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GROUND STATES OF THE QUASILINEAR PROBLEMS INVOLVING

THE CRITICAL SOBOLEV EXPONENT AND POTENTIALS

DONGSHENG KANG

(Communicated by C. O. Alves)

Abstract. In this paper we study a quasilinear elliptic problem which involves the critical Sobolev
exponent and multiple Hardy-type terms. By the analytic technics and variational methods, the
existence and nonexistence of the ground states for the problem is established under certain
assumptions.

1. Introduction

In this paper, we study the following elliptic problem:⎧⎪⎨
⎪⎩

−Δpu −
k

∑
i=1

λi up−1

|x−ai|p = up∗−1, u > 0,

x ∈ R
N \ {a1,a2, · · · ,ak},

(1.1)

where N � 3, k � 2, 1 < p < N, p∗ := Np
N−p is the critical Sobolev exponent, −∞ <

λi < λ , λ := (N−p
p )p is the best Hardy constant, ai ∈ R

N and ai �= a j for any i, j =
1,2, · · · ,k, i �= j.

Problem (1.1) is related to the well-known Hardy inequality [4, 9, 12]:

∫
RN

|u|p
|x−a|p dx � 1

λ

∫
RN

|∇u|p dx , ∀ u ∈C∞
0 (RN), a ∈ R

N . (1.2)

In this paper, the space D1,p(RN) denotes the completion of C∞
0 (RN) with respect to

the norm (
∫
RN |∇u|p dx)1/p . The function u ∈ D1,p(RN) is said to be a solution of the

problem (1.1) if u > 0 satisfies

∫
RN

(
|∇u|p−2∇u∇v−

k

∑
i=1

λiup−1 v
|x−ai|p −up∗−1v

)
dx = 0 , ∀v ∈ D1,p(RN).

By the standard elliptic regularity argument, the solution u ∈C1,α(RN \ {a1, · · · ,ak}).
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We mention that the elliptic problems involving the Hardy inequality were stud-
ied by many authors recently, see for example [1]-[11], [13]-[15], [18], [19] and the
references therein. We also point out that in the recent papers [5]-[7], the semilinear
problems involving the critical Sobolev exponent and multiple Hardy terms were stud-
ied and many important conclusions were obtained. Stimulated by these publications,
in this paper we investigate the ground state of the problem (1.1), the solution which
has the smallest energy and minimizes the corresponding Rayleigh quotient.

For all λ ∈ (−∞,λ ) and a ∈ R
N , by the Hardy and Sobolev inequalities we can

define the following best Sobolev constant,

S(λ ) := inf
u∈D1,p(RN )\{0}

∫
RN

(
|∇u|p−λ

|u|p
|x−a|p

)
dx

(∫
RN

|u|p∗dx
) p

p∗
. (1.3)

Note that S(λ ) is independent of the point a. Here we recall a recent result in [1],
where the authors studied the limiting problem:

⎧⎪⎨
⎪⎩

−Δpu−λ
up−1

|x−a|p = up∗−1 in R
N\{a},

u ∈ D1, p(RN) ,u > 0 in R
N\{a}.

(1.4)

They proved that for 0 � λ <λ and 1< p <N, (1.4) has the radially symmetric ground
states

Va
p,λ ,ε(x) = ε

p−N
p Up,λ

(x−a
ε

)
= ε

p−N
p Up,λ

( |x−a|
ε

)
, ∀ ε > 0 , (1.5)

that satisfy

∫
RN

(
|∇Va

p,λ ,ε(x)|p −λ
|Va

p,λ ,ε(x)|p
|x−a|p

)
dx =

∫
RN

|Va
p,λ ,ε(x)|p

∗
dx = S(λ )

N
p .

Up,λ (x) = Up,λ (|x|) is the unique radial solution of (1.4) satisfying [1]:

Up,λ (1) =
(

N (λ − λ )
N− p

) 1
p∗−p

,

lim
r→0

ra(λ )Up,λ (r) = C1 > 0 , lim
r→+∞

rb(λ )Up,λ (r) = C2 > 0 ,

lim
r→0

ra(λ )+1|U ′
p,λ (r)| = C1a(λ ) � 0, lim

r→+∞
rb(λ )+1|U ′

p,λ (r)| = C2b(λ ) > 0,

where C1 and C2 are positive constants depending on λ , p and N and a(λ ) and b(λ )
are zeroes of the function

f (t) = (p−1)t p− (N− p)t p−1 +λ , t � 0, (1.6)
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that satisfy

0 � a(λ ) < δ < b(λ ), δ :=
N− p

p
. (1.7)

Moreover, there exist positive constants C1(λ ) and C2(λ ) such that

0 < C1(λ ) � Up,λ (x)
(
|x| a(λ)

δ + |x| b(λ)
δ
)δ

� C2(λ ). (1.8)

The above results are useful for us to study the problem (1.1).
In this paper, the following assumption is needed:

(H1) : λ1 � λ2 � · · · � λk < λ , k � 2 and there exists an l ∈ {0,1,2, · · · ,k−1} such
that λl � 0 < λl+1 � λl+2 � · · · � λk (λl = 0 i f l = 0) ; moreover,

k

∑
i=l+1

λi < λ and
k−1

∑
i=1

λi < 0.

Under the assumption ∑k
i=l+1λi < λ and by the Hardy inequality, we can define

the following best constant A = A(λ1,λ2, · · · ,λk) ,

A := inf
u∈D1,p(RN )\{0}

∫
RN

(
|∇u|p−

k

∑
i=1

λi |u|p
|x−ai|p

)
dx

(∫
RN

|u|p∗dx
) p

p∗
, (1.9)

we shall prove that A is bounded later on, see Lemma 3.2 in this paper.
The main results of this paper can be concluded as the following theorems. We

mention that if p = 2 and 0 � λ < λ 2 := (N−2
2 )2, then

a(λ ) =
√
λ 2−

√
λ 2−λ and b(λ ) =

√
λ 2 +

√
λ 2−λ ,

and our results are the same with those in [6]. The results are new in the case when
1 < p < N and p �= 2. We can verify that the intervals in (H1) and Theorem 1.1 for
the parameter λk are not empty.

THEOREM 1.1. Suppose (H1), N > max{p2, p+ 1} , λ ∗ := (N − p2)Np−1p−p ,
δ , b(λk), C1(λk) and C2(λk) are defined as in (1.6)-(1.8) and l is defined as in
(H1) . Assume that one of the following conditions is satisfied:

(i)
k−1

∑
i=1

λi

|ai−ak|p > 0 , 0 < λk < λ ∗ ,

(ii)
l

∑
i=1

(
C2(λk)

)pλi

|ai−ak|p(b(λk)−δ ) +
k−1

∑
j=l+1

(
C1(λk)

)pλ j

|a j −ak|p(b(λk)−δ ) > 0 , λ ∗ � λk < λ .

Then the infimum in (1.9) is achieved and therefore the problem (1.1) has at least one
ground state solution.
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THEOREM 1.2. Assume that k � 2 and the following conditions are satisfied:

λi > 0 , i = 1,2, · · · ,k, and
k

∑
i=1

λi < λ .

Then the infimum in (1.9) cannot be achieved and (1.1) has no ground state.

This paper is organized as follows. In Section 2 we study a local Palais-Smale
condition by the concentration compactness principle. In Sections 3 and 4 we prove
Theorems 1.1 and 1.2 respectively. In this paper, D−1,p(RN) is the dual space of
D1,p(RN). For t > 0, O(εt ) denotes the quantity satisfying |O(εt)|/εt � C , o(εt)
means |o(εt)|/εt → 0 as ε→ 0 and o(1) is a generic infinitesimal value. In the follow-
ing argument, we employ C to denote the positive constants and omit dx in integrals
for convenience if no confusion is caused.

2. Palais-Smale condition

We define the functional on the space D1,p(RN) ,

J(u) =
1
p

∫
RN

(
|∇u|p−

k

∑
i=1

λi|u|p
|x−ai|p

)
dx − A

p∗

∫
RN

|u|p∗dx.

Note that if u > 0 is a critical point of J , then v = A
1

p∗−p u is a solution to (1.1). The
following lemma provides a local Palais-Smale condition for the functional J .

LEMMA 2.1. The functional J satisfies the (PS)c condition for all c < c∗, where

c∗ =
1
N

A1− N
p

(
min
{

S(0), S(λ1), S(λ2), · · · ,S(λk), S
( k

∑
i=1

λi
)})N

p

. (2.1)

Proof. Suppose that the sequence {un} ⊂D1,p(RN) satisfies J(un)→ c < c∗ and
J′(un) → 0 in D−1,p(RN) . Then un is a bounded sequence in D1,p(RN) . Up to a
subsequence and for some u ∈ D1,p(RN) we have:

un ⇀ u weakly in H,

un → u a. e. in R
N ,

un → u in Lαloc(R
N), ∀α ∈ [1, p∗).

Then by the concentration compactness principle [16, 17] and up to a subsequence if
necessary, there exist an at most countable set J ,x j ∈ R

N\{a1,a2, · · · ,ak}, real num-
bers μx j ,νx j , j ∈ J and μai ,νai ,γai , i = 1,2, · · · ,k, such that the following conver-
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gences hold in the sense of measures:

|∇un|p ⇀ dμ � |∇u|p +
k

∑
i=1

μaiδai + ∑
j∈J

μx jδx j , (2.2)

|un|p∗ ⇀ dν = |u|p∗ +
k

∑
i=1

νaiδai + ∑
j∈J

νx jδx j , (2.3)

λi |un|p
|x−ai|p ⇀ dγi =

λi |u|p
|x−ai|p + γaiδai , i = 1,2, · · · ,k, (2.4)

where δx is the Dirac mass at x. By the Sobolev inequality we have

S(0)(νx j )
p
p∗ � μx j , ∀ j ∈ J , (2.5)

S(0)(νai)
p
p∗ � μai , i = 1,2, · · · ,k. (2.6)

To study the concentration at infinity, we set:

μ∞ = lim
R→∞

limsup
n→∞

∫
|x|>R

|∇un|pdx ,

ν∞ = lim
R→∞

limsup
n→∞

∫
|x|>R

|un|p∗dx,

γ∞ =
( k

∑
i=1

λi
)

lim
R→∞

limsup
n→∞

∫
|x|>R

|un|p
|x|p dx .

We need to verify the following claims.

Claim 1. The set J is finite and for any j ∈ J , either νx j = 0 or

νx j �
(S(0)

A

)N/p
.

In fact, choose ε > 0 small such that ai �∈ Bε(x j), i = 1,2, · · · ,k and Bε(xi)∩
Bε(x j) = /0 for i �= j, i, j ∈ J . Take the cut-off function φ j ∈ C∞

0 (Bε(x j)) such that
0 � φ j � 1, φ j = 1 in Bε/2(x j) and |∇φ j| � 4

ε . Then

〈J′(un),unφ j〉 =
∫

RN
|∇un|pφ jdx+

∫
RN

un|∇un|p−2∇un∇φ jdx

−
∫

RN

k

∑
i=1

λi|un|p
|x−ai|p φ jdx − A

∫
RN

|un|p∗φ jdx .

Note that

lim
n→∞

∫
RN

|∇un|pφ jdx =
∫

RN
φ jdμ �

∫
RN

|∇u|pφ jdx + μx j , (2.7)

lim
n→∞

∫
RN

|un|p∗φ jdx =
∫

RN
φ jdν =

∫
RN

|u|p∗φ jdx + νx j , (2.8)
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lim
ε→0

lim
n→∞

∣∣∣∫
RN

un|∇un|p−2∇un∇φ j

∣∣∣dx = 0 , (2.9)

lim
ε→0

lim
n→∞

∣∣∣∫
RN

|un|p
|x−ai|p φ j

∣∣∣dx � lim
ε→0

lim
n→∞

∣∣∣∫
Bε (x j)

|un|p
(|x j −ai|− ε)pφ j

∣∣∣dx = 0, (2.10)

lim
ε→0

lim
n→∞

∫
RN

|un|p∗φ jdx = lim
ε→0

∫
RN

φ jdν = νx j . (2.11)

From (2.7)-(2.11) it follows that

0 = lim
ε→0

lim
n→∞

〈J′(un), unφ j〉 � μx j −Aνx j . (2.12)

By (2.5) and (2.12) we deduce that Claim 1 holds .

Claim 2. For i = 1,2, · · · ,k , either νai = 0 or νai �
(S(λi)

A

)N/p
.

In fact, for ε > 0 we can take ψi(x) ∈ C∞
0 (Bε(ai)) such that 0 � ψi(x) � 1,

ψi(x) = 1 in Bε/2(ai) and |∇ψi| � 4
ε . From (1.3) it follows that

∫
RN

(
|∇(unψi)|p−λi

|un|pψ p
i

|x−ai|p
)
dx � S(λi)

(∫
RN

|unψi|p∗ dx
) p

p∗
. (2.13)

Then

lim
n→∞

∫
RN

|∇un|pψi dx =
∫

RN
ψidμ �

∫
RN

|∇u|pψi dx + μai , (2.14)

lim
n→∞

∫
RN

|un|p∗ψi dx =
∫

RN
ψi dν =

∫
RN

|u|p∗ψi dx + νai , (2.15)

lim
n→∞

∫
RN

λi|un|p
|x−ai|pψi dx =

∫
RN

ψidγi =
∫

RN

λi|u|pψi

|x−ai|p dx+ γai, (2.16)

lim
n→∞

∫
RN

λ j|un|p
|x−a j|pψi dx = 0, i, j = 1,2, · · · ,k, i �= j, (2.17)

lim
ε→0

lim
n→∞

∫
RN

un|∇un|p−2∇un∇ψi dx = 0 . (2.18)

From (2.14)-(2.18) it follows that

0 = lim
ε→0

lim
n→∞

〈J′(un), unψi〉 � μai − γai −Aνai . (2.19)

By (2.13) we infer that

S(λi)(νai)
p
p∗ � μai − γai , 1 � i � k .

Thus we have
S(λi)(νai)

p
p∗ � μai − γai � Aνai ,

which implies that Claim 2 holds.
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Claim 3. We claim that either ν∞ = 0 or

ν∞ �
(

S(∑k
i=1λi)
A

)N/p

.

In fact, for R > 0 large we choose ψ(x) ∈C∞
0 (RN \BR(0)) such that ψ(x) = 1 in

R
N \B2R(0), 0 � ψ(x) � 1 and |∇ψ | � 2

R . By (1.3) we have

∫
RN

(
|∇(unψ)|p−( k

∑
i=1

λi
) |un|pψ p

|x|p
)
dx � S

( k

∑
i=1

λi
)(∫

RN
|unψ |p∗dx

) p
p∗

. (2.20)

By the elementary inequality∣∣ |X +Y |p−|X |p∣∣� C
( |X |p−1|Y |+ |Y |p), ∀X ,Y ∈ R

N ,

we have∫
RN

||∇(unψ)|p−ψ p|∇un|p|dx =
∫

RN
||ψ∇un +un∇ψ |p−ψ p|∇un|p|dx

�
∫

RN
(|ψ∇un|p−1|un∇ψ |+ |un∇ψ |p)dx. (2.21)

From the Hölder inequality it follows that

∫
RN

|un| |ψ∇un|p−1 |∇ψ |dx �
(∫

R<|x|<2R
|un|p|∇ψ |pdx

) 1
p
(∫

R<|x|<2R
|∇un|pdx

) p−1
p

.

Consequently,

limsup
n→∞

∫
RN

|un|ψ p−1 |∇un|p−1 |∇ψ |dx � C
(∫

R<|x|<2R
|u|p |∇ψ |pdx

) 1
p

� C
(∫

R<|x|<2R
|u|p∗dx

) p
p∗
(∫

R<|x|<2R
|∇ψ |Ndx

) p
N

� C
(∫

R<|x|<2R
|u|p∗dx

) p
p∗

.

Furthermore,

lim
R→∞

limsup
n→∞

∫
RN

|un|ψ p−1 |∇un|p−1 |∇ψ |dx � lim
R→∞

∫
R<|x|<2R

|u|p∗dx = 0 .

Similarly,

lim
R→∞

limsup
n→∞

∫
RN

|un|p |∇ψ |pdx = 0 .

By (2.21) we have

lim
R→∞

limsup
n→∞

∫
RN

|∇(unψ)|pdx = lim
R→∞

limsup
n→∞

∫
RN

ψ p|∇un|pdx.
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From (2.20) it follows that

μ∞− γ∞ � S
( k

∑
i=1

λi
)

(ν∞)
p
p∗ . (2.22)

On the other hand,

0 = lim
n→∞

〈J′(un) , unψ〉 = lim
n→∞

(∫
RN

|∇un|pψ dx+
∫

RN
un|∇un|p−2∇un∇ψ dx

−
∫

RN

k

∑
i=1

λi |un|pψ
|x−ai|p dx−A

∫
RN

ψ |un|p∗dx
)

. (2.23)

Furthermore,∣∣∣∣ |un|pψ
|x−ai|p −

|un|pψ
|x|p

∣∣∣∣= |un|pψ
|x|p

∣∣ |x|p−|x−ai|p
∣∣

|x−ai|p � C
|un|pψ
|x|p+1 ,

where C is a constant independent of R . Thus by the Hölder inequality we have
∫

RN

|un|pψ
|x|p+1 dx �

(∫
|x|>R

|un|p∗dx
) p

p∗
(∫

|x|>R
|x|− N(p+1)

p dx
) p

N
= O(R−1).

Consequently,

lim
R→∞

limsup
n→∞

∫
RN

k

∑
i=1

λi|un|pψ
|x−ai|p dx = lim

R→∞
limsup

n→∞

∫
RN

k

∑
i=1

λi
|un|pψ
|x|p dx = γ∞ . (2.24)

From (2.2)-(2.4) and (2.23)-(2.24) we obtain

μ∞− γ∞ � Aν∞ . (2.25)

By (2.22) and (2.25) we deduce that Claim 3 holds .

Now we come to the conclusion of Lemma 2.1. From Claims 1-3 it follows that

c = J(un)− 1
p
〈J′(un) , un〉 + o(1)

=
( 1

p
− 1

p∗
)

A
∫

RN
|un|p∗dx + o(1)

=
1
N

A
(∫

RN
|u|p∗dx+ν∞ +

k

∑
i=1

νai + ∑
j∈J

νx j

)
.

Thus from (2.1) and Claims 1-3, it follows that

ν∞ = 0; νai = 0, i = 1,2, · · · ,k ; νx j = 0, ∀ j ∈ J .

Up to a subsequence, un → u strongly in D1,p(RN) . Thus the proof of Lemma 2.1 is
complete.
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3. Proof of Theorem 1.1

In the following arguments, we always set

λ̂ :=
k

∑
i=1

λi, λi ∈ R, (3.1)

αλ := C1(λ )
(∫

RN
|Up,λ (x)|p∗

)− 1
p∗

, (3.2)

αλ := C2(λ )
(∫

RN
|Up,λ (x)|p∗

)− 1
p∗

, (3.3)

β := b(λ )− δ , βi := b(λi)− δ , λi ∈ [0,λ ), i = 1,2, · · · ,k, (3.4)

γλ :=
∫

RN

dx

|x|p |x− e1| pb(λ ) , e1 := (1,0, · · · ,0) ∈ R
N , (3.5)

zλμ(x) := μ−δ Up,λ
( |x|μ−1)(∫

RN
|Up,λ (x)|p∗dx

)− 1
p∗

, μ ∈ (0,+∞) , (3.6)

where C1(λ ), C2(λ ), b(λ ) and b(λi) are defined as in (1.6)-(1.8) and Up,λ is the
minimizers of S(λ ) in (1.5).

