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GROUND STATES OF THE QUASILINEAR PROBLEMS INVOLVING
THE CRITICAL SOBOLEV EXPONENT AND POTENTIALS

DONGSHENG KANG

(Communicated by C. O. Alves)

Abstract. In this paper we study a quasilinear elliptic problem which involves the critical Sobolev
exponent and multiple Hardy-type terms. By the analytic technics and variational methods, the
existence and nonexistence of the ground states for the problem is established under certain
assumptions.

1. Introduction
In this paper, we study the following elliptic problem:

k A p_l *
—Apu—zL:upfl, u>0,
S x—ail? (1.1)

X e RN\{alaazf"aak}a

where N >3, k>2, 1<p<N, p*:= NT”p is the critical Sobolev exponent, —oo <
)L < Ay A= (22 - )P is the best Hardy constant, a; € RV and @; # a; for any i,j =
ok i
Problem (1.1) is related to the well-known Hardy inequality [4, 9, 12]:
P 1
/ ‘deg—_/ \VulPdx, YueCq(RY), acRN. (1.2)
RN [x —al? A JrY

In this paper, the space D'”(R") denotes the completion of Cg’(RY) with respect to
the norm ( [ |Vu|Pdx)'/?. The function u € D'P(R") is said to be a solution of the
problem (1.1) if u > O satisfies

-1
(|Vu|1’ 2Vqu—2 4 up*71v>dx=O, Vv e D'P(RY).
\x a,|P

By the standard elliptic regularity argument, the solution u € CY*(RN\ {ay,---,a;}).
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We mention that the elliptic problems involving the Hardy inequality were stud-
ied by many authors recently, see for example [1]-[11], [13]-[15], [18], [19] and the
references therein. We also point out that in the recent papers [5]-[7], the semilinear
problems involving the critical Sobolev exponent and multiple Hardy terms were stud-
ied and many important conclusions were obtained. Stimulated by these publications,
in this paper we investigate the ground state of the problem (1.1), the solution which
has the smallest energy and minimizes the corresponding Rayleigh quotient.

Forall A € (—eo,A) and a € RV, by the Hardy and Sobolev inequalities we can
define the following best Sobolev constant,

up
S(A inf /RN(WM‘IJ_)L |x|—a17>dx
= mn .

- A
weD!P (BY)\ {0} ( / ) \u|l’*dx> g
R

Note that S(A) is independent of the point a. Here we recall a recent result in [1],
where the authors studied the limiting problem:

(1.3)

ub~1 *
—Apu— At = "1 in RN\ {a},

x—alP (1.4)
ueD"P(RY) u>0 in RN\ {a}.

They proved that for 0 < A < Aand 1< p <N, (1.4) has the radially symmetric ground
states

=N x—a p=N |x —al
a —e¢7 U (—):evU <—>,V£>0, 15
poelX) ril ril (1.5)
that satisfy

a |Va_1 (x)[? a « N
/RNQVVME()C)\P —lﬁ)dx: /RN Ve, ()P dx=S(A)7.

U

2 (x) = U, 5 (|x]) is the unique radial solution of (1.4) satisfying [1]:

Upa(1) = (M)_

N—p
lim rM U, (r)=C >0, Jim AU, () =C >0,

lim IO ()] = Cla(A) 20, lim PH UL, ()] = Cab(A) >0,

r— oo

where C; and C, are positive constants depending on A,p and N and a(A) and b(A)
are zeroes of the function

fO)=(p-Dt' —(N=p)" '+, 1>0, (1.6)
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that satisfy
0<a(d) <8 <b(h), 5:=U. (1.7)

Moreover, there exist positive constants %] (A) and € (/1) such that

)\ O
0<G(A) <Up(x )(|x| =R +\x\T) (1.8)

The above results are useful for us to study the problem (1.1).
In this paper, the following assumption is needed:

(4): Algkzg---<1k<)f k>2andthereexistsanlE{O,l,Z,---Jc—l} such
that & <O < Ay S A2 <o <A (4 =0 if 1 =0); moreover,

2 A <A and 2/1 <0.
i=l+1

Under the assumption 25-‘:, i < A and by the Hardy inequality, we can define
the following best constant A = A(A1, Ay, -+, A4),

P_
/ (W | 2 x— a,\l’>
A= inf -
ueDP(RN)\{0} </ |u\p*dx> o
RN

we shall prove that A is bounded later on, see Lemma 3.2 in this paper.
The main results of this paper can be concluded as the following theorems. We

mention that if p=2 and 0 <A < A := (%2 2)2 then

x):ﬁ—\/iz—x and b()L)z\/)LTQ—i-\//l_g—)L,

and our results are the same with those in [6]. The results are new in the case when
1 <p <N and p #2. We can verify that the intervals in (%) and Theorem 1.1 for
the parameter A, are not empty.

; (1.9)

THEOREM 1.1. Suppose (), N > max{p*,p+ 1}, A* := (N —p*)NP~!p=P,
0, b(A), €1(Ax) and €>(Ay) are defined as in (1.6)-(1.8) and | is defined as in
(7). Assume that one of the following conditions is satisfied:

k—1 A’i
i=1 ‘ai - ak‘p

(i) >0, 0<A<Ar,
.. L (%2()%))17 i ol (%1 Ak )p j % ;
) izlm + W>O7 A< A <AL

j=l+1 |aj

Then the infimum in (1.9) is achieved and therefore the problem (1.1) has at least one
ground state solution.
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THEOREM 1.2. Assume that k > 2 and the following conditions are satisfied:

k _
Ai>0,i=1,2,k and Y A <A.
i=1

Then the infimum in (1.9) cannot be achieved and (1.1) has no ground state.

This paper is organized as follows. In Section 2 we study a local Palais-Smale
condition by the concentration compactness principle. In Sections 3 and 4 we prove
Theorems 1.1 and 1.2 respectively. In this paper, D~'7(RV) is the dual space of
DUP(RVN). For ¢ > 0, O(&') denotes the quantity satisfying |O(¢')|/e' < C, o(g")
means |o(e")|/e" — 0 as € — 0 and o(1) is a generic infinitesimal value. In the follow-
ing argument, we employ C to denote the positive constants and omit dx in integrals
for convenience if no confusion is caused.

2. Palais-Smale condition

We define the functional on the space D' (RV),

1 A .
Juz—/ x——/ ul? dx.
=5 < 2\ —az\” ' o !

1
Note that if u# > 0 is a critical point of J, then v=A»"-r u is a solution to (1.1). The
following lemma provides a local Palais-Smale condition for the functional J.

LEMMA 2.1. The functional J satisfies the (PS). condition for all ¢ < c¢*, where

<=z

e %Al—% (min{S(O), SO, S(Aa), -+, S (), S(i%) }) e

i=1

Proof. Suppose that the sequence {u,} C D'P(RN) satisfies J(u,) — ¢ < ¢* and
J'(uy) — 0 in D~VP(RY). Then u, is a bounded sequence in D'?(RV). Up to a
subsequence and for some u € D''"?(RV) we have:

u, —u weaklyin H,
Up — U a.e.in RN,
Uy —u in LE.(RM), Va € [l,p").
Then by the concentration compactness principle [16, 17] and up to a subsequence if

necessary, there exist an at most countable set _#,x; € RVM\{ay,az,---,a;}, real num-
bers Uy, Vy;,j € F and Ug;, Ve, Ya; i = 1,2,--+,k, such that the following conver-
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gences hold in the sense of measures:

k
‘Vun‘p - dnu' 2 ‘Vu|l7 + Z,U-ai(sai-’— 2 .u'x_,'(SXﬂ

i=1 JjeS
lup|?” — dv = |u|?” +2Va,5a,+ > vy,
i=1 jes
A |un|? Ai |lul?
l| n| - = l‘ | +Yui5aia izlaza"'7k7

|x — a;|P i |x — a;|P

where &, is the Dirac mass at x. By the Sobolev inequality we have

*\"a

S0)(vy;) 7" <y Vi€ I,
S(0)(Va) P < My i=1,2,- k.

To study the concentration at infinity, we set:

R—oo

Moo = hm limsup |Vuy|Pdx,
>R

n—oo |x
Voo = hm 1 limsup lup|P” dx,
n—o0 |x >R
P
(2/1) lim lim sup ] dx
i=1 R—e oo |x|>R ‘x‘p

We need to verify the following claims.

Claim 1. The set ¢ is finite and forany j € 7, either vy, =0 or

In fact, choose € > 0 small such that a; ¢ Be(x;),i =1,2,---

353

(2.2)

(2.3)

2.4)

(2.5)
(2.6)

,k and Bg(x;) N

Be(xj) =0 for i # j, i,j € # . Take the cut—off function ¢; € C7'(Be(x;)) such that

0<¢;<1,¢;=11in Bgp(x;) and [V¢;| < < . Then

(1) tn ;) = /RN |vun\1’¢jdx+/RN | Vit | P2V 10,V

& Ailua]”
u —A |7 0id
/]RN ‘x_ l‘p / |u| (pJ X

Note that

n—o0

1 P . — . _ P* 4
lim - |t ¢de—/IRN(p,dv—/IRN\u| ¢jdx + vy,

n—oo

1 Pd. — . Pdy.
lim [ (Vi 0y = /RN didu > /RN IVul gyedx +

2.7

(2.8)
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lim lim | / ) un\Vun|1’*2vunV(]),'|dx —0, 2.9)
3 .

£—0n—oo

. . ‘un|p . . ‘u"|
lim lim ’/ "dx < lim lim ’/ dx=0, (2.10)
RN \x—a,-\Pq)J Be(x;) |xj_al|_£) (pj

£—0n—oe e—0n—oo

lim lim | |u,|? ¢fdx=g%/]1{N 0jdVv = Vy;. (2.11)

£—0n—oo JRN

From (2.7)-(2.11) it follows that

0 = lim lim (J' (), un@;) > e, — A Vs, . (2.12)

g—0n—oo

By (2.5) and (2.12) we deduce that Claim 1 holds.

Claim 2. Fori=1,2,---,k, either v,, =0 or v, >(¥)N/p~

In fact, for € > 0 we can take yi(x) € C5(Be(a;)) such that 0 < y;i(x) < 1,
vi(x) =1 in Bgs(a;) and [Vyy| < %. From (1.3) it follows that

|“n‘pWip i
/ (IVGon) |~ 24 Jax >S()L)</ il dx) (2.13)
RV |x —a;|P
Then
fim |vu,,\1’uf,-dx:/ widy >/ VulPyidx + g, 2.14)
n—oo RN RN RN
fim |un|1’*y/,-dx:/ y/,-dv:/ P widx + Vg, (2.15)
n—oo RN RN RN
Adlun | _ [ AilulPyi
tim [ al‘pu/,-dx—/RN u/idyl—/RN LR (2.16)
lim Ajlitnl” Wvidx=0, i,j=12---k i#}j, (2.17)
n—oo JRN |x a,|1’
lim lim | u,|Vit,|P 2V, Vigdx = 0. (2.18)
e—0n—eo JRN
From (2.14)-(2.18) it follows that
0 = lim lim (J' (uy), unW;) > ta; — Yo, — A Vg - (2.19)

e—0n—oo

By (2.13) we infer that

*\m

S(A)(Va’) .ua,-_')/a” lgigk.

Thus we have »
7

S(A’)(Va:) ‘ull,' - ytl,' gAVa,w
which implies that Claim 2 holds.
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Claim 3. We claim that either v.. =0 or
N
s (SELA\MT
= A .

In fact, for R > 0 large we choose y/(x) € C5(RY \ Bg(0)) such that y(x) =1 in
RN\ Bor(0), 0< w(x) <1 and |Vy| < 3. By (1.3) we have

/RN(V(unw)”—(iki) ”TXT;”p)dx > S(i&-)(/RN wlax)” . 220)

i= i=1
By the elementary inequality
| X+Y]P—|X]P| <C(IX[P7HY|+|Y|P), VXY €RY,
we have
/RN [|V(unw)|? — wP|Vu,|P|dx = /RN [|wVun + u,Vy|? — wP|Vu,|P|dx

< [ WVl Vvl + 9w, 221)

From the Holder inequality it follows that

1
[l ¥ eylac<( [l veprax)" ([ Vilax)
RN R<|x|<2R R<|x|<2R

Consequently,

p—1

1
limsup \un|w1’71\Vun|p71|Vl[/|dx<C(/ |u\p|Vw|pdx> !

n—oo R<‘x‘<2R
P

L2 A
<C (/ |u\1’*dx> r (/ |Vl[/|Ndx> v
R<|x|<2R R<|x|<2R

a
<c( / " dx) "
R<|x|<2R

Furthermore,
l[im limsup \u | yP 1 |V, [P~ | V| dx < hm u|P"dx =0.
R—eo oo R—o0 R<| |<2R

Similarly,

hm hmsup |un\p\V1//\pdx:O

n—oo

By (2.21) we have

I%im limsup/ (upy)|Pdx = hm hmsup/ wP|Vu,|Pdx.
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From (2.20) it follows that

Yo 2 S(D A) (veo)?7 . (2.22)
On the other hand,

0= lim (J'(u,), uyy¥) = lim (/N |Vu,,\1’1//dx+/N Un| Vitn [P~V u, Vy dx
R R

n—oo n—oo

k Py *
_ /RNZ%dx—A/RNu/\unV dx). (2.23)

Furthermore,

L B Y e et R 1 7

R —aip T x|t

e—ailr|xP

where C is a constant independent of R. Thus by the Holder inequality we have

| P . £ _N(p+1) &
/ i Ii]a’x < (/ |un|? dx)’ (/ |x] % dx)N =OR™M).
RV |x|PT lx|>R l¥|>R

Consequently,

Ailun |y ko Jun Py
hm limsu / dx= hm limsu / Ai dx = Yoo . 2.24
meup 21 —a? msup | 2 =T 224

From (2.2)-(2.4) and (2.23)-(2.24) we obtain
— Yoo KAVeo. (2.25)

By (2.22) and (2.25) we deduce that Claim 3 holds.

Now we come to the conclusion of Lemma 2.1. From Claims 1-3 it follows that

¢ = J(un) - %u’(un), un) + o(1)

1 1 .
(———)A/ lual?"dx + o(1)

r r RN

1

= NA(/RNM” dx+ Ve + Zval—i— D vx]>

i=1 jeS

Thus from (2.1) and Claims 1-3, it follows that

Vo =05 Vg =0, i=1,2,---k; v, =0,Vje 7.

Up to a subsequence, u, — u strongly in D'?(RV) . Thus the proof of Lemma 2.1 is
complete.
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3. Proof of Theorem 1.1

In the following arguments, we always set

B:=b(A)—

=m0 U (i) ([, |Up,x<x>|f7*dx) ”

where €1(A), €2 (1),

minimizers of S(A) in (1.5).

&l = ng

k

i=1

([ s

8, Bii=b(A) —

dx

J,

el x — ey [PP12)

i = Z)L,', ﬂ,‘ER,

1
3

o = %1(/1)</RN |U,,,;L(x)|p*> ;

Aefo,1),
= (1,0,--

L
*

-

1,2, k,
-,0) RN,
, WE(0,+e0),

357

(3.1)

(3.2)

(3.3)
(3.4)
(3.5)

(3.6)

b(A) and b(A;) are defined as in (1.6)-(1.8) and U, is the

LEMMA 3.1. Suppose & € R¥\{0} and N > max{p?,p+1}. Then as u — 0

we have

J2fi ()P

P g —
/RN x+ &P

|25 (x)P

vz

J2gi ()17

ANH+§P

2 ()P

futirer

/‘kﬂﬂw
RV [x+ &P

d

(N—p)NP~!

*
where A* = 7

x < (

x > (oy

x < (@

“17
4%

/RN|Z%\de+o(w) if 0<A<A®,

)

)

p WPl

u

€7

p Winp

[k

+o(ul|inpul)

+o(uP|lnul)

is defined as in Theorem 1.1.

if A=A",

if A=2%,

x> (o) |ETPP uPP +o(uPPy if AT <A <A,

o)y |EITPPuPP o(uPPy if A <A <A,

Proof. Here we need to investigate the properties of a(A) and b(A) for A €
[0,A). We can verify that the function

f() =

(p— 1P -

(N—py? ' 41, 1e

[0v+°°)a
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has the only minimal point § = % and is increasing on the interval (J,4<c). Since

%, b(A) € (§,+oo), then for N > p*> and A > 0 we have that:

p1 = Yovn) = s <rp)=0 = 2 <t

p p
p=1 = %:b(k) = f(%):f(b()t)):o = =2,
<l = g>b(k) = f(g)>f(b()t)):0 = A>AT

Note the fact that 0 < a

—~

) <& < b(A). Then

Ap p

z
/ | u‘ dx — ‘up/ de
RN |x+ &P RN |ux+&|P

‘Zﬂp ‘21 |
= uP / gy / LW (3.7)
< [Ux+ G >4 [ux+ &P

For the first part, from (1.8) we have

~Kk§l()p(uxi§”__pggyh

a(d) b))\ —(N—p) 1 1
éC,up/ (xT—i-xT) — — ——|dx
<l (P F € Ep

If |x| < |&|/(21), then there exists some constant C(&) > 0 depending only on & such
that [|ux+&|77 —|&|7P] < C(§). Consequently,

1 1
W e
44O (e~ 1)

‘zﬁ N ldr
a(l) b(A) \ N—
0 ( +rs ) p

On the other hand, from (1.8) it follows that

p

<cop? =o(uPPM=9y L 0as u—0. (3.8)

o Y,
|x|/ b |‘LLX+ 5 |p

b(l) b(2)—a2) \ —(N—p)
<curtnn [ (5 g )
—¢|> 14! x| Ix—é\l’“

dx

toe dr
—p—1 - -
A 4 /2\:| T0TT)

=0o(uPPM=9y 0 as u—0. (3.9)
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(i). I N>p* 0<A <A* then b(A) > %7 p(b(A)—8)>p and z{t € LP(RN).
From (3.6)-(3.8) it follows that

1 ‘up
upA<zi|z%<x>pmdx & /‘ka ()Pdx + o(u?)
= W/RN |} (x)[Pdx + o(uP).

Consequently,
2 l” ur 2
7dx:—/ X)|Pdx +o(u?).
/RN‘X‘F&V? ‘€|P RN‘ZI()‘ (nu')

(if). If N> p? and A = A*, then b(A) = . From (1.8) it follows that

4]

2 _
W[ e = [T e e
= 2u

(4]
= [T P dr0() > (0.0 07| Inu| + O(u7)

= (g )" uP|Inp| + o(u”|Inul). (3.10)
From (3.7)-(3.10) it follows that

24l (o )" | In |
dx > . +o(uf|Inul).
/RN Ix+&|P HE (1P| Inpl)

On the other hand, by (1.8) and following the similar argument we obtain that

|2 |? (05 n)P uP|Inu|
dx < 2 +o(u?|ln
/RN P HE (uP|Inpl)

for b(A) = % and u — 0.

(iii). If N >max{p? p+1} and A > A*, then b(A) < %.From (1.8) it follows

A _
o e [,
N xLElpT T ; (A () N—p
R i< | +§\1’(\ﬁ| nHES
e bi2) ald)\ —(N~p)
Y g
= (o; »)P PB/ d
(N1 - X7 |x—§\1’“ X
b(A)—a(\) bR)—aX) | p-N
(o )pupg/ ((H s+ k=gs )T 1 )dx
N RY [x|P|x — EJpal®) [Pl — E[PP(®)
dx

+ (g )" uPP 3.11)

Y 7 fx— & [P0
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For a,b > 0 and 7 > 1, the following elementary inequality holds:
0< (a+b)"—a"<C(d™ 'b+b"),

where C = C(7) > 0 is some constant. From the assumption N > p + 1 it follows that

b)~ai) blA)=a(2) | _(N—

(G )" ”_ !
b ol — €177
b(2)—a(2) (N—=p)

I i 0 s A

IXIP \x—ilf’”

b(A)—a(r) ?L) a(A )L) (2 N
<( +x— é‘ ) (\x £ ) p>
(M% T L

T A
<|x é‘ e l)ub(l)ga(x) _|_‘u17(h(7t)7a(k))>
B b(A)—a(A)
c(“ P gy )
|x|P \x g|pb®) M

b(A)—a(A) b(A)=a(A)

i (I e é\ )~V m)
|x|P |x — E|Pb(A) .

X

+

(3.12)

If u — 0, there follows that
b(2)—a?) ,  b(2)—a2) N
I (R g

/RN |x|1’ ‘x €|pb _bA)— (l))(N p—1)

b(A)—a(A) dx
SCus o P
—&[> L x<2yg) [x[P

dx

c % / dx
g x=& 1> 5L, j>21g] [P PPR) R (B(R)—a(d)

% N ldr

(b(A)=a(2))(N=p=1) b(A)—a(r) \N—
0 ppbA)- 5 (14r 53 )N b

+ CpN-rhR)

b(A)—a(A)
=0u 3§ )=o(l) as u—0.

By the same arguments we also have
Mﬁ(b(/l)fa(k))(“bm S x— 5‘ B )) (N—p)
RV el x — & o)

From (3.11) and (3.12) we deduce that

dx=o0(1) as u—0.

/ ‘Zu‘p x> (0 )P uPP L—ko(u”ﬁ)
A P TP '
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If b(A) < % and u — 0, from (1.8) and by the similar argument we have

/ |Zu‘p < (0 N)p‘upﬁ/ L_,_o(‘upﬁ).
e e+ 27 RY [x|P|x — &[pt)

On the other hand, the function
@)= [ s
= ———dx
¢ Y [P [x— E[PP)
is invariant by rotation. Furthermore,

(&) =0t ) =n"rP (&), ¥n >0,

9(&) = (IE1(E/IEN) =577 o(&/1E]) = &I P g(er).

Thus the proof of the lemma is complete.

LEMMA 3.2. Suppose (74), N >max{p? p+1} and j € {1,2,--- k}. Assume
that one of the following conditions is satