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FURTHER PROPERTIES OF PPT AND (, )–NORMAL MATRICES

MOHAMMAD SABABHEH, IBRAHIM HALIL GÜMÜŞ AND HAMID REZA MORADI

(Communicated by F. Kittaneh)

Abstract. This paper discusses further properties of positive partial transpose matrices, with ap-
plications towards normal and ( ,) -normal matrices. The obtained results present extensions
and improvements of many results in the literature.

1. Introduction and preliminaries

In the sequel, Mn denotes the algebra of all n×n complex matrices, with identity
I . When A ∈ Mn is such that 〈Ax,x〉 � 0 for all x ∈ Cn , we say that A is positive
semidefinite, and we write A � O . On the other hand, if 〈Ax,x〉 > 0 for all nonzero
x ∈ C

n , A is said to be positive definite, and we write A > O . Here, O denotes the zero
element of Mn .

Given A,B,X ∈ Mn , the matrix

[
A X∗
X B

]
is in M2n. It is well known that if[

A X∗
X B

]
� O , then ∥∥∥∥[A X∗

X B

]∥∥∥∥� ‖A‖+‖B‖ , (1.1)

where ‖ · ‖ is the usual operator norm. Indeed, (1.1) follows from the following useful

decomposition [5, Lemma 3.4]: For every matrix

[
A X∗
X B

]
� O , we have

[
A X∗
X B

]
= U

[
A O
O O

]
U∗ +V

[
O O
O B

]
V ∗

for some unitaries U,V .

However, if

[
A X∗
X B

]
� O and the off-diagonal block X is Hermitian, Hiroshima

[12] showed a stronger inequality than (1.1), as follows∥∥∥∥[A X
X B

]∥∥∥∥� ‖A+B‖ . (1.2)
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The 2×2 block matrix

[
A X∗
X B

]
has received the attention of numerous researchers

in the literature due to its usability and applications. We refer the reader to [13, 16, 17,
19, 20, 22] as a recent list of references treating and using block matrices.

The 2× 2 block matrix

[
A X∗
X B

]
is said to be positive partial transpose (PPT) if

both

[
A X
X∗ B

]
and

[
A X∗
X B

]
are positive semidefinite.

If

[
A X∗
X B

]
is PPT, Lee [16, Theorem 2.1] showed that

|X | � A�B+U∗(A�B)U
2

, (1.3)

where X = U |X | is the polar decomposition of X , and � denotes the matrix geometric
mean. Recall, here, that if A,B > O and 0 � t � 1, the weighted geometric mean of A
and B is defined by

A�tB = A
1
2

(
A− 1

2 BA− 1
2

)t
A

1
2 .

If A � O or B � O , the geometric mean is found via a limiting process. More precisely,

A�tB = lim
n→

A
1
2
n

(
A
− 1

2
n BnA

− 1
2

n

)t

A
1
2
n ,

where An = A+ 1
n I and Bn = B+ 1

n I .
When t = 1

2 , we simply write A�B instead of A� 1
2
B . The geometric mean � was

first introduced by Pusz and Woronowicz [18], which was further developed into a
general theory of operator means by Kubo and Ando [15].

Fu et al. [6, Theorem 2.3] improved (1.3) as follows

|X | � (A�B)�(U∗ (A�B)U) . (1.4)

The fact that (1.4) improves (1.3) follows from the arithmetic-geometric mean inequal-
ity that states

A�B � A+B
2

, (1.5)

for any A,B ∈ Mn with A,B � O.
Among those useful characterizations of the geometric mean, we have [4, (4.15)])

X�Y = max

{
Z : Z = Z∗,

[
X Z
Z Y

]
� O

}
; X ,Y > O. (1.6)

Recently, the following lemma has been shown in [10, Theorem 2.1].
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LEMMA 1.1. If

[
A X
X∗ B

]
is PPT, then so is

[
A�tB X
X∗ A�1−tB

]
, 0 � t � 1 .

Further, it has been shown in [16, Corollary 2.2] that

 j (2 |X |−A�tB) �  j (A�1−tB) , (1.7)

when

[
A X∗
X B

]
is PPT. Here  j denotes the jth largest eigenvalue.

This paper discusses extensions of (1.4) and (1.7), where we extend both inequal-
ities to the weighted geometric mean. We will also extend [6, Theorem 2.2], where we

show that when

[
A X
X∗ B

]
� O , then |X | � (A�t (U∗BU)) �(A�1−t (U∗BU)) , for exam-

ple. Further, we give an improvement of (1.1) that is different from (1.2). Many other

consequences for PPT matrices and positive semidefinite matrices of the form

[
A X
X∗ B

]
will be presented.