LEMMA 3.1. Suppose ξ ∈ R
N\{0} and N > max{p2, p + 1} . Then as μ → 0

we have ∫
RN

|zλμ(x)|p
|x+ ξ |p dx =

μ p

|ξ |p
∫

RN
|zλ1 |pdx + o(μ p) if 0 < λ < λ ∗ ,

∫
RN

|zλμ(x)|p
|x+ ξ |p dx � (αλ )p μ p|lnμ |

|ξ |p +o(μ p| lnμ |) if λ = λ ∗ ,

∫
RN

|zλμ(x)|p
|x+ ξ |p dx � (αλ )p μ p|lnμ |

|ξ |p +o(μ p| lnμ |) if λ = λ ∗ ,

∫
RN

|zλμ(x)|p
|x+ ξ |p dx � (αλ )p γλ |ξ |−pβ μ pβ +o(μ pβ ) if λ ∗ < λ < λ ,

∫
RN

|zλμ(x)|p
|x+ ξ |p dx � (αλ )p γλ |ξ |−pβ μ pβ +o(μ pβ) if λ ∗ < λ < λ ,

where λ ∗ = (N−p2)Np−1

pp is defined as in Theorem 1.1.

Proof. Here we need to investigate the properties of a(λ ) and b(λ ) for λ ∈
[0, λ ) . We can verify that the function

f (t) = (p−1)t p− (N− p)t p−1 +λ , t ∈ [0,+∞),
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has the only minimal point δ = N−p
p and is increasing on the interval (δ ,+∞) . Since

N
p , b(λ ) ∈ (δ ,+∞) , then for N > p2 and λ > 0 we have that:

β > 1 ⇐⇒ N
p

< b(λ ) ⇐⇒ f
(N

p

)
< f
(
b(λ )

)
= 0 ⇐⇒ λ < λ ∗ ,

β = 1 ⇐⇒ N
p

= b(λ ) ⇐⇒ f
(N

p

)
= f
(
b(λ )

)
= 0 ⇐⇒ λ = λ ∗ ,

β < 1 ⇐⇒ N
p

> b(λ ) ⇐⇒ f
(N

p

)
> f
(
b(λ )

)
= 0 ⇐⇒ λ > λ ∗ .

Note the fact that 0 < a(λ ) < δ < b(λ ) . Then

∫
RN

|zλμ |p
|x+ ξ |p dx = μ p

∫
RN

|zλ1 |p
|μx+ ξ |p dx

= μ p
∫
|x|< ξ

2μ

|zλ1 |p
|μx+ ξ |p dx + μ p

∫
|x|� ξ

2μ

|zλ1 |p
|μx+ ξ |p dx. (3.7)

For the first part, from (1.8) we have

μ p

∣∣∣∣
∫
|x|< |ξ |

2μ

|zλ1 (x)|p
( 1
|μx+ ξ |p − 1

|ξ |p
)
dx

∣∣∣∣
� Cμ p

∫
|x|< |ξ |

2μ

(
|x| a(λ)

δ + |x| b(λ)
δ
)−(N−p) ∣∣∣ 1

|μx+ ξ |p − 1
|ξ |p

∣∣∣dx.

If |x|< |ξ |/(2μ) , then there exists some constant C(ξ ) > 0 depending only on ξ such
that ||μx+ ξ |−p−|ξ |−p| � C(ξ ) . Consequently,∣∣∣∣μ p

∫
|x|< |ξ |

2μ

|zλ1 (x)|p
( 1
|μx+ ξ |p − 1

|ξ |p
)
dx

∣∣∣∣
� Cμ p

∫ |ξ |
2μ

0

rN−1 dr(
r

a(λ)
δ + r

b(λ)
δ
)N−p

= O(μ p(b(λ )−δ )) → 0 as μ → 0 . (3.8)

On the other hand, from (1.8) it follows that

μ p
∫
|x|� ξ

2μ

|zλ1 |p
|μx+ ξ |p dx

� Cμ p(b(λ )−δ )
∫
|x−ξ |� |ξ |

2

(
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)−(N−p)

|x|p |x− ξ | pa(λ ) dx

= Cμ p(b(λ )−δ )
(∫

|x−ξ |� |ξ |
2 , |x|<2|ξ |

+
∫
|x−ξ |� |ξ |

2 , |x|�2|ξ |

)

� Cμ p(b(λ )−δ )
(∫ 2|ξ |

0
rN−p−1 dr +

∫ +∞

2|ξ |
dr

r1+p(b(λ )−δ )

)
= O(μ p(b(λ )−δ )) → 0 as μ → 0 . (3.9)
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(i). If N > p2, 0 < λ < λ ∗, then b(λ ) > N
p , p(b(λ )− δ ) > p and zλ1 ∈ Lp(RN).

From (3.6)-(3.8) it follows that

μ p
∫
|x|< |ξ |

2μ

|zλ1 (x)|p 1
|μx+ ξ |p dx =

μ p

|ξ |p
∫
|x|< |ξ |

2μ

|zλ1 (x)|pdx +o(μ p)

=
μ p

|ξ |p
∫

RN
|zλ1 (x)|pdx +o(μ p) .

Consequently, ∫
RN

|zλμ |p
|x+ ξ |p dx =

μ p

|ξ |p
∫

RN
|zλ1 (x)|pdx +o(μ p).

(ii). If N > p2 and λ = λ ∗, then b(λ ) = N
p . From (1.8) it follows that

μ p
∫
|x|< |ξ |

2μ

|zλ1 (x)|pdx = μ p
∫ |ξ |

2μ

0
|zλ1 (r)|p rN−1dr

= μ p
∫ |ξ |

2μ

1
|zλ1 (r)|p rN−1dr+O(μ p) � (αλ ,N)p μ p| lnμ | + O(μ p)

= (αλ ,N)p μ p| lnμ | + o(μ p|lnμ |) . (3.10)

From (3.7)-(3.10) it follows that

∫
RN

|zλμ |p
|x+ ξ |p dx �

(αλ ,N)p μ p| lnμ |
|ξ |p +o(μ p| lnμ |).

On the other hand, by (1.8) and following the similar argument we obtain that

∫
RN

|zλμ |p
|x+ ξ |p dx �

(αλ ,N)p μ p| lnμ |
|ξ |p +o(μ p| lnμ |)

for b(λ ) = N
p and μ → 0.

(iii). If N > max{p2, p+1} and λ > λ ∗, then b(λ ) < N
p . From (1.8) it follows

∫
RN

|zλμ |p
|x+ ξ |p dx � (αλ ,N)p

∫
RN

μ p−Ndx

|x+ ξ |p
(
| x
μ |

a(λ)
δ + | x

μ |
b(λ)
δ
)N−p

= (αλ ,N)pμ pβ
∫

RN

(
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)−(N−p)

|x|p |x− ξ | pa(λ ) dx

= (αλ ,N)pμ pβ
∫

RN

((
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)p−N

|x|p|x− ξ |pa(λ ) − 1

|x|p|x− ξ |pb(λ )

)
dx

+ (αλ ,N)p μ pβ
∫

RN

dx

|x|p |x− ξ | pb(λ ) . (3.11)
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For a,b � 0 and τ > 1, the following elementary inequality holds:

0 � (a+b)τ −aτ � C (aτ−1b+bτ ) ,

where C = C(τ) > 0 is some constant. From the assumption N > p+1 it follows that∣∣∣∣
(
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)−(N−p)

|x|p|x− ξ |pa(λ ) − 1

|x|p|x− ξ |pb(λ )

∣∣∣∣
=

(
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)−(N−p)

|x|p |x− ξ | pb(λ ) ×
((
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)N−p−(|x− ξ | b(λ)−a(λ)

δ
)N−p

)

� C

(
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)−(N−p)

|x|p |x− ξ | pb(λ ) ×
(
|x− ξ | (b(λ)−a(λ))(N−p−1)

δ μ
b(λ)−a(λ)

δ + μ p(b(λ )−a(λ ))
)

= C

(
μ

b(λ)−a(λ)
δ

(
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)−(N−p)

|x|p |x− ξ | pb(λ )− (b(λ)−a(λ))(N−p−1)
δ

+
μ p(b(λ )−a(λ ))

(
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)−(N−p)

|x|p |x− ξ | pb(λ )

)
. (3.12)

If μ → 0, there follows that

∫
RN

μ
b(λ)−a(λ)

δ
(
μ

b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)−(N−p)

|x|p |x− ξ | pb(λ )− (b(λ)−a(λ))(N−p−1)
δ

dx

� Cμ
b(λ)−a(λ)

δ

∫
|x−ξ |> |ξ |

2 , |x|<2|ξ |
dx
|x|p

+Cμ
b(λ)−a(λ)

δ

∫
|x−ξ |> |ξ |

2 , |x|>2|ξ |
dx

|x|p+pb(λ )+ p
N−p (b(λ )−a(λ ))

+ CμN−pb(λ )
∫ |ξ |

2μ

0

rN−1dr

r pb(λ )− (b(λ)−a(λ))(N−p−1)
δ

(
1+ r

b(λ)−a(λ)
δ

)N−p

= O(μ
b(λ)−a(λ)

δ ) = o(1) as μ → 0.

By the same arguments we also have

∫
RN

μ p(b(λ )−a(λ ))(μ b(λ)−a(λ)
δ + |x− ξ | b(λ)−a(λ)

δ
)−(N−p)

|x|p |x− ξ | pb(λ ) dx = o(1) as μ → 0.

From (3.11) and (3.12) we deduce that∫
RN

|zλμ |p
|x+ ξ |p dx � (αλ ,N)pμ pβ

∫
RN

dx

|x|p|x− ξ |pb(λ ) +o(μ pβ ).
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If b(λ ) < N
p and μ → 0, from (1.8) and by the similar argument we have

∫
RN

|zλμ |p
|x+ ξ |p dx � (αλ ,N)pμ pβ

∫
RN

dx

|x|p|x− ξ |pb(λ ) +o(μ pβ).

On the other hand, the function

ϕ(ξ ) =
∫

RN

1

|x|p |x− ξ | pb(λ )dx

is invariant by rotation. Furthermore,

ϕ(ηξ ) = η p(δ−b(λ ))ϕ(ξ ) = η−pβ ϕ(ξ ), ∀η > 0,

ϕ(ξ ) = ϕ
(|ξ |(ξ/|ξ |))= |ξ |−pβ ϕ(ξ/|ξ |) = |ξ |−pβ ϕ(e1) .

Thus the proof of the lemma is complete.

LEMMA 3.2. Suppose (H1), N > max{p2, p+1} and j ∈ {1,2, · · · ,k}. Assume
that one of the following conditions is satisfied:

(i) 0 < λ j < λ ∗ and
k

∑
i�= j,i=1

λi

|ai−a j|p > 0,

(ii) λ ∗ � λ j < λ and Λ j :=
l

∑
i=1

(
C2(λ j)

)pλi

|ai−a j|pβ j
+

k

∑
i�= j, i=l+1

(
C1(λ j)

)pλi

|ai−a j|pβ j
> 0.

Then A < S(λ j) .

Proof. If 0 < λ j < λ and μ → 0, from Lemma 3.1 it follows that

A �
∫

RN

(
|∇z

λ j
μ (x−a j)|p−

k

∑
i=1

λi
|zλ j
μ (x−a j)|p
|x−ai|p

)
dx

=
∫

RN

(
|∇z

λ j
μ (x)|p − λ j

|zλ j
μ (x)|p
|x|p

)
dx −

k

∑
i�= j,i=1

λi

∫
RN

|zλ j
μ (x)|p

|x+a j−ai|p dx

= S(λ j) −
k

∑
i�= j, i=1

λi

∫
RN

|zλ j
μ (x)|p

|x+a j−ai|p dx + o(1)

� S(λ j) −

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cμ p
( k

∑
i�= j,i=1

λi

|ai−a j|p +o(1)
)
, 0 < λ j < λ ∗,

Cμ p |lnμ |(Λ j + o(1)
)
, λ j = λ ∗,

Cμ pβ j
(
Λ j + o(1)

)
, λ ∗ < λ j < λ .

Under the assumption either (i) or (ii) , we have that A < S(λ j) .
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Proof of Theorem 1.1. Let {un}⊂D1,p(RN) be a minimizing sequence for A. By
the homogeneity of the quotient we can assume that

∫
RN |un|p∗ = 1. From the Ekeland’s

variational principle we can assume that the sequence has the Palais-Smale property:

o(‖v‖) =
∫

RN
|∇un|p−2∇un∇vdx−

k

∑
i=1

∫
RN

λi|un|p−2unv
|x−ai|p dx−A

∫
RN

|un|p∗−2unvdx.

Hence J′(un) → 0 in D−1,p(RN) and J(un) → 1
N A. Note that S(λ ) is strictly decreas-

ing with respect to λ . By (H1) and Lemma 3.2 we have

A < S(λk) � S(λk−1) � · · · � S(λ1), S(λk) < S(λ̂), S(λk) < S(0).

Consequently,

A < min
{

S(0), S(λ1), S(λ2), · · · , S(λk), S(λ̂)
}

,

1
N

A <
1
N

A1− N
p

(
min
{
S(0), S(λ1), S(λ2), · · · , S(λk), S(λ̂)

}) N
p
.

By Lemma 2.1 we conclude that {un} has a subsequence converging strongly to some
u0 ∈ D1,p(RN). Moreover, J(u0) = 1

N A. Thus u0 achieves the infimum in (1.9). From
the fact that J(u0)= J(|u0|) it follows that |u0| is also a minimizer in (1.9) and therefore

v0 = A
1

p∗−p |u0| is a nonnegative solution of (1.1). By the maximum principle [20], we
have v0 > 0 in R

N \ {a1,a2, · · · ,ak}. The proof of Theorem 1.1 is complete. �

4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we first establish several lemmas.

LEMMA 4.1. Let zλμ(x) be the function defined as in (3.6) . Then for any ξ ∈R
N ,

λ ∈ (0, λ ) and μ → +∞ we have

∫
RN

|zλμ(x)|p
|x+ ξ |p dx =

∫
RN

|zλ1 (x)|p
|x|p dx+o(1) =

∫
RN

|zλμ(x)|p
|x|p dx+o(1) . (4.1)

Proof. Setting x = μ y, we have

∫
RN

|zλμ(x)|p
|x+ ξ |p dx = μ p−N

∫
RN

|zλ1 ( x
μ )|p

|x+ ξ |p dx =
∫

RN

|zλ1 (y)|p
|y+ ξ

μ |p
dy . (4.2)

Note that | ξμ | → 0 as μ → ∞. By the continuity property of convolution and density
arguments we have

∫
RN

|zλ1 (y)|p
|y+ ξ

μ |p
dy =

∫
RN

|zλ1 (y)|p
|y|p dy + o(1) =

∫
RN

|zλμ(y)|p
|y|p dy + o(1) . (4.3)

From (4.2) and (4.3) we can reach the desired conclusion (4.1) .
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LEMMA 4.2. Assume that ai ∈ R
N , λi ∈ R , i = 1,2, · · · ,k, and λ̂ ∈ (0, λ ) is de-

fined as in (3.1) . Then A � S(λ̂) .

Proof. By Lemma 4.1, as μ large enough we have

A �
(∫

RN

(
|∇zλ̂μ |p −

k

∑
i=1

λi |zλ̂μ |p
|x−ai|p

)
dx

)(∫
RN

|zλ̂μ |p
∗
dx

)− p
p∗

=

(∫
RN

(
|∇zλ̂μ |p− λ̂

|zλ̂μ |p
|x|p

)
dx

)(∫
RN

|zλ̂μ |p
∗
dx

)− p
p∗

+o(1) = S(λ̂ ) + o(1) .

