed range operator such that
AS2S∗2 = A = S∗1S1A . Then

(S1AS2)† = S∗2A
†S∗1.
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(iv) An operator A ∈ B(H,K) is said to be relative selfadjoint to T (in short, T -
selfadjoint) if A = TA∗T . A is said to be relative normal to T (in short, T -normal)
if A = TT ∗A = AT ∗T and AA∗T = TA∗A . It is obvious that every T -selfadjoint oper-
ator is T -normal [6, Definitions 1 and 2]. If A is T -normal, then A = AT ∗T and

R(A) = R((AA∗)
1
2 ) = R((TT ∗AA∗)

1
2 ) = R((TA∗AT ∗)

1
2 )

= R((TA∗TT ∗AT ∗)
1
2 ) = R(TA∗T ) = R(TA∗).

Hence, every T -normal operator is T -EP.
For the fixed partial isometry T ∈ B(H,K) , the next lemma gives the operator

matrix representation of the T -EP operator A ∈ B(H,K) .

LEMMA 2.3. Let A ∈ B(H,K) . The following results are equivalent:

(i) A is T -EP.

(ii) A and T , as the operators from

R(A∗)⊕
[
R(T ∗)�R(A∗)

]
⊕N (T ) −→R(A)⊕

[
R(T )�R(A)

]
⊕N (T ∗),

can be denoted as
A = A11⊕0⊕0, T = U11⊕U22⊕0, (2)

respectively, where A11 is injective with dense range, U11 and U22 are two isometries
satisfying R(A11) = R(U11A∗

11) .

(iii) There exists an EP operator E ∈ B(K) such that A = ET and E = TT ∗E .

Proof. (i) =⇒ (ii) Let T have the form (1). Then A has the corresponding form

A =
(

A1 A12

A21 A22

)
:

(R(T ∗)
N (T )

)
−→

( R(T )
N (T ∗)

)
. (3)

So,

R(A) = R(TA∗T ) ⇐⇒ A21 = 0, A22 = 0 and R((A1,A12)) = R(UA∗
1U)

and
A = AT ∗T ⇐⇒ A12 = 0.

One gets A = A1⊕0 with R(A1) =R(UA∗
1) . By Definition 2.1, one has R(A)⊆R(T )

and R(A∗) ⊆R(T ∗) . The operator matrices (1) and (3) can be rewritten as

A =

⎛
⎝A11 0 0

0 0 0
0 0 0

⎞
⎠ :

⎛
⎝ R(A∗)

R(T ∗)�R(A∗)
N (T )

⎞
⎠ −→

⎛
⎝ R(A)

R(T )�R(A)
N (T ∗)

⎞
⎠

and

T =

⎛
⎝U11 U12 0

U21 U22 0
0 0 0

⎞
⎠ :

⎛
⎝ R(A∗)

R(T ∗)�R(A∗)
N (T )

⎞
⎠ −→

⎛
⎝ R(A)

R(T )�R(A)
N (T ∗)

⎞
⎠ ,
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respectively, where A11 is injective with dense range and A1 = A11 ⊕ 0, the isometry

U =
(

U11 U12

U21 U22

)
with U∗U = IR(T ∗) and UU∗ = IR(T) . From R(A1) = R(UA∗

1) and

UA∗
1 =

(
U11A∗

11 0
U21A∗

11 0

)
, one gets U21 = 0 and R(A11) = R(U11A∗

11) . It follows that

R(U11) is dense in R(A) . From U∗U = IR(T∗) , one gets

U∗
11U11 = I R(A∗), U∗

11U12 = 0, U∗
12U11 = 0, U∗

12U12 +U∗
22U22 = IR(T∗)�R(A∗).

It follows that U11 is injective with closed range. Hence, U11 ∈ B(R(A∗),R(A)) is an
isometry, U12 = 0 and U∗

22U22 = IR(T ∗)�R(A∗) . Furthermore, from UU∗ = IR(T ) , one

derives that U22 ∈ B(R(T ∗)�R(A∗),R(T )�R(A)) is an isometry with U22U∗
22 =

IR(T)�R(A) .
(ii) =⇒ (iii) Let E = AT ∗ . By (2), E = A11U∗

11⊕0⊕0. Since

R(A11U
∗
11) = R(A11) = R(U11A

∗
11),

one has E is an EP operator, A = ET and E = TT ∗E .
(iii) =⇒ (i) Since A = ET , A∗ = T ∗E∗ , one gets R(A∗)⊆R(T ∗) . It follows that

A = AT ∗T . By TT ∗E = E and E is an EP operator, we have R(E) =R(E∗)⊆R(T ) .
From

R(E) ⊇R(A) = R(ET ) = ER(T ) ⊇ ER(E∗) = R(E),

one has R(A) = R(E) . In addition, from

R(E) = R(E∗) ⊇R(TA∗T ) = R(TT ∗E∗T ) = R(E∗T ) ⊇R(E∗) = R(E),

one has
R(TA∗) = R(TA∗T ) = R(E).