After that, we present some applications that include normal and (, )-normal
matrices. Here we recall that if T ∈ Mn is such that |T ∗|2 � |T |2 , then T is said
to be hyponormal. If T satisfies the weaker condition |T ∗| � |T | , then T is said to
be semi-hyponormal. In fact, semi-hyponormal matrices are normal. The notion of
semi-hyponormality becomes significant when we deal with the C∗ algebra of bounded
linear operators on an infinite dimensional complex Hilbert space. More generally, if
0 �  � 1 �  are such that 2|T |2 � |T ∗|2 �  2|T |2 , then T is said to be (, )-
normal. For example, we will show that[|T | T ∗

T |T |
]

� O

if and only if T is normal. Many other results and consequences will be shown for
these classes. As a consequence, we will be able to present a possible reverse for the
inequality ‖T 2‖ � ‖T‖2 , when T is (, )-normal.

2. Main results for positive and PPT block matrices

Our first result is an extension of [6, Theorem 2.2], which states that if

[
A X
X∗ B

]
�

O , then
|X | � A�(U∗BU) and |X∗| � (UAU∗) �B.

Once this has been shown, we use it to extend some results about PPT matrices.

THEOREM 2.1. Let

[
A X
X∗ B

]
be PPT with A,B,X ∈ Mn and let X =U |X | be the

polar decomposition of X . Then for any 0 � t � 1 ,

|X | � (A�t (U∗BU))�(A�1−t (U∗BU)) (2.1)
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and
|X∗| � ((UAU∗)�tB)�((UAU∗)�1−tB) . (2.2)

In particular,
|X | � A�(U∗BU) and |X∗| � (UAU∗)�B.

Proof. We prove (2.1). Since X =U |X | is the polar decomposition of X , we have[
I O
O U∗

][
A X∗
X B

][
I O
O U

]
=
[

A X∗U
U∗X U∗BU

]
� O,

which implies [
A |X |
|X | U∗BU

]
� O,

since X∗U = U∗X = |X | . Lemma 1.1 implies[
A�t (U∗BU) |X |

|X | A�1−t (U∗BU)

]
� O.

Now, the result follows from (1.6). To prove (2.2), we have

|X∗| = U |X |U∗ (by [9, p. 58])

� U ((A�tU
∗BU)�(A�1−tU

∗BU))U∗

= (U (A�tU
∗BU)U∗) �(U (A�1−tU

∗BU)U∗)
= (UAU∗�tBU)�(UAU∗�1−tB) .

This proves (2.2). Letting t = 1
2 in (2.1) and (2.2), and noting that T �T = T, when

T > O , yield |X |� A�(U∗BU) and |X∗|� (UAU∗) �B. This completes the proof. �
Using Theorem 2.1, we present the following extension of (1.4).

COROLLARY 2.1. Let A,B,X ∈ Mn be such that

[
A X∗
X B

]
is PPT, and let X =

U |X | be the polar decomposition of X . Then for any 0 � t � 1 ,

|X | � (A�tB)�(U∗ (A�1−tB)U) ,

and
|X∗| � (U (A�tB)U∗)�(A�1−tB) .

Proof. Lemma 1.1 ensures that

[
A�tB X∗
X A�1−tB

]
is also PPT, for any 0 � t � 1. By

Theorem 2.1, we conclude the first desired result.
The second inequality can be shown using the method we used to show (2.2). This

completes the proof. �
Interestingly, Corollary 2.1 can be used to present a weighted version of (1.7), as

follows.
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COROLLARY 2.2. Let A,B,X ∈ Mn be such that

[
A X∗
X B

]
is PPT. Then for any

0 � t � 1 ,
 j (2 |X |−A�tB) �  j (A�1−tB)

and
 j (2 |X∗|−A�1−tB) �  j (A�tB)

for all j = 1,2, . . . ,n.

Proof. Corollary 2.1 means that

|X | � (A�tB)�(U∗(A�1−tB)U)

� A�tB+U∗(A�1−tB)U
2

.

Thus,
2 |X |−A�tB � U∗(A�1−tB)U.

Therefore,
 j (2 |X |−A�tB) �  j (A�1−tB)

as desired. �
Related to the discussion, we employ (1.2) to obtain another refinement of (1.1),

as follows.