Taking μ → +∞ we can conclude the lemma.

LEMMA 4.3. Assume that λi > 0, i = 1,2, · · · ,k and λ̂ < λ . Then

A = S(λ̂) . (4.4)

Proof. For any a ∈ R
N ,u ∈ D1,p(RN) and u � 0 a.e. in R

N , we have [21]:∫
RN

up∗dx =
∫

RN
|u∗(x)|p∗dx, (4.5)∫

RN

up

|x−a|p dx �
∫

RN
|u∗(x)|p

(( 1
|x−a|

)∗)p
dx,

where u∗ = inf{t > 0 : |{y ∈ R
N ,u(y) > t}| � ωN |x|N} is the Schwarz symmetrization

of u and | · | is the Lebesgue measure of R
N , ωN is the volume of the unit ball in R

N .
Direct calculation shows that ( 1

|x−a|
)∗

=
1
|x| .

Consequently, ∫
RN

up

|x−a|p dx �
∫

RN

|u∗(x)|p
|x|p dx. (4.6)

From the Pólya-Szegö inequality it follows that∫
RN

|∇u∗|pdx �
∫

RN
|∇u|pdx. (4.7)

Thus for all u ∈ D1,p(RN) and u � 0 a.e. in R
N we have that

(∫
RN

(
|∇u|p−

k

∑
i=1

λi up

|x−ai|p
)
dx

)(∫
RN

k

∑
i=1

up∗dx

)− p
p∗

�
(∫

RN

(
|∇u∗|p− λ̂

|u∗|p
|x|p

)
dx

)(∫
RN

|u∗|p∗dx

)− p
p∗

� S(λ̂). (4.8)
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Note that the Rayleigh quotient above remains unchanged when replacing u with |u| .
Thus we have

A = inf
u∈D1,p(RN )\{0},u�0

∫
RN

(
|∇u|p−

k

∑
i=1

λi up

|x−ai|p
)
dx

(∫
RN

up∗dx

)p/p∗ .

From (4.8) it follows that A � S(λ̂), which together with Lemma 4.2 implies that (4.4)
holds.

Proof of Theorem 1.2. We argue by contradiction. Assume that the infimum in
(1.9) is attained by some u0 ∈ D1,p(RN)\ {0} . Since |u0| is also a minimizer in (1.9),
we may assume that u0 � 0 a.e. in R

N and therefore the Schwarz symmetrization u∗0
can be employed. From (4.5)-(4.8) we obtain

A =

(∫
RN

(
|∇u0|p−

k

∑
i=1

λi u
p
0

|x−ai|p
)
dx

)(∫
RN

up∗
0 dx

)− p
p∗

�
(∫

RN

(
|∇u∗0|p− λ̂

|u∗0|p
|x|p

)
dx

)(∫
RN

|u∗0|p
∗
dx

)− p
p∗

� S(λ̂). (4.9)

From Lemma 4.3 we deduce that all inequalities in (4.9) are indeed equalities. In par-
ticular we have:

∫
RN

(
|∇u∗0|p− λ̂

|u∗0|p
|x|p

)
dx = S(λ̂ )

(∫
RN

|u∗0|p
∗
dx

) p
p∗

, (4.10)

∫
RN

(
|∇u0|p−

k

∑
i=1

λi u
p
0

|x−ai|p
)
dx =

∫
RN

(
|∇u∗0|p− λ̂

|u∗0|p
|x|p

)
dx. (4.11)

Thus from (4.6), (4.7) and (4.11) it follows that

0 �
∫

RN
|∇u0|pdx−

∫
RN

|∇u∗0|pdx =
k

∑
i=1

λi u
p
0

|x−ai|p − λ̂
|u∗0|p
|x|p � 0.

Therefore ∫
RN

|∇u0|pdx =
∫

RN
|∇u∗0|pdx . (4.12)

By (4.10) we infer that u∗0 is a minimizer of S(λ̂ ) and solves the equation (1.4) with a =
0 and λ = λ̂ . From [1] it follows that u∗0 must belongs to the family of μ−δ Up,λ

( |x|
μ
)

for some μ > 0 and λ = λ̂ , where Up,λ is defined as in (1.5). From the fact that u∗(|x|)
is strictly decreasing we have∣∣{x ∈ R

N |∇u∗0(x) = 0} ∣∣= 0 . (4.13)
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By (4.12) and (4.13) we conclude that there exists some point x0 ∈ R
N such that

u0 = u∗0(· − x0) [3]. Thus u0 is spherically symmetric with respect to x0 . Since u0

is a minimizer in (1.9), v0 = A
1

p∗−p u0 is a solution of the problem (1.1). Consequently,
∑k

i=1
λi

|x−ai|p must be spherically symmetric with respect to x0 , which gives a contradic-
tion. Therefore the infimum in (1.9) cannot be achieved. The proof of Theorem 1.2 is
complete. �
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