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HYPONORMALITY OF SPECIFIC UNBOUNDED PRODUCT OF

DENSELY DEFINED COMPOSITION OPERATORS IN L2 SPACES

HANG ZHOU

(Communicated by R. Curto)

Abstract. Let (X ,A ,μ) be a σ -finite measure space. A transformation φ : X → X is non-
singular if μ ◦φ−1 is absolutely continuous with respect with μ . For this non-singular transfor-
mation, the composition operator Cφ : D(Cφ )→ L2(μ) is defined by Cφ f = f ◦φ , f ∈D(Cφ ).

For a fixed positive integer n � 2 , basic properties of product Cφn · · ·Cφ1 in L2(μ) are
conveyed in Section 3–5, including the dense definiteness, kernel, adjoint of (not necessar-
ily bounded) Cφn · · ·Cφ1 . Under the assistance of these properties, when Cφ1 ,Cφ2 , · · · ,Cφn are
densely defined, hyponormality of specific (not necessarily bounded) Cφn · · ·Cφ1 in L2(μ) is
characterized in Section 6.

1. Introduction

Theory of composition operators is an important branch of linear operator theory,
which has a history of over six decades. Composition operators (also, weighted com-
position operators) on various spaces of analytic functions have been studied exten-
sively during the past several decades. This theory of composition operators, originated
by E. Nordgren in 1968 (see [11]), has been developing since 1987 (see [15]). The
book [5] written by Cowen and MacCluer contains comprehensive treatments of these
(weighted) composition operators.

There is still another context in which composition operators could be studied.
Theory of composition operators in L2 spaces over a σ -finite measure space, playing
a significant part in ergodic theory (see, e.g. [9]), also becomes another seminal branch
of linear operator theory. The bounded composition operators in L2 spaces, initiated
by Nordgren in 1978 (see [12]), are well-developed until now. And the boundedness,
normality, subnormality, seminormality etc. of these bounded operators are extensively
investigated (I wouldn’t like to point out any references here since most of them have
no closed relation with my study in this paper. Interested readers could figure them out
in [2]).

Let (X ,A ,μ) be a σ -finite measure space. The Hilbert space of all square inte-
grable complex functions is usually denoted by L2(X ,A ,μ) , sometimes abbreviated
by L2(μ) . A mapping φ : X → X is always called a transformation of X . We say
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φ : X → X is an A -measurable transformation if φ−1(A ) ⊂ A , where φ−1(A ) =
{φ−1(Δ) : Δ ∈ A }. Let μ ◦ φ−1 denote the measure on the σ -algebra A , which is
given by μ ◦ φ−1(Δ) = μ(φ−1(Δ)) for every Δ ∈ A . We say φ : X → X is a non-
singular transformation of X if μ ◦ φ−1 is absolutely continuous with respect to μ ,
which is denoted by μ ◦φ−1 � μ .

For a non-singular transformation φ , the composition operator Cφ : D(Cφ ) →
L2(μ) is defined by

Cφ f = f ◦φ , f ∈ D(Cφ ),

where D(Cφ ) = { f ∈ L2(μ) : f ◦φ ∈ L2(μ)} stands for the domain of Cφ . It is noted
that if the composition operator Cφ is well-defined, then the transformation φ is non-
singular. This assertion is easily checked and a generalized proof for it could be found
in [3] (see, Proposition 7 in this book).

For finite or σ -finite measure spaces, the Radon-Nikodym derivative is theoret-
ically important, which is guaranteed by the well-known Radon-Nikodym Theorem
(see, e.g. Theorem 4.2.4 in [4], Theorem 2.2.1 in [1] or Section 2 in this paper). The
construction in the following is basically an essential tool to the study of composition
operators in L2 spaces.

Suppose that transformation φ is non-singular. By the Radon-Nikodym theorem,
there exists an A -measurable positive function (up to sets of measure zero) hφ : X →
[0,∞] satisfying

μ ◦φ−1(Δ) =
∫

Δ
hφ dμ , Δ ∈ A . (1.1)

Therefore, by [[1], Theorem 1.6.21] and [[13], Theorem 1.29], for each A -measurable
function f : X → R+ (or f : X → C satisfying f ◦φ ∈ L1(μ)), we have

∫
X

f ◦φdμ =
∫

X
f hφ dμ . (1.2)

Obviously, f ◦φ ∈ L1(μ) if and only if f hφ ∈ L1(μ) . And the domain of composition
operator Cφ is

D(Cφ ) = L2((1+hφ)dμ
)
.

For a fixed positive integer n ∈ N with n � 2, suppose that φ1,φ2, · · · ,φn are non-
singular transformations of X . It is easily conducted that φ1 ◦φ2 ◦ · · ·φn is non-singular
if φ1,φ2, · · · ,φn are all non-singular. Moreover, since hφ1 ,hφ2 , · · · ,hφn < ∞ a.e. [μ ]
can be guaranteed by the dense definiteness of Cφ1 ,Cφ2 , · · · ,Cφn (see, Proposition 3.2 in
[2]), we concentrate on the properties when Cφ1 ,Cφ2 , · · · ,Cφn are all densely defined.

Therefore, to avoid the repetition, the assumption in the following is given, which
is denoted by (AS) for abbreviation and used frequently in this paper.

• Throughout this paper, n � 2 is always a fixed positive integer, k ∈ {1,2, · · · ,n}
represents the positive integer depending on n and j ∈ {1,2, · · · ,k} represents
the positive integer depending on k,n.
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• The triple (X ,A ,μ) is a σ -finite measure space, φ1,φ2, · · · ,φn are A -measu-
rable non-singular transformation of X such that Cφ1 ,Cφ2 , · · · ,Cφn are all densely
defined. Moreover, for each k ∈ {1,2, · · · ,n} , the triple (X ,Φ−1

k (A ),μ) is also
a σ -finite measure space.

1.1. Notations

• In this paper, (X ,A ,μ) is always a σ -finite measure space and L2(X ,A ,μ) is
always abbreviate by L2(μ) .

• N , Z+ and R+ stand for the sets of positive integers, nonnegative integers and
nonnegative real numbers, respectively. Set R+ = R+∪{∞} . Moreover, for each
given m ∈ N ,

Jm = {k ∈ N : k � m}.

• For given subsets Δ,Δm of X , m ∈ N , “Δm ↗ Δ as m → ∞” stands for Δm ⊆
Δm+1 for every m ∈ N and Δ =

⋃∞
m=1 Δm . Analogously, for given f , fm : X →

R+ , “ fm ↗ f as m → ∞” stands for { fm(x)}m is monotonically increasing and
converging to f (x) for every x ∈ X .

• Let T be an operator on a Hilbert space H . Denote by D(T ),N (T ),R(T ) ,
T and T ∗ the domain, the kernel, the range, the closure and the adjoint of T,
respectively. Moreover, denote by 〈·, ·〉T and ‖ · ‖T the graph inner product and
the graph norm of T , which mean that, for f ,g ∈ D(T ) ,

〈 f ,g〉T = 〈 f ,g〉H + 〈T f ,Tg〉H , ‖ f‖2
T = 〈 f , f 〉T .

• Set Δ1 � Δ2 = (Δ1 \Δ2)∪ (Δ2 \Δ1) for any subsets Δ1 and Δ2 of X .

• For a given n ∈ N , suppose that φ1,φ2, · · · ,φn are non-singular transformation of
X . Denote by

Φk � φ1 ◦φ2 ◦ · · · ◦φk, Φ̃k � φk ◦φk+1 ◦ · · · ◦φn.

1.2. Non-probabilistic conditional expectation

The non-probabilistic conditional expectation plays another crucial role in this pa-
per (as well as the Radon-Nikodym derivative). The concept of conditional expectation
was originated in the classical probability theory. Book [14] written by Rao is useful
for interested readers to understand it. The conditional expectation was applied to the
non-probabilistic setting and incorporated into theory of composition operators by Har-
rington and Whitley in [8]. For more information on the non-probability conditional
expectation, one can refer to Appendix A in [3].

The following part is exactly about the non-probability conditional expectation
(abbr. conditional expectation, in this setting) with respect to the sub-algebra Φ−1

n (A ) .
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Suppose that (AS) holds. For every Φ−1
n (A )-measurable function f : X → R+ ,

the conditional expectation of f with respect to Φ−1(A ) and the measure μ , denoted
by E( f ;Φ−1

n (A ),μ) or EΦn( f ) for abbreviation, is satisfied with∫
Δ

f dμ =
∫

Δ
EΦn( f )dμ , Δ ∈ Φ−1

n (A ).

Note that the existence of EΦn(·) (up to sets of measure zero) is guaranteed by the
Radon-Nikodym theorem and Proposition 2.7.

The first two lemmas in the following have their roots in [3] (see, formula (2.8) in
page 24 and formula (A.12), respectively).

LEMMA 1.1. A function g̃ : X →R+ (resp. g̃ : X →R+, g̃ : X →C) is Φ−1
n (A )-

measurable if and only if there exists an A -measurable function g : X → R+ (resp.
g̃ : X → R+ , g̃ : X → C) such that g̃ = g ◦Φn .

LEMMA 1.2. If f ,g : X → C are A -measurable functions such that f ∈ Lp(μ)
and g ◦Φn ∈ Lq(μ) , then∫

X
g ◦Φn f dμ =

∫
X

g ◦ΦnEΦn( f )dμ ,

where p,q ∈ [1,∞] satisfying 1
p + 1

q = 1 .

The following lemma can be obtained by Proposition 14 in [3] and the remarks
below it, which is also a consequence of Proposition 1.4, Lemma 1.5 and Lemma 1.6
in [3].

LEMMA 1.3. Suppose that (AS) holds. For an A -measurable function f : X →
R+ (resp. f : X → C), there exists an A -meausrable R+ -valued (resp. C-valued)
function g with g = g · χhΦ j hφ j+1

···hφn>0 such that

• EΦn( f ) = g ◦Φn · χhΦ j hφ j+1
···hφn>0 a.e. [μ ] .

• (
EΦn( f )◦Φ−1

n

)◦Φn = EΦn( f ) a.e. [μ ] .

1.3. Product of composition operators in L2(μ)

Suppose that (AS) holds and therefore Cφ1 ,Cφ2 , · · · ,Cφn are all densely defined.
Now it is natural to consider the product of composition operators Cφ1 ,Cφ2 , · · · ,Cφn , i.e.
the product operator Cφn · · ·Cφ1 .

Note that for each A -measurable function f : X → R+ (or f : X → C) satisfying
f ◦φ ∈ L1(μ) ,∫

X
Cφn · · ·Cφ1 f dμ =

∫
X

f ·hφ1◦φ2◦···◦φndμ

=
∫

X
f ·hΦn−1EΦn−1

(
hφn ◦Φ−1

n−1

)
dμ
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=
∫

X
f ·hΦn−2 ·hφn ◦Φ−1

n−1 ·EΦn−2

(
hφn−1 ◦Φ−1

n−2

)
dμ

= · · ·

=
∫

X
f ·hΦ j ·

n−1

∏
l= j+1

hφl+1 ◦Φ−1
l ·EΦ j

(
hφ j+1 ◦Φ−1

j

)
dμ

· · ·
=
∫

X
f ·hφ1 · (hφ3 ◦Φ−1

2 ) · · · · · (hφn ◦Φ−1
n−1) ·Eφ1

(
hφ2 ◦Φ−1

1

)
dμ .

And the domain of product Cφn · · ·Cφ1 is

D(Cφn · · ·Cφ1) = L2

[
1+

n

∑
k=1

hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)]
dμ ,

where j is an arbitrary number in Jk .
Moreover, D(Cφ1◦φ2◦···◦φn) = L2

(
(1 + hφ1◦φ2◦···◦φn)dμ

)
, which implies that the

composition operator Cφ1◦φ2···◦φn is an extension (for the definition of the extension
operator, see, e.g. Section 4.1 in [16]) of the product Cφn · · ·Cφ1 , which is always de-
noted by

Cφn · · ·Cφ1 ⊆Cφ1◦φ2···◦φn .

For the product Cφn · · ·Cφ1 , the following statements are obtained by Proposition
3.2 and Proposition 4.1 in [2]:

• Cφn · · ·Cφ1 is closable and Cφ1◦φ2◦···◦φn is closed.

• Cφn · · ·Cφ1 is densely defined if and only if Cφ1◦φ2◦···φk is densely defined for
every 1 � k � n .

• If Cφn−1 · · ·Cφ1 is densely defined, then Cφ1◦φ2◦···◦φk = Cφk · · ·Cφ1 for every k =
1,2, · · · ,n .

• Cφn · · ·Cφ1 =Cφ1◦φ2···◦φn fails to be held in general. Example 5.4 in [2] is typically
a counterexample, which showed that Cn

φ = Cφn doesn’t hold in general even if

D∞(Cφ ) is dense in L2(μ), where D(Cφ ) stands for the C ∞ -vectors of Cφ .

• Cφn · · ·Cφ1 =Cφ1◦φ2···◦φn is densely defined cannot generally implies Cφ1 , Cφ2 , · · · ,
Cφn are all densely defined. Example 5.3 in [2] is typically a counterexample,
which showed that Cφ1◦φ2 is densely defined but Cφ1 is not.

For more information of Cφn · · ·Cφ1 , interested readers can refer to Section 4 in
[2].

During the past decades, much effort was put into the investigation of bounded
(weighted) composition operators in L2 spaces, including the selfadjointness, normal-
ity, quasinormality, hyponormality, cohyponormality. etc. And criteria for the subnor-
mality and cosubnormality of bounded composition operators were invented.
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However, before 2018, little was known about the properties of unbounded (weigh-
ted) composition operators in L2 spaces since the unbounded case has much difference
with the bounded case. Budzyński, Jabłoński, Jung and Stochel in their recent book
[3] investigated the unbounded weighted composition operators in L2 spaces, which is
significantly a reference for investigation of the unbounded case.

Characterization in the hyponormality of weighted composition operator (not nec-
essarily bounded) was exactly given by Campbell and Hornor in [6] under quite restric-
tive assumptions, which was promoted by Budzyński etc. in [3] (see, Section 5.1 in this
book). However, the literature on product Cφn · · ·Cφ1 in L2(μ) is meager and the only
study for Cφn · · ·Cφ1 could be found in [2], which can basically distinguish between
Cφn · · ·Cφ1 and Cφ1◦φ2◦···◦φn .

As far as I’m concerned, the question “What is the difference between Cφn · · ·Cφ1

and Cφ1◦φ2◦···◦φn ?” is not completely answered. And the answer could be promoted by
investigating the hyponormality of unbounded product Cφn · · ·Cφ1 .

In [12], Nordgren raised a good question of determining measure theoretic condi-
tions of the transformation φ (see, [[12], Theorem 1]), which inspires me to investigate
other questions in such way. Thus, hyponormality of unbounded product Cφn · · ·Cφ1 in
L2(μ) is continued in this vein, which is characterized in this paper.

It is well-known that if Cφn · · ·Cφ1 is densely defined, then so is Cφk · · ·Cφ1 for each
k ∈ Jn . Hence, by [[2], Proposition 4.1(iii)], we have that

Cφ1◦φ2◦···◦φk = Cφk · · ·Cφ1 , k = 1,2, · · · ,n.

If Cφk · · ·Cφ1 is hyponormal, then by definition it is densely defined. Since a hyponor-
mal operator is closable and its closure is hyponormal, Cφ1◦φ2◦···◦φk is hyponormal.
Obviously, we can apply the well-known characterizations of hyponormality of com-
position operators, in this particular case with symbol φ1◦φ2◦· · ·◦φk , k∈ Jn . However,
the characterizations in the present paper is different with the ones in [3] because the
unconditional expectations are employed.

Under the hypothesis that Cφ1 ,Cφ2 , · · · ,Cφn are densely defined, this paper is ar-
ranged as follows:

A comprehensive introduction to some measure-theoretic tools is included in Sec-
tion 2. Basic properties of Cφn · · ·Cφ1 are seldom studies, which are essential for the
study in this paper. Thus, they are conveyed in Section 3–Section 5, including the dense
definiteness, kernel, adjoint of (not necessarily bounded) Cφn · · ·Cφ1 . This investigation
also provides a useful introduction for the uninitiated readers. At last, hyponormality
of specific unbounded product Cφn · · ·Cφ1 in L2(μ) is investigated in Section 6.

It is noted that this paper is investigated under strong assumption Cφk · · ·Cφ1 is hy-
ponormal for each k ∈ Jn−1 , which is emphasized by “specific” throughout this paper.
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2. Auxiliary

For the latest decades, there has been much success in characterizing in simple,
direct measure-theoretic terms, exactly when composition operators may lie in sev-
eral of these subclasses. Since these results are scattered through the literature and
the approaches developed seem not to be widely known. Therefore, a comprehensive
introduction to some measure-theoretic tools is included in this section.

The well-known Radon-Nikodym theorem is a useful characterization in measure
theory.

LEMMA 2.1. [[4], Theorem 4.2.4 or [1], Theorem 2.2.1] Let (X ,A ) be a mea-
surable space, let μ be a σ -finite positive measure on (X ,A ) , and let ν be a finite
signed or complex measure on (X ,A ) . If ν is absolutely continuous with respect to
μ , then there is a function g that belongs to L1(X ,A ,μ ,R) or to L1(X ,A ,μ ,C) and
satisfies ν(Δ) =

∫
Δ gdμ for each Δ ∈ A . The function g is unique up to μ -almost

everywhere equality.
The A -measurable function g is called a Radon-Nikodym derivative of ν with

respect to μ , which is sometimes denoted by dν
dμ .

The following two conclusions seem to be folklore and their proofs are included
in [2] (see, Lemma 12.1 and Corollary 12.2).

CONCLUSION 2.2. Let (X ,A ,μ) be a measure space and let ρ1,ρ2 be A -mea-
surable scalar functions on X such that 0 < ρm < ∞ a.e. [μ ] for m = 1,2. Then
L2(ρ1dμ)∩L2(ρ2dμ) is dense in L2(ρmdμ) for m = 1,2.

CONCLUSION 2.3. Let (X ,A ,μ1) and (X ,A ,μ2) be σ -finite measure spaces.
If the measures μ1 and μ2 are mutually absolutely continuous, then L2(μ1)∩L2(μ2)
is dense in L2(μm) for m = 1,2.

The following proposition is a consequence of [[10], Definition I-6-1] and [[1],
Theorem 1.3.10], which was introduced in [3].

PROPOSITION 2.4. Let P be a semi-algebra of subsets of a set X and ν1,ν2

be measures on σ(P) such that ν1(Δ) = ν2(Δ) for all Δ ∈ P . Suppose there exists
a sequence {Δm}∞

m=1 ⊆ P such that Δm ↗ X as m → ∞ and ν j(Δm) < ∞ for every
m ∈ N . Then ν1 = ν2 .

The following three propositions were implicit in most of the definitions and used
explicitly in many of the processes.

PROPOSITION 2.5. [[3], Lemma 2] If (X ,A ,ν) is a σ -finite measure space and
f ,g are A -measurable complex functions on X such that

∫
Δ | f |dν < ∞ ,

∫
Δ |g|dν < ∞

and
∫

Δ | f |dν =
∫

Δ |g|dν for every Δ ∈ A such that ν(Δ) < ∞ , then f = g a.e. [ν] .
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PROPOSITION 2.6. [[3], Lemma 4] Let A and B be positive self-adjoint oper-
ators in a Hilbert space H satisfying D(A) = D(B) and ‖A f‖ = ‖B f‖ for every
f ∈ D(A) . Then A = B.

PROPOSITION 2.7. [[13], Theorem 1.29] Suppose that f : X →R+ is A -measu-
rable and g(E) =

∫
E f dμ , then g is a measure on the σ -algebra A and

∫
X

hdg =
∫

X
h f dμ

for every A -measurable function g on X with range in R+ .

3. Basic properties of Cφn · · ·Cφ1

PROPOSITION 3.1. Suppose that (AS) holds. Then the following assertions are
valid:

(i) D(Cφ1 · · ·Cφn)= L2

(
1+

n

∑
k=1

hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
dμ and

D(Cφn · · ·Cφ1) = χ
{

n
∑

k=1
hΦ j ·

(
k−1
∏

l= j+1
hφl+1

◦Φ−1
l

)
·EΦ j

(
hφ j+1

◦Φ−1
j

)
<∞}

· L2(μ), where j is

an arbitrary number in Jk .

(ii) For every f ∈ D(Cφn · · ·Cφ1) , the graph norm of Cφn · · ·Cφ1 is given by

‖ f‖2
Cφn ···Cφ1

=
∫

X
| f |2

(
1+hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
dμ ,

where j is an arbitrary number in Jk .

(iii) If hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
< ∞ a.e. [μ ] , then(

hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk < ∞ a.e. [μ ] and for every

A -measurable function f : X → R+ , we have that

∫
X

f ◦Φk(
hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

dμ

=
∫
{hΦ j ·

(
k−1
∏

l= j+1
hφl+1

◦Φ−1
l

)
·EΦ j

(
hφ j+1

◦Φ−1
j

)
>0}

f dμ ,

where j is an arbitrary number in Jk .
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Proof. (i) and (ii) are obviously hold. Since

μ

{
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
= ∞

}
= 0,

it follows that

μ

{(
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk = ∞

}

=
∫

X
χ{

hΦ j ·
(

k−1
∏

l= j+1
hφl+1

◦Φ−1
l

)
·EΦ j

(
hφ j+1

◦Φ−1
j

)
=∞

} ◦Φkdμ = 0,

which implies that

(
hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk < ∞ a.e. [μ ] ,

where j is an arbitrary number in Jk .
Moreover, combining (i) and (ii), for each k ∈ Jn , we have that

∫
X

f ◦Φk(
hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

dμ

=
∫

X

⎛
⎜⎜⎜⎜⎝

f · χ{
0<hΦ j ·

(
k−1
∏

l= j+1
hφl+1

◦Φ−1
l

)
·EΦ j

(
hφ j+1

◦Φ−1
j

)
<∞

}

hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
⎞
⎟⎟⎟⎟⎠◦Φkdμ

=
∫{

hΦ j
·
(

k−1
∏

l= j+1
hφl+1

◦Φ−1
l

)
·EΦ j

(
hφ j+1

◦Φ−1
j

)
>0

} f dμ ,

where j is an arbitrary number in Jk . This implies (iii) and therefore completes the
proof. �

The following proposition describes the dense definiteness of Cφn · · ·Cφ1 .

PROPOSITION 3.2. Suppose that (AS) holds. Then the following statements are
equivalent:

(i) Cφn · · ·Cφ1 is densely defined.

(ii) ∑n
k=1 hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
< ∞, where j is an arbitrary

number in Jk .

(iii) μ ◦Φ−1
k is σ -finite.
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(iv) μ |Φ−1
k (A ) is σ -finite.

Proof. (iii)⇒(iv) is trivial and (i)⇔(ii) holds by Proposition 3.1.
(ii)⇒(iii): Let {Xm}∞

m=1 ⊆ A be any sequence of sets such that μ(Xm) < ∞ ,

Xm ↗ X as m → ∞ and hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
� m a.e. [μ ] on

Xm , m ∈ N , where j is an arbitrary number in Jk . Then μ ◦Φk(Xm) < ∞, which yields
to (iii).

(iv)⇒(ii): Let {Ym}∞
m=1 ⊆ A be a sequence of sets such that μ(Φ−1

k (Ym)) <

∞ and Φ−1
k (Ym) ↗ X as m → ∞ . Without loss of generality, we can assume that

Ym ↗Y∞ �
∞⋃

m=1
Ym as m→∞ . We have hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
<

∞ a.e. [μ ] on Ym and consequently on Y∞ , where j is an arbitrary number in Jk .
Observe that Φ−1

k (Ym) ↗ Φ−1
k (Y∞) and Φ−1

k (Ym) ↗ X as m → ∞ . It follows that

μ(Φ−1
k (X \Y∞)) = 0 and therefore hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
= 0

a.e. [μ ] on X \Y∞ , where j is an arbitrary number in Jk . Combining what we have
been observed above, we prove (ii). This completes the proof. �

Set

Nk, j �
{

x ∈ X : hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
(x) = 0

}
,

where j is an arbitrary number in Jk .
Then the following propositions characterize the injectivity of Cφn · · ·Cφ1 .

PROPOSITION 3.3. Suppose that (AS) holds. Then

N (Cφn · · ·Cφ1) =
n

∏
k=1

χNk, j ·L2(μ),

where j is an arbitrary number in Jn .

Proof. Only observe that

∫
X
Cφk · · ·Cφ1 f dμ =

∫
X

f hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
dμ ,

where j is an arbitrary number in Jk . �
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PROPOSITION 3.4. Suppose that (AS) holds. Then the following statements are
equivalent:

(i) N (Cφn · · ·Cφ1) = {0} .

(ii)
n
∑

k=1
μ(Nk, j) = 0 .

(iii) χNk, j ◦Φk = χNk, j a.e. [μ ] for each k ∈ Jn .

Moreover, if Cφ1 ,Cφ2 , · · · ,Cφn are all densely defined, then (i)–(iii) are equivalent with

(iv) N (Cφk · · ·Cφ1) ⊆ N
(
(Cφk · · ·Cφ1)

∗),
where j is an arbitrary number in Jk with k ∈ Jn .

Proof. We always assume that k ∈ Jn in this proof.
(ii)⇔(iii): Suppose that (ii) holds. By the non-singularity of Φk , we have

μ(Φ−1
k (Nk, j)) = 0. Then μ

(
Nk, j �Φ−1

k (Nk, j)
)

= 0 and thus (iii) holds.
Suppose that (iii) holds.

μ(Nk, j) =
∫

X
χNk, j ◦Φkdμ

=
∫

X
χNk, j hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
dμ = 0,

where j is an arbitrary number in Jk . This implies (ii).
(iv)⇒(ii): Let {Xm}∞

m=1 be a sequence in A such that Xm ↗ X as n → ∞ ,

μ(Xm) < ∞ for each m ∈ N and
m
∑
j=1

hΦ j � m for μ -a.e. x ∈ Xm and m ∈ N . (Observe

the existence of {Xm}∞
m=1 is guaranteed by the densely definiteness of Cφ1 ,Cφ2 , · · · ,Cφk .)

Therefore, χXm ,χNk, j∩Xm
∈ D(Cφk · · ·Cφ1) for each m ∈ N . Since χNk, j∩Xm

∈
N (Cφk · · ·Cφ1) , by (iv), for each m ∈ N ,

0 = 〈(Cφk · · ·Cφ1)
∗χNk, j∩Xm

,χXm〉 = μ(Nk, j ∩Xm∩Φ−1
k (Xm)).

Note that Nk, j ∩Xm ∩Φ−1
k (Xm) ↗ Nk, j as m → ∞ , where j is an arbitrary number in

Jk . Then the continuity of μ implies (ii).
Moreover, the equivalent between (i) and (ii) can be obtained by Proposition 3.3

and (1)⇒(iv) is obvious. This completes the proof. �
Recall that if an operator T is hyponormal, then N (T )⊆N (T ∗), which implies

the following corollary.

COROLLARY 3.5. Suppose that (AS) holds. Then the following assertions are
valid:

(i) If Cφn · · ·Cφ1 is hyponormal, then N (Cφn · · ·Cφ1) = {0}.



12 H. ZHOU

(ii) If Cφn · · ·Cφ1 is cohyponormal, then N
(
(Cφn · · ·Cφ1)

∗)= {0}.
(iii) If Cφn · · ·Cφ1 if formally normal, then

D(Cφn · · ·Cφ1)∩D
(
(Cφn · · ·Cφ1)

∗)= {0}.

(iv) If Cφn · · ·Cφ1 is normal, then

N (Cφn · · ·Cφ1) = N
(
(Cφn · · ·Cφ1)

∗)= {0}.

PROPOSITION 3.6. Suppose that (AS) holds. Then(
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk > 0

a.e. [μ ] . Moreover, if(
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

= hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)

a.e. [μ ] , then N (Cφn · · ·Cφ1) = {0} , where j is an arbitrary number in Jk .

Proof. The first statement is obtained by μ(Φ−1
k (Nk, j)) = 0 and the “moreover”

part is obtained by Proposition 3.4. �

4. Boundedness of Cφn · · ·Cφ1

One can find the original proof of the boundedness in [12].

THEOREM 4.1. Suppose that (AS) holds. Then necessary and sufficient condi-
tions for Cφn · · ·Cφ1 to be bounded are

hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
∈ L∞(μ), (4.1)

where j is an arbitrary number in Jk .

Proof. Note that Cφn · · ·Cφ1 is bounded if and only if Cφk · · ·Cφ1 is bounded.
Necessity: (4.1) is obviously the necessary condition for Cφn · · ·Cφ1 to be bounded.
Sufficiency: Suppose that Cφn · · ·Cφ1 is bounded. Thus, Cφk · · ·Cφ1 is bounded.

Since ∫
X
| f |2 dμ ◦Φ−1

k

dμ
dμ = ‖Cφk · · ·Cφ1‖2

L2(μ) � ‖Cφk · · ·Cφ1‖2
∫

X
| f |2dμ ,
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which implies
dμ◦Φ−1

k
dμ � ‖Cφk · · ·Cφ1‖2 . Then the proof is completed by the fact

hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
= dμ◦Φ−1

k
dμ a.e. [μ ] , where j is an ar-

bitrary number in Jk . �

REMARK 4.2. Suppose that (AS) holds. By Theorem 4.1, the boundedness of
Cφn · · ·Cφ1 implies the boundedness of Cφ1◦φ2◦···◦φn . However, the converse assertion
fails to be held in general.

5. Adjoint of Cφn · · ·Cφ1

THEOREM 5.1. Suppose that (AS) holds and Cφn · · ·Cφ1 is densely defined. Then
the following assertions are valid:

(i) D
(
(Cφn · · ·Cφ1)

∗)=

{
f ∈L2(μ) :

n

∑
k=1

hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦk( f )◦Φ−1

k ∈L2(μ)

}
,

where j is an arbitrary number in Jk .

(ii) For each f ∈ D
(
(Cφn · · ·Cφ1)

∗) , we have

(Cφn · · ·Cφ1)
∗( f ) = hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦn( f )◦Φ−1

n

and

‖(Cφn · · ·Cφ1)
∗( f )‖2

L2(μ) =
∫

X
h2

Φ j
E2

Φ j

(
k−1

∏
l= j

hφl+1 ◦Φ−1
l

)
|EΦn( f )◦Φ−1

n |2dμ ,

where j is an arbitrary number in Jk .

(iii) N
(
(Cφn · · ·Cφ1)

∗)=
{

f ∈ L2(μ) : EΦn( f ) = 0 a.e. [μ ]
}
, where j is an arbitrary

number in Jk .

Proof. Note that D
(
(Cφn · · ·Cφ1)

∗)=
n⋂

k=1
D
(
(Cφk · · ·Cφ1)

∗).
For f ∈ L2(μ),g ∈ D

(
(Cφk · · ·Cφ1)

∗), obviously,

EΦk( f ), Cφk · · ·Cφ1(g) ∈ L2(μ).
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By Lemma 1.2 and (A.11) in [3], we have

〈g,(Cφk · · ·Cφ1)
∗ f 〉L2(μ) =

∫
X

g ◦Φk ·EΦk( f )dμ =
∫

X
g ◦Φk ·EΦk( f )dμ

=
∫

X
g ·
(

EΦk( f )◦Φ−1
k hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
dμ

=

〈
g,hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦk( f )◦Φ−1

k

〉
L2(μ)

, (5.1)

where j is an arbitrary number in Jk .
Let

Fk =

{
f ∈L2(μ) : hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦk( f )◦Φ−1

k ∈L2(μ)

}
.

For any f ∈ Fk , by (5.1), we have f ∈ D(Cφk · · ·Cφ1)
∗ and

(Cφk · · ·Cφ1)
∗( f ) = hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦk ◦Φ−1

k ,

where j is an arbitrary number in Jk . This proves (ii).
In the sequence, we only need to show that for any f ∈ D(Cφk · · ·Cφ1)

∗ ,

hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦk( f )◦Φ−1

k ∈ L2(μ).

By (5.1),

g ·hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦk( f )◦Φ−1

k ∈ L1(μ)

and

∫
X

g ·hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦk( f )◦Φ−1

k dμ

=
∫

X
g · (Cφk · · ·Cφ1)∗ f dμ

for any g ∈ D(Cφk · · ·Cφ1) , where j is an arbitrary number in Jk .
Let {Xm}∞

m=1 be a sequence of sets as in [[3], Lemma 9]. For any Δ ∈ A , m ∈ N ,

let g = χΔ∩Xm ∈D(Cφk · · ·Cφ1) . By Proposition 2.5, we have g ·hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·

EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦk( f )◦Φ−1

k = (Cφk · · ·Cφ1)
∗ f a.e. [μ ] on Xm for m ∈ N and con-

sequently on X , which proves (i).
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Now we prove (iii). For f ∈ N
(
(Cφn · · ·Cφ1)

∗) ,
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
EΦn( f )◦Φ−1

n = 0

a.e. [μ ] . By Lemma 1.3, EΦn( f )◦Φ−1
n = 0 a.e. [μ ] on{

hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
= 0

}

and consequently on X . Then, by [[3], Lemma 5], EΦn( f ) = 0 a.e. [μ ] , where j is an
arbitrary number in Jk .

Conversely, for f ∈ { f ∈ L2(μ) : EΦn( f ) = 0 a.e. [μ ]
}

, we have

∫
Δ
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
(EΦn( f )◦Φ−1

n )dμ = μ(EΦn( f )) = 0,

where j is an arbitrary number in Jk . Hence, EΦn( f ) ◦Φ−1
n = 0 a.e. [μ ] . By (i),

f ∈ N
(
(Cφn · · ·Cφ1)

∗) , which proves (iii). This completes the proof. �

REMARK 5.2. By (iii) of Theorem 5.1, the kernel of (Cφn · · ·Cφ1)
∗ coincides with

the one of EΦn , where EΦn(·) is seen as the operator E(·;Φ−1
n (A ),μ) : L2

+(μ)→ L2(μ)
(See Appendix A in [3]).

6. Hyponormality of unbounded Cφn · · ·Cφ1

The hyponormality of specific unbounded product Cφn · · ·Cφ1 is investigated in
this section, which is the main result in this paper.

Conveniently, the following lemma is proved before the main result.

LEMMA 6.1.∫
X

(
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk · |EΦk( f )|2dμ

�
∫

X
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
| f |2dμ (6.1)

holds for every function f ∈ L2

((
1+

k
∑
l=1

hΦ jEΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

))
dμ
)

if and only

if

∫
X

(
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk ·EΦk( f )2dμ

�
∫

X
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
f 2dμ (6.2)
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holds for every A -measurable function f : X → R+ , where j is an arbitrary number
in Jk .

Proof. (6.2)⇒(6.1) could be conducted by [[3], Proposition A.3].
(6.1)⇒(6.2): By [[3], Theorem A.4], for any

f ∈ L2
+

((
1+

k
∑
l=1

hΦ jEΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

))
dμ
)

, we have that

∫
X

(
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk ·EΦk( f )2dμ

�
∫

X
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
f 2dμ , (6.3)

in which EΦk( f ) ∈ L2
+

((
1+

k
∑
l=1

hΦ j EΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

))
dμ
)

, and j is an arbi-

trary number in Jk .
Define a measure νk : A → R+ by

νk(Δ) =
∫

Δ

(
1+

k

∑
l=1

hΦ jEΦ j

(
l−1

∏
t= j

hφt+1 ◦Φ−1
t

))
dμ ,Δ ∈ A ,

where j is an arbitrary number in Jk . By the dense definiteness of Cφn · · ·Cφ1 , νk is
σ -finite. Choose {Ωm}∞

m=1 ⊆ A satisfying νk(Ωm) < ∞, m ∈ N and Ωm ↗ X as
m → ∞. For an A -measurable function f : X → R+ , by [[13], Theorem 1.17], there
exists a sequence {sα}∞

α=1 of A -measurable simple functions such that

0 � sα ↗ χΩm f as α → ∞.

Observe that {sα}∞
α=1 ⊆ L2

+(νk) . In the view of formula (A.6) in [3],

0 � EΦk(sα) ↗ EΦk(Ωk f ) a.e. [μ ] as α → ∞.

Hence, by Lebesgue monotone convergence theorem and (6.3),

∫
X

(
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk ·EΦk(χΩm f )2dμ

= lim
α→∞

∫
X

(
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk ·EΦk(sα)2dμ

� lim
α→∞

∫
X

hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
s2

αdμ (6.4)

=
∫

X
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
(χΩm f )2dμ , (6.5)
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where m ∈ N and j is an arbitrary number in Jk . Repeating the same process above,
we obtain (6.2). This completes the proof. �

THEOREM 6.2. Suppose that (AS) holds and Cφn · · ·Cφ1 is densely defined. Then
the following statements are equivalent:

(i) Cφk · · ·Cφ1 is hyponormal for each k ∈ Jn .

(ii)
k
∑
l=1

hΦ jEΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

)
> 0 a.e. [μ ] and for each A -measurable function

f : X → R+ ,

EΦk

⎛
⎜⎜⎜⎜⎜⎝

√√√√√√√√√

(
hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

) · f

⎞
⎟⎟⎟⎟⎟⎠

2

� EΦk( f 2)

a.e. [μ ], where j is an arbitrary number in Jk and k ∈ Jn .

(iii)
k
∑
l=1

hΦ jEΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

)
> 0 a.e. [μ ] and

EΦk

⎛
⎜⎜⎜⎜⎝

(
hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
⎞
⎟⎟⎟⎟⎠� 1

a.e. [μ ], where j is an arbitrary number in Jk and k ∈ Jn .

(iv)
k
∑
l=1

hΦ jEΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

)
> 0 a.e. [μ ] and

EΦk

⎛
⎜⎜⎜⎜⎝

1

hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
⎞
⎟⎟⎟⎟⎠

� 1(
hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

a.e. [μ ] , where j is an arbitrary number in Jk and k ∈ Jn .
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Proof. (i)⇔(ii): By the definition, the hyponormality of Cφk · · ·Cφ1 is equivalent
with

• L2

((
1+

k
∑
l=1

hΦ j EΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

))
dμ
)

⊆
{

f ∈ L2(μ) :
k
∑
l=1

hΦ jEΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

)
·EΦl ( f )◦Φ−1

l ∈ L2(μ)
}

.

•
∫

X
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)2 · |EΦk( f )◦Φ−1
k |2dμ

�
∫

X
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
| f |2dμ , (6.6)

where f ∈ L2

((
1+

k
∑
l=1

hΦ jEΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

))
dμ
)

,

where j is an arbitrary number in Jk and k ∈ Jn . By (2.10) and (A.7) in [3], (6.6) is
equivalent with

∫
X

∣∣∣∣∣∣EΦk

⎛
⎝
√√√√(hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk f

⎞
⎠
∣∣∣∣∣∣
2

dμ

�
∫

X
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
| f |2dμ ,

where f ∈ L2

((
1+

k
∑
l=1

hΦ j EΦ j

(
l−1
∏
t= j

hφt+1 ◦Φ−1
t

))
dμ
)

. By Lemma 6.1, the above

formula is equivalent with

∫
X

⎡
⎣EΦk

⎛
⎝
√√√√(hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk f

⎞
⎠
⎤
⎦

2

dμ

�
∫

X
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
f 2dμ , (6.7)

where f : X → R+ is an A -measurable function. Set

θk, j =

√√√√√√√√√

(
hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

) a.e. [μ ],
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where j is an arbitrary number in Jk and k ∈ Jn . By making the substitution f �√√√√hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
f in (6.7), for an A -measurable func-

tion f : X → R+ , we have that (6.7) is equivalent with

∫
X

EΦk(θk, j f )2dμ �
∫

X
hΦ j ·

(
k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
f 2dμ , (6.8)

where j is an arbitrary number in Jk and k ∈ Jn . For any Δ ∈ A , by substituting
χΦ−1

k (Δ) f in place of f and formulae (A.7), (A.1) in [3], (6.8) is equivalent with

∫
Φ−1

k (Δ)
EΦk(θk, j f )2dμ �

∫
Φ−1

k (Δ)
EΦk( f 2)dμ , (6.9)

where j is an arbitrary number in Jk and k ∈ Jn . Then Proposition 3.2 and [[1], Theo-
rem 1.6.11] complete the proof of this part.

(ii)⇒(iii): By (iii), EΦk(θ
2
k, j)

2 � EΦk(θ
2
k, j), which implies that EΦk(θ

2
k, j) � 1 a.e.

[μ ] , where j is an arbitrary number in Jk and k ∈ Jn . This implies (iii).
(iii)⇒(ii): By [[3], Lemma A.1], for every A -measurable function f : X → R+ ,

EΦk(θk, j f )2 � EΦk(θ
2
k, j) ·EΦk( f 2) � EΦk( f 2),

where j is an arbitrary number in Jk and k ∈ Jn . This implies (ii).
(iii)⇔(iv): Observe that(

hΦ j ·
(

k−1

∏
l= j+1

hφl+1 ◦Φ−1
l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

is Φ−1
k (A )-measurable, where j is an arbitrary number in Jk and k ∈ Jn . Then (iv) is

obtained by formula (A.7) in [3].
This completes the proof. �
The following corollary is trivially obtained by Theorem 6.2.

COROLLARY 6.3. Suppose that (AS) holds and Cφn · · ·Cφ1 is hyponormal. Then
the assertions in the following are valid:

(i) For every A -measurable function f : X → R+ , we have that

EΦk(θ
n+1
k, j )2 � EΦk(θ

2n
k, j) a.e. [μ ].

(ii) EΦk(θk, j)2 � 1 a.e. [μ ] .

(iii) EΦk

(
1

θ2
k, j

)
� 1 a.e. [μ ] ,



20 H. ZHOU

θk, j =

√√√√√√√√√

(
hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

) a.e. [μ ],

where j is an arbitrary number in Jk and k ∈ Jn .

7. Counter-examples

In this section, several counter-examples are given to show that Theorem 6.2 can
be valid for the unbounded case.

EXAMPLE 7.1. For a fixed N ∈ N , let X = JN , A = 2X , μ be a finite measure
on A such that for m ∈ X ,

μ(m) =
{

m m �= 0,
1 m = 0.

Define a transformation φ : X → X such that for m ∈ X ,

φ(m) =
{

km ∃km ∈ X , s.t. m = k2
m,

0 else.

Set Λ = {m ∈ X : m �= 0,m �= k2,∀k ∈ X} . Then we have

h(m) =
{

m m �= 0,
μ(Λ) m = 0.

Hence, h < ∞ a.e. [μ ] but h /∈ L∞ . Furthermore,

h ◦φ(m) =
{

km ∃km ∈ X , s.t. m = k2
m,

μ(Λ) else.

It follows that for any m ∈ Λc , h ◦φ(m) > h(m) .

EXAMPLE 7.2. Let X ,A ,μ be defined as in Example 7.1. On the measure space
(Λc,2Λc

,μ) , we have h < ∞ a.e. [μ ] but h /∈ L∞ and h ◦φ � h .

The following example shows that Theorem 6.2 can be satisfied when Cφn · · ·Cφ1

is unbounded.

EXAMPLE 7.3. As constructed in Example 7.2, we still consider the measure
space (Λc,2Λc

,μ) . Let ψ1 = φ defined in Example 7.1 and ψk = id, k �= 1, where
id stands for the identity transformation. Then

EΦk

⎛
⎜⎜⎜⎜⎝

(
hΦ j ·

(
k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

))
◦Φk

hΦ j ·
(

k−1
∏

l= j+1
hφl+1 ◦Φ−1

l

)
·EΦ j

(
hφ j+1 ◦Φ−1

j

)
⎞
⎟⎟⎟⎟⎠� 1
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a.e. [μ ] , where j is an arbitrary number in Jk and k ∈ Jn . However, Cφn · · ·Cφ1 is
unbounded.

8. Conclusion

In this paper, basic properties of product Cφn · · ·Cφ1 in L2(μ) are conveyed in Sec-
tion 3–5, including the dense definiteness, kernel, adjoint of (not necessarily bounded)
Cφn · · ·Cφ1 in L2(μ) . The hyponormality of specific (not necessarily bounded) Cφn · · ·Cφ1

is characterized in Section 6. This exactly shows the difference between (unbounded)
Cφn · · ·Cφ1 and Cφ1◦φ2◦···◦φn in another way.

To summarize this paper, the following open questions are raised.

OPEN QUESTION 8.1. Is there other new examples which are not trivial to show
that Theorem 6.2 hold when Cφn · · ·Cφ1 is unbounded?

It is noted that this paper is investigated under strong assumption. Thus we ask:

OPEN QUESTION 8.2. What about the hyponormality of Cφn · · ·Cφ1 when
Cφ1 ,Cφ2 , · · · ,Cφn are all densely defined if we drop the assumption Cφk · · ·Cφ1 is normal
for each k ∈ Jn ?

For the unbounded case, the polar decomposition isn’t valid and the approaches in
the study are quietly different. Since the hyponormality of Cφn · · ·Cφ1 is investigated in
this paper, it is natural to ask:

OPEN QUESTION 8.3. What about the cohypnormality and, even the normality
of unbounded product Cφn · · ·Cφ1 in L2(μ)?

As the investigation in [3], the quasinormality and subnormality of unbounded
composition operators are of vital significance to the study of theory of composition
operators in L2 spaces over a σ -finite measure space. Thus we ask:

OPEN QUESTION 8.4. What about the quasinormality and subnormality of un-
bounded product Cφn · · ·Cφ1 in L2(μ)?
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