THEOREM 2.2. Let A,B,X ∈ Mn be such that

[
A X∗
X B

]
� O and let X = U |X |

be the polar decomposition of X . Then∥∥∥∥[A X∗
X B

]∥∥∥∥� ‖A+U∗BU‖ .

Proof. If X = U |X | is the polar decomposition of X , then[
I O
O U∗

][
I O
O U

]
=
[

I O
O U

][
I O
O U∗

]
=
[

I O
O I

]
,

since U is unitary. The fact that

[
A X∗
X B

]
� O implies∥∥∥∥[A X∗

X B

]∥∥∥∥=
∥∥∥∥[ I O

O U∗

][
A X∗
X B

][
I O
O U

]∥∥∥∥
=
∥∥∥∥[ A |X |

|X | U∗BU

]∥∥∥∥
� ‖A+U∗BU‖ ,

where we have used (1.2) to obtain the last inequality. This completes the proof. �
The following is an interesting characterization related to PPT matrices.
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THEOREM 2.3. Let A,B,X ∈ Mn be such that

[
A X
X∗ B

]
is PPT and let 0 � t � 1 .

Then there are some isometries Ũ ,Ṽ ∈ M2n,n (depending on t ), such that[
A�tB X
X∗ A�1−tB

]
= Ũ (A�tB)Ũ∗ + Ṽ (A�1−tB)Ṽ ∗.

Proof. By Lemma 1.1,

[
A�tB X
X A�1−tB

]
is PPT. From [5, Lemma 3.4], there are

two unitaries U,V ∈ M2n partitioned into equally sized matrices,

U =
[
U11 U12

U21 U22

]
and V =

[
V11 V12

V21 V22

]
such that [

A�tB X
X∗ A�1−tB

]
= U

[
A�tB O
O O

]
U∗ +V

[
O O
O A�1−tB

]
V ∗.

Hence, [
A�tB X
X∗ A�1−tB

]
= Ũ (A�tB)Ũ∗ + Ṽ (A�1−tB)Ṽ ∗,

where

Ũ =
[
U11

U21

]
and Ṽ =

[
V12

V22

]
are isometries. This completes the proof. �

Theorem 2.3 implies the following remarkable result.

COROLLARY 2.3. Let A,B,X ∈ Mn be such that

[
A X∗
X B

]
is PPT. Then for any

0 � t � 1 , ∥∥∥∥[A�tB X
X∗ A�1−tB

]∥∥∥∥� ‖A�tB‖+‖A�1−tB‖ .

In particular ∥∥∥∥[A�B X
X∗ A�B

]∥∥∥∥� 2‖A�B‖ .

REMARK 2.1. Ando [1, Theorem 3.3] proved that if

[
A X∗
X B

]
is PPT, then

‖X‖ � ‖A�B‖ .

We know that [21] if

[
A X∗
X B

]
� O , then

2‖X‖ �
∥∥∥∥[A X∗

X B

]∥∥∥∥ .
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Consequently, if

[
A X∗
X B

]
is PPT, then

‖X‖ � 1
2

∥∥∥∥[A�B X
X∗ A�B

]∥∥∥∥� ‖A�B‖ .

REMARK 2.2. It is well-known that∣∣∣〈T |T |+−1x,y
〉∣∣∣2 �

〈
|T |2x,x

〉〈
|T ∗|2 y,y

〉
;(, ∈ [0,1] , + � 1)

for any T [8]. By [14, Lemma 1], we infer that[
|T |2 |T |+−1T ∗

T |T |+−1 |T ∗|2
]

� O.

So,

2
∥∥∥T |T |+−1

∥∥∥�
∥∥∥∥∥
[

|T |2 |T |+−1T ∗

T |T |+−1 |T ∗|2
]∥∥∥∥∥

�
∥∥∥|T |2 +U∗|T ∗|2U

∥∥∥
= 2

∥∥∥|T |2 + |T |2
∥∥∥ .

That is,

∥∥∥T |T |+−1
∥∥∥� 1

2

∥∥∥∥∥
[

|T |2 |T |+−1T ∗

T |T |+−1 |T ∗|2
]∥∥∥∥∥�

∥∥∥|T |2 + |T |2
∥∥∥ .

In particular,

‖T‖ =
1
2

∥∥∥∥[|T ∗| T
T ∗ |T |

]∥∥∥∥ .

We notice that when

[
A X∗
X B

]
� O , both (1.1) and (1.2) give upper bounds of[

A X∗
X B

]
in terms of A and B only. In the following result, we obtain an upper bound

that involves X , as well. We emphasize here that for a general T ∈ Mn , the inequality
T � |T | is not true. However, it becomes true when T is Hermitian. We refer the reader
to [20] for a related discussion of this ordering.

THEOREM 2.4. Let A,B,X ∈ Mn be such that

[
A X∗
X B

]
� O. Then

∥∥∥∥[A X∗
X B

]∥∥∥∥� ‖A+B+ |X |+ |X∗|‖ .
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Proof. Indeed, ∥∥∥∥[A X∗
X B

]∥∥∥∥=
∥∥∥∥[A O

O B

]
+
[
O X∗
X O

]∥∥∥∥
�
∥∥∥∥[A O

O B

]
+
[|X | O

O |X∗|
]∥∥∥∥

=
∥∥∥∥[A+ |X | O

O B+ |X∗|
]∥∥∥∥

� ‖A+B+ |X |+ |X∗|‖

where the first inequality follows from the fact that

[
O X∗
X O

]
is Hermitian, and for any

Hermitian matrix T , we have T � |T | . The second inequality is also obtained from
(1.2). This completes the proof. �

3. Applications towards normal and (, )-normal matrices

This section presents several results on normal and (, )-normal matrices. While
some of these results can be considered as applications of the results of the previous
section, other results are related but independent.

THEOREM 3.1. Let T ∈ Mn . Then

[|T | T ∗
T |T |

]
� O if and only if T is normal.

Proof. It is easy to show that [20] if T is normal, then[|T | T ∗
T |T |

]
� O.

We show that if

[|T | T ∗
T |T |

]
� O , then T is normal. Indeed, if T = U |T | is the polar

decomposition of T , then[ |T | T ∗U
U∗T U∗ |T |U

]
=
[

I O
O U∗

][|T | T ∗
T |T |

][
I O
O U

]
� O.

Since T ∗U = U∗T = |T | , we get[|T | |T |
|T | U∗ |T |U

]
� O.

From (1.6), we get
|T | � |T |�(U∗ |T |U) .

By the definition of geometric mean, we have

|T | � |T | 1
2

(
|T |− 1

2U∗ |T |U |T |− 1
2

) 1
2 |T | 1

2 .
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Multiplying both sides by |T |− 1
2 , we infer that

I �
(
|T |− 1

2U∗ |T |U |T |− 1
2

) 1
2
.

This implies
|T | � U∗ |T |U.

Thus,
|T ∗| = U |T |U∗ � |T | ,

which shows that T is semi-hyponormal. But semi-hyponormal matrices are indeed
normal. This completes the proof. �

In [5, (2.11)], it has been shown that if A,B are normal, then

|A+B|� |A|+ |B|+U∗(|A|+ |B|)U
2

, (3.1)

where U is the unitary matrix in the polar decomposition of A+B. Since every nor-
mal matrix is necessarily semi-hyponormal, and because of (1.5), the following result
significantly improves [5, (2.11)].

COROLLARY 3.1. Let A,B ∈ Mn be normal and let U be the unitary part in the
polar decomposition A+B = U |A+B|. Then

|A+B|� (|A|+ |B|) �(U∗ (|A|+ |B|)U) .

Proof. Using Theorem 3.1, we see that[|A|+ |B| A∗ +B∗
A+B |A|+ |B|

]
� O. (3.2)

By (3.2) and Theorem 2.1, we get the desired result. �

COROLLARY 3.2. Let A,B ∈ Mn be normal. Then

‖A+B‖� ‖|A|+ |B|‖ .

REMARK 3.1. We highlight that Corollary 3.2 is well-known, as one can see in
[3, (1.42)].

THEOREM 3.2. Let T ∈ Mn . Then the following assertions are equivalent.

(i) T is (, )-normal.

(ii)

[ 1
 |T ∗|2 |T |2
|T |2 1

 |T |2
]

� O and

[
 |T |2 |T ∗|2
|T ∗|2  |T ∗|2

]
� O.
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(iii)

[
1
2 |T ∗|2 |T |2
|T |2 1

2 |T ∗|2
]

� O and

[
 2|T |2 |T ∗|2
|T ∗|2  2|T |2

]
� O.

Proof. (i) ⇔ (ii) Since T is (, )-normal, we have

|T |2 � 1
2 |T ∗|2

⇔ |T |2
(

1

|T |2

)−1

|T |2 � 1

|T ∗|2

⇔
[ 1
 |T ∗|2 |T |2
|T |2 1

 |T |2
]

� O (by [4, Theorem 1.3.3]).

Again, since T is (, )-normal, we have

|T ∗|2 �  2|T |2

⇔ |T ∗|2
(
 |T ∗|2

)−1|T ∗|2 �  |T |2

⇔
[
 |T |2 |T ∗|2
|T ∗|2  |T ∗|2

]
� O (by [4, Theorem 1.3.3]).

(i) ⇔ (iii) See [20, Theorem 2.2]. �

We can establish the following theorem by employing the same arguments as in
the proof of (i) ⇔ (ii) in Theorem 3.2, but we present another proof.

THEOREM 3.3. Let T ∈ Mn be (, ) -normal. Then[
1√
 |T ∗| |T |
|T | 1√

 |T |

]
� O and

[√
 |T | |T ∗|
|T ∗| √

 |T ∗|
]

� O.

Proof. According to the assumption,

〈|T |x,x〉 〈|T ∗|y,y〉 � 1

〈|T ∗|x,x〉 〈|T ∗|y,y〉

and
〈|T |x,x〉〈|T ∗|y,y〉 �  〈|T |x,x〉 〈|T |y,y〉

for any x,y ∈ H . On the other hand, we know that (see, e.g., [9, p. 216])

|〈Tx,y〉|2 � 〈|T |x,x〉 〈|T ∗|y,y〉 .

Consequently,

|〈Tx,y〉|2 � 1

〈|T ∗|x,x〉 〈|T ∗|y,y〉
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and
|〈Tx,y〉|2 �  〈|T |x,x〉 〈|T |y,y〉 .

The last two inequalities are equivalent to[
1√
 |T ∗| T ∗

T 1√
 |T ∗|

]
� O and

[√
 |T | T ∗

T
√
 |T |

]
� O, (3.3)

thanks to [14, Lemma 1].
Now assume that T = U |T | is the polar decomposition of T . Then[

I O
O U∗

][ 1√
 |T ∗| T ∗

T 1√
 |T ∗|

][
I O
O U

]
=

[
1√
 |T ∗| T ∗U
U∗T 1√

U∗ |T ∗|U

]
� O. (3.4)

On the other hand,[√
 |T | T ∗

T
√
 |T |

]
� O ⇔

[√
 |T | T
T ∗ √

 |T |
]

� O.

So, [
I O
O U

][√
 |T | T
T ∗ √

 |T |
][

I O
O U∗

]
=
[√

 |T | TU∗

UT ∗ √
U |T |U∗

]
� O. (3.5)

One can easily check that U∗T = T ∗U = |T | . Meanwhile, |T ∗| = U |T |U∗ (see [9, p.
58]), so U∗ |T ∗|U = |T | . Hence, by (3.4) and (3.5), we obtain[

1√
 |T ∗| |T |
|T | 1√

 |T |

]
� O and

[√
 |T | |T ∗|
|T ∗| √

 |T ∗|
]

� O,

as desired. �
The matrices in (3.3) are PPT Therefore, by Corollary 2.2, we have the following

eigenvalue inequalities.

COROLLARY 3.3. Let T ∈ Mn be (, ) -normal. Then

 j
(
2
√
 |T |− |T ∗|)�  j (|T ∗|)

and

 j

(
2√

|T ∗|− |T |

)
�  j (|T |)

for j = 1,2, . . . ,n.

REMARK 3.2. It is well-known that for any T ∈ Mn ,

‖ |T |− |T ∗| ‖ � ‖T‖ .



268 M. SABABHEH, I. H. GÜMÜŞ AND H. R. MORADI

From Corollary 3.3, we infer that if T is (, ) -normal, then∥∥ 2
√
 |T |− |T ∗| ∥∥� ‖T‖ ,

and ∥∥∥∥∥ 2√

|T ∗|− |T |

∥∥∥∥∥� ‖T‖ .

The inequality (1.5) is usually referred to as the operator arithmetic-geometric
mean inequality. It is of great interest in the literature to find possible reverses for this
inequality. Usually, such reverses are found under additional conditions, as seen in
[7, 11]. In the following, we present a reverse of (1.5) for (, )-normal matrices.

PROPOSITION 3.1. Let T ∈ Mn be (, ) -normal. Then

|T |+ |T ∗|
2

� min

{
1√


,
√

}

(|T | � |T ∗|) .

Proof. Theorem 3.3 implies

|T | � 1√


(|T |� |T ∗|) and |T ∗| �
√
 (|T |� |T ∗|) (3.6)

due to (1.6). Further,

|T ∗| � 1√


(|T |� |T ∗|) and |T | �
√
 (|T |� |T ∗|) (3.7)

by utilizing the same approach as in the proof of inequality (2.2). Inequalities (3.6) and
(3.7) say that

|T | � min

{
1√


,
√

}

(|T |� |T ∗|) and |T ∗| � min

{
1√


,
√

}

(|T |� |T ∗|) .

Adding the above two inequalities together implies the desired result. �

REMARK 3.3. Inequalities (3.6) and (3.7) can be shown in another way. Since
f (t) =

√
t is operator monotone on (0,) , and since 2|T |2 � |T ∗|2, we infer that

|T | � 1

|T ∗| .

This implies

|T | � 1√


(|T |� |T ∗|) ,

where we have used the fact that if A,B,C,D � O are such that A � B and C � D , then
A�C � B�D.
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For the following result, we remind the reader of positive linear maps. A linear
map  : Mn → Mn is said to be positive if (A) � O whenever A � O.

THEOREM 3.4. Let T ∈ Mn be (, ) -normal and let  be a positive linear
map. If (T ) = U |(T )| is the polar decomposition of (T ) , then

|(T )| � 1√


((|T ∗|)�U∗(|T ∗|)U)

and
|(T )| �

√
 ((|T |)�U∗(|T |)U) .

Proof. First notice that every positive linear map is adjoint-preserving; i.e., ∗ (T )
= (T ∗) for all T [3, Lemma 2.3.1]. It follows from (3.3) that[

1√
(|T ∗|) ∗ (T )
(T ) 1√

(|T ∗|)

]
� O and

[√
(|T |) ∗ (T )
(T )

√
(|T |)

]
� O

thanks to [3, Exercise 3.2.2]. We get the desired result by mimicking the technique of
the proof of Theorem 2.1. �

The following result presents an interesting reverse of the well-known inequality
‖T 2‖� ‖T‖2, for any T . We recall that a contraction K satisfies KK∗ � I , the identity.
We also recall that the spectral radius r(X) coincides with the operator norm ‖X‖ when
X � O.

THEOREM 3.5. Let T ∈ Mn be (, ) -normal. Then

‖T‖2 � 1

∥∥T 2

∥∥ and ‖T‖2 � 
∥∥T 2

∥∥ .

Indeed,

‖T‖2 � min

{
1


,
}∥∥T 2

∥∥ .

Proof. Ando [2] proved that

[
A X
X∗ B

]
� O if and only if there exists a contrac-

tion K such that X = A
1
2 KB

1
2 . It has been revealed in the proof of Theorem 3.3

that

[
1√
 |T ∗| |T |
|T | 1√

 |T |

]
� O . Therefore, there exists a contraction K such that |T | =

1√
 |T ∗| 1

2 K|T | 1
2 � O . So, we have

‖ |T | ‖ = ‖T‖
=

1√


∥∥∥|T ∗| 1
2 K|T | 1

2

∥∥∥
=

1√


r
(
|T ∗| 1

2 K|T | 1
2

)
(since r (X) = ‖X‖ for positive X)
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=
1√


r
(
K|T | 1

2 |T ∗| 1
2

)
(since r (XY ) = r (YX))

� 1√


∥∥∥K|T | 1
2 |T ∗| 1

2

∥∥∥ (since r (X) � ‖X‖)

� 1√

‖K‖

∥∥∥|T | 1
2 |T ∗| 1

2

∥∥∥
(by the submultiplicative property of usual operator norm)

� 1√


∥∥∥|T | 1
2 |T ∗| 1

2

∥∥∥ (since K is contraction)

� 1√

‖|T | |T ∗|‖ 1

2 (by [3, Theorem IX.2.1])

=
1√

∥∥T 2

∥∥ 1
2 .

The second inequality comes from

[√
 |T | |T ∗|
|T ∗| √

 |T ∗|
]

� O and the same method as

above. This completes the proof. �

REMARK 3.4. We will give another method to prove Theorem 3.5. The operator
inequality

|T | � 1√


(|T |� |T ∗|)

implies the following norm inequality

‖T‖ � 1√

‖|T | � |T ∗|‖ .

But, for any positive operators A,B , we know that

‖A�B‖ �
∥∥∥A 1

2 B
1
2

∥∥∥ .

That is,

‖T‖ � 1√


∥∥∥|T | 1
2 |T ∗| 1

2

∥∥∥=
1√

∥∥T 2

∥∥ 1
2 .
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