As a result, R(A) = R(TA∗) and therefore A is T -EP. �

REMARK 2.2. By Lemma 2.3 and its proof, one has the following observations
immediately (see [6] for the finite matrix case).

(i) If A is T -EP, then E = AT ∗ satisfies R(E) = R(A) = R(E∗) ⊆R(T ) ,

E = ETT ∗ = TT ∗E and A = AT ∗T = TT ∗A .

(ii) In Lemma 2.3, if T is unitary, then R(T ) = R(T ∗) , T =U1⊕U2 and A = A11⊕0
with R(A11) = R(U1A∗

11) . Hence,

A is T -EP ⇐⇒ TA∗ is EP ⇐⇒ AT ∗ is EP ⇐⇒ R(A) = R(TA∗) .

In addition, if R(A) is closed, then

A is T -EP ⇐⇒ R(A) = R(TA∗)

⇐⇒ N (A∗) = N (AT ∗)

⇐⇒ TA† is EP

⇐⇒ TA†A = AA†T.
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(iii) In Lemma 2.3,

R(A11) = R(U11A∗
11) ⇐⇒ AT ∗ is EP ⇐⇒ TA∗ is EP,

which is also equivalent to that TA† is EP when R(A) is closed.

(iv) If R(A) is closed, then A is T -EP if and only if TA†A = AA†T and A = AT ∗T =
TT ∗A . In this case, A11 is invertible by (2) and the following relations are obvious:

(T ∗A)† = A†T ; (AT ∗)† = TA†; (TA†)† = AT ∗; (A†T )† = T ∗A;

(TA†T )† = T ∗AT ∗; (AT ∗A)† = A†TA†; A† = T ∗E† = T ∗(AT ∗)†.

(v) In general,

A is T -EP ⇐⇒ A∗ is T ∗ -EP.

If R(A) is closed, then

A is T -EP ⇐⇒ A† is T ∗ -EP.

In fact, if A is T -EP, by Lemma 2.3, R(A11) = R(U11A∗
11) implies that

R(U∗
11A11) = R(U∗

11U11A
∗
11) = R(PR(A∗)A

∗
11) = R(A∗

11).

So, A∗ is T ∗ -EP. Conversely, if A∗ is T ∗ -EP, similarly to the above proof, (A∗)∗ is
(T ∗)∗ -EP, i.e., A is T -EP. In case that R(A) is closed and A∗ is T ∗ -EP, then

R(A†) = R(A∗) = R(T ∗A) = R(T ∗(A†)∗)

and R((A†)∗) = R(A) ⊆R(T ) . One has A∗ is T ∗ -EP ⇐⇒ A† is T ∗ -EP.

(vi)

A is T -EP ⇐⇒ AT ∗ is EP and A = AT ∗T .

In fact, it is clear that A is T -EP =⇒ AT ∗ is EP and A = AT ∗T . On the other hand, if
AT ∗ is EP and A = AT ∗T , then

R(A) = A(R(A∗)) ⊆ A(R(T ∗)) = R(TA∗).

Hence, R(A) ⊆ R(T ) and R(A∗) ⊆ R(T ∗) . Therefore, if T is denoted by (1), then
A = A1⊕0. It follows that R(A1) = R(A1U∗) = R(UA∗

1) and R(A) = R(TA∗) .
(vii)

AT ∗ is EP ⇐⇒ TA∗ is EP (⇐⇒ TA† is EP when R(A) is closed).

(viii)

A is EP and |A∗| is T -EP =⇒ A∗ is T -EP.

In fact,
R(A∗) = R(A) = R(|A∗|) = R(T |A∗|) = TR(A) = R(TA).

By polar decomposition and |A∗| = |A∗|T ∗T one has A∗ = A∗T ∗T , i.e., A∗ is T -EP.
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3. Some properties of T -EP operators

In this section, we study characterizations of T -EP operators. Firstly, we consider
a specific case when T ∈ B(H) be a fixed selfadjoint partial isometry.

THEOREM 3.1. Let A ∈ B(H) and T ∈ B(H) be a fixed selfadjoint partial isom-
etry. Then A is T -EP if and only if TA is EP and A = AT 2 = T 2A.

Proof. =⇒ Since A is T -EP, R(A) ⊆ R(T ) and R(A∗) ⊆ R(T ) by Definition
2.1. Hence, T 2A = PR(T)A = A = AT 2 . From R(A) = R(TA∗) one has

R(TA) = R(T 2A∗) = R(A∗) = A∗(R(A)) ⊆ A∗(R(T )) = R(A∗T ∗) ⊆R(A∗).

Therefore, R(TA) = R(A∗T ∗) .
⇐= From A = AT 2 = T 2A one has R(A) ⊆R(T ) and R(A∗) ⊆R(T ) . In addi-

tion,

R(T ∗A) = R(TA) = R(A∗T ∗) = A∗(R(T ∗)) ⊇ A∗(R(A)) = R(A∗)

and R(A∗T ∗) ⊆ R(A∗) . Hence, A∗ is T ∗ -EP. By Remark 2.2 (iii), we get A is T -
EP. �

Theorem 3.1 shows that, if T ∈ B(H) is an orthogonal projection, then

A ∈ B(H) is T -EP ⇐⇒ A is EP and A = AT = TA .

THEOREM 3.2. Let A ∈ B(H) and T ∈ B(H) be a partial isometry such that
AT ∗ = T ∗A. Then A is T -EP if and only if A is EP and A = TT ∗A = AT ∗T .

Proof. =⇒ From A is T -EP and TA∗ = A∗T one gets

R(A) = R(TA∗) = R(A∗T ) ⊆R(A∗).

Note that

R(A∗) = R(T ∗TA∗) = T ∗R(TA∗) = T ∗R(A) = R(T ∗A) = R(AT ∗) ⊆R(A).

Hence, R(A) = R(A∗) , i.e., A is EP. By Remark 2.2 (i) one has A = AT ∗T = TT ∗A .
⇐= Since R(A)=R(A∗) , A can be denoted as A =A1⊕0, where A1 ∈B(R(A))

is injective with dense range. From AT ∗ = T ∗A one can write T as the corresponding
form T = U11 ⊕U22 , where U11 and U22 are partial isometries on R(A) and N (A) ,
respectively. Since A = AT ∗T = TT ∗A , one derives that U11 is an isometry. Hence
R(A) = R(A∗) = R(A∗T ) = R(TA∗) . A is T -EP. �

Next, we consider the sum and the product of two T -EP operators and obtain the
sufficient and necessary conditions which ensure A+B and AB are T -EP.
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THEOREM 3.3. Let A and B ∈ B(H,K) be T -EP. Then A +B is T -EP if and
only if

R(PR(A)(A+B)PR(A∗))+R(PR(A)BPR(T∗)�R(A∗))

= R(PR(A)T (A+B)∗PR(A))+R(PR(A)TB∗PR(T)�R(A)).
(4)

Proof. Let A and T have the matrix forms (2). If A and B are T -EP, then A =
AT ∗T , B = BT ∗T and (A+B) = (A+B)T ∗T . By Lemma 2.3, T -EP operator B can
be represented as

B =

⎛
⎝B11 B12 0

B21 B22 0
0 0 0

⎞
⎠ :

⎛
⎝ R(A∗)

R(T ∗)�R(A∗)
N (T )

⎞
⎠ −→

⎛
⎝ R(A)

R(T )�R(A)
N (T ∗)

⎞
⎠ . (5)

By (2) and R(B) = R(TB∗) one has

R
((

B11 B12

B21 B22

))
= R

((
U11B∗

11 U11B∗
21

U22B∗
12 U22B∗

22

))
.

One gets R(
(
B11 B12

)
) = R(

(
U11B∗

11 U11B∗
21

)
) , i.e.,

R(PR(A)BPR(A∗))+R(PR(A)BPR(T∗)�R(A∗))

= R(PR(A)TB∗PR(A))+R(PR(A)TB∗PR(T )�R(A))
(6)

and R(
(
B21 B22

)
) = R(

(
U22B∗

12 U22B∗
22

)
) . Therefore,

R(A+B) = R(T (A+B)∗)

⇐⇒ R
((

A11 +B11 B12

B21 B22

))
= R

((
U11(A11 +B11)∗ U11B∗

21
U22B∗

12 U22B∗
22

))

⇐⇒ R((A11 +B11 B12 )) = R((U11(A11 +B11)∗ U11B∗
21 ))

⇐⇒ R(A11 +B11)+R(B12) = R(U11(A11 +B11)∗)+R(U11B∗
21)

⇐⇒ R(PR(A)(A+B)PR(A∗))+R(PR(A)BPR(T∗)�R(A∗))

= R(PR(A)T (A+B)∗PR(A))+R(PR(A)TB∗PR(T)�R(A)). �

Theorem 3.3 contains some special cases.

COROLLARY 3.1. Let A, B ∈ B(H,K) be T -EP. If PR(A)BPR(A∗) = 0 , then
A+B is T -EP.

Proof. By Lemma 2.3, if A is T -EP, then PR(A)T = TPR(A∗) and

R(A) = R(PR(A)APR(A∗)) = R(PR(A)TA∗PR(A)). (7)
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If PR(A)BPR(A∗) = 0, then

R(PR(A)BPR(T∗)�R(A∗)) = R(PR(A)TB∗PR(T)�R(A))

by (6),
R(PR(A)(A+B)PR(A∗)) = R(PR(A)APR(A∗))

and
R(PR(A)T (A+B)∗PR(A)) = R(PR(A)TA∗PR(A)).

Hence, the result in (4) holds and A+B is T -EP. �

REMARK 3.1. Let A , B∈B(H,K) be T -EP. We can derive the following results.

(i) In Theorem 3.3, if R(A) is closed, then A+B is T -EP if and only if

R(A+AA†BA†A)+R(AA†B(T ∗T −A†A))

= R(AA†T (A+B)∗AA†)+R(AA†TB∗(TT ∗ −AA†)).
(8)

(ii) If BA∗ = 0, then

B =

⎛
⎝0 B12 0

0 B22 0
0 0 0

⎞
⎠ , R(B12) = R(U11B

∗
12), R(B22) = R(U22B

∗
22).

By Theorem 3.3, A + B is T -EP. Similarly, if A∗B = 0 ⇒ B11 = 0 and B12 = 0 ⇒
A+B is T -EP.

(iii) If one of R(A)∩R(B)= {0} and R(A∗)∩R(B∗)= {0} holds, then PR(A)BPR(A∗)
= 0 and A+B is T -EP by Corollary 3.1. These are the main results in [6, Corollaries
5 and 6, Theorems 23, 25 and 26].

COROLLARY 3.2. Let A, B ∈ B(H,K) be T -EP. If

R(A) ⊆R(PR(A)(A+B)PR(A∗))

and
R(PR(A)TA∗) ⊆R(PR(A)T (A+B)∗PR(A)),

then A+B is T -EP.

Proof. If

R(A) = R(PR(A)APR(A∗)) ⊆R(PR(A)(A+B)PR(A∗))

and
R(PR(A)TA∗) ⊆R(PR(A)T (A+B)∗PR(A)),
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then

R(PR(A)APR(A∗))+R(PR(A)BPR(A∗)) = R(PR(A)(A+B)PR(A∗))

and

R(PR(A)TA∗PR(A))+R(PR(A)TB∗PR(A)) = R(PR(A)T (A+B)∗PR(A))

by Lemma 2.1. Since A and B are T -EP, by (6) and (7),

R(PR(A)(A+B)PR(A∗))+R(PR(A)BPR(T∗)�R(A∗))

= R(PR(A)T (A+B)∗PR(A))+R(PR(A)TB∗PR(T)�R(A)).

Therefore, A+B is T -EP. �

As for the product of two T -EP operators, we have the following results.

THEOREM 3.4. Let A, B ∈ B(H,K) be T -EP. Then

(i) A∗B is T ∗T -EP ⇐⇒ A∗BPR(A∗) is EP and PR(A)BPR(T∗)�R(A∗) = 0 .

(ii) AB∗ is TT ∗ -EP ⇐⇒ AB∗PR(A) is EP and PR(T)�R(A)BPR(A∗) = 0 .

Proof. (i) It is obvious that A∗B = A∗BT ∗T since B is T -EP. By Lemma 2.3, A
and T have the forms as in (2). Let B have the corresponding form as in (5). One has
T ∗T = I⊕ I⊕0,

A∗B =

⎛
⎝A∗

11B11 A∗
11B12 0

0 0 0
0 0 0

⎞
⎠ , T ∗TB∗A =

⎛
⎝B∗

11A11 0 0
B∗

12A11 0 0
0 0 0

⎞
⎠ .

Hence, A∗B is T ∗T -EP if and only if R(A∗B) = R(T ∗TB∗A) ⇐⇒ A∗
11B11 is EP and

B12 = 0 ⇐⇒ PR(A)BPR(T∗)�R(A∗) = 0 and A∗BPR(A∗) is EP.
(ii) Similar to (i). �

THEOREM 3.5. Let A and B ∈ B(H) be T -EP.

(i) If R(AB) = R(A)∩R(B) and R(B∗A∗) = R(B∗)∩R(A∗) , then AB is T -EP.

(ii) If AB is T -EP, then R(AB) ⊆R(A)∩R(B) and R(B∗A∗) ⊆R(B∗)∩R(A∗) .

(iii) If ind(A) � 1 and ind(B) � 1 , then

AB is T -EP ⇐⇒R(AB) = R(A)∩R(B) and R(B∗A∗) = R(B∗)∩R(A∗) .

Proof. (i) If R(AB) = R(A)∩R(B) and R(B∗A∗) = R(B∗)∩R(A∗) , then

R(AB) = R(A)∩R(B) = R(TB∗)∩R(TA∗)
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and

R(TB∗A∗) = T (R(B∗A∗)) = T (R(B∗)∩R(A∗)) = R(TB∗)∩R(TA∗).

And it is clear that AB = ABT ∗T . Hence, AB is T -EP.
(ii) Obviously, R(AB) ⊆R(A) by Lemma 2.2. Since AB is T -EP,

R(AB) = R(TB∗A∗) = TB∗(R(A∗)) ⊆R(TB∗) = R(B).

Hence, R(AB) ⊆R(A)∩R(B) . Since AB is T -EP, B∗A∗ is T ∗ -EP and

R(B∗A∗) = R(T ∗AB) = T ∗A(R(B)) ⊆R(T ∗A) = R(A∗).

Obviously, R(B∗A∗) ⊆R(B∗) . Hence, R(B∗A∗) ⊆R(B∗)∩R(A∗) .
(iii) By items (i) and (ii), we only need to verify that, if AB is T -EP,

R(AB) ⊇R(A)∩R(B), R(B∗A∗) ⊇R(B∗)∩R(A∗).

Since ind(B) � 1, R(B) is closed and B can be denoted as

B =
(

B11 0
0 0

)
:

(R(B∗)
N (B)

)
−→

( R(B)
N (B∗)

)
,

where B11 is invertible. Denote A by

A =
(

A11 A12

A21 A22

)
:

( R(B)
N (B∗)

)
−→

( R(B)
N (B∗)

)
.

Then AB =
(

A11B11 0
A21B11 0

)
. Since AB is T -EP, by item (ii), R(AB) ⊆R(B) . One gets

A21 = 0 since B11 is invertible. It follows that

A =
(

A11 A12

0 A22

)
, A2 =

(
A2

11 A11A12 +A12A22

0 A2
22

)
,

where N (A22) = N (A2
22) since max{ind(A11), ind(A22)}� ind(A) � 1. If x∈R(A)∩

R(B) = R(A2)∩R(B) , then there exists xi and yi , i = 1,2 such that

x =
(

A2
11 A11A12 +A12A22

0 A2
22

)(
x1

x2

)
=

(
B11 0
0 0

)(
y1

y2

)
.

So, A2
11x1 +(A11A12 +A12A22)x2 = B11y1 and A22x2 = 0. One has

x = A2
11x1 +A11A12x2 = A11(A11x1 +A12x2) = B11y1.

Note that A11x1 +A12x2 ∈ R(B) . It follows that x = B11y1 ∈ R(AB) , i.e., R(AB) ⊇
R(A)∩R(B) . Similarly, R(B∗A∗) ⊇R(B∗)∩R(A∗) . �

If A and B are EP with closed range, then ind(A) � 1 and ind(B) � 1. It follows
that
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AB is EP ⇐⇒R(AB) = R(A)∩R(B) and R(B∗A∗) = R(B∗)∩R(A∗) .

It is the result in [5, Theorem 1] and [13].
In Theorem 3.5 (iii), the conditions that ind(A) � 1 and ind(B) � 1 are necessary.

The next example shows that, if A and B are T -EP with closed range and AB is T -EP,
then R(AB) = R(A)∩R(B) and R(B∗A∗) = R(B∗)∩R(A∗) do not always hold.

EXAMPLE. Let A = B = T =

⎛
⎝ I 0 0

0 0 I
0 0 0

⎞
⎠ ∈ B(H⊕H⊕H) . Then A , B and AB

and T -EP. However,

R(AB) 
= R(A)∩R(B), R(B∗A∗) 
= R(B∗)∩R(A∗).

Note that

TA∗ =

⎛
⎝ I 0 0

0 I 0
0 0 0

⎞
⎠ , AB = T (AB)∗ =

⎛
⎝ I 0 0

0 0 0
0 0 0

⎞
⎠ .

It is easy to show that T is partial isometry and R(A) = R(B) = R(TA∗) . Hence,
A and B are T -EP. The relations R(AB) = R(T (AB)∗) and R((AB)∗) ⊆R(T ∗) im-
ply that AB is T -EP. But it is obvious that R(A)∩R(B) 
= R(AB) and R(B∗A∗) 
=
R(B∗)∩R(A∗) .

Denoted by

T :=
(

T1 0
0 T2

)
, M :=

(
A 0
C B

)
, (9)

where A and T1 ∈ B(H1,K1) , B and T2 ∈ B(H2,K2) and C ∈ B(H1,K2) satisfy that
R(A) and R(B) are closed, A is T1 -EP and B is T2 -EP, T1 and T2 are partial isome-
tries. Then we have the following result.

THEOREM 3.6. Let M and T be defined by (9). The 2× 2 lower triangular
operator matrix M is T -EP if and only if PN (B∗)CA∗ = 0 and CPN (A) = 0 if and only
if C = BXA for some X ∈ B(K1,H2) .

Proof. By Lemma 2.3, M and T , as operators from R(A∗)⊕ [R(T ∗
1 )�R(A∗)]⊕

N (T1)⊕R(B∗)⊕ [R(T ∗
2 )�R(B∗)]⊕N (T2) into R(A)⊕ [R(T1)�R(A)]⊕N (T ∗

1 )⊕
R(B)⊕ [R(T2)�R(B)]⊕N (T ∗

2 ) , can be denoted as

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

C11 C12 C13 B1 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T =

⎛
⎜⎜⎜⎜⎜⎜⎝

U1 0 0 0 0 0
0 U2 0 0 0 0
0 0 0 0 0 0
0 0 0 U4 0 0
0 0 0 0 U5 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where A1 , B1 is invertible, Ui (i = 1,2,4,5) is isometry. One derives that

R(M) = R(A1)⊕R(B1)⊕R
((

C21 C22 C23

C31 C32 C33

))

= R(A)⊕R(B)⊕R((I−BB†)C).

M = MT ∗T if and only if⎛
⎜⎜⎜⎜⎜⎜⎝

A1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

C11 C12 C13 B1 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

C11 C12 0 B1 0 0
C21 C22 0 0 0 0
C31 C32 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)

if and only if ⎛
⎝C13

C23

C33

⎞
⎠ = 0. (11)

Note that

TM∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

U1A∗
1 0 0 U1C∗

11 U1C∗
21 U1C∗

31
0 0 0 U2C∗

12 U2C∗
22 U2C∗

32
0 0 0 0 0 0
0 0 0 U4B∗

1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since A1 and B2 are invertible, and Ui (i = 1,2,4,5) is isometry, one has

R(TM∗) = R(U1A∗
1)⊕R(

(
U2C∗

12 U2C∗
22 U2C∗

32

)
)⊕R(U4B∗

1)

= R(A)⊕R(
(
U2C∗

12 U2C∗
22 U2C∗

32

)
)⊕R(B).

Therefore,

R(M) = R(TM∗) ⇐⇒
⎛
⎝ 0 C12 0

C21 C22 C23

C31 C32 C33

⎞
⎠ = 0. (12)

Hence,

M is T -EP ⇐⇒ (11) and (12) hold ⇐⇒
⎛
⎝ 0 C12 C13

C21 C22 C23

C31 C32 C33

⎞
⎠ = 0.

Applying the representations of A , B and C in (10), one has Ci, j = 0, 1 � i, j � 3
and (i, j) 
= (1,1) ⇐⇒ PN (B∗)CA∗ = 0 and CPN (A) = 0 ⇐⇒ C = BXA for some X ∈
B(K1,H2) . �

In [10, Lemma 1], R. E. Hartwig and I. J. Katz show that

(
A 0
C B

)
is EP if and

only if A and B are EP with closed range and R(CA∗) ⊆R(B) and CPN (A) = 0, i.e.,
C = BXA for some X . Theorem 3.6 generalizes this result to the T -EP case.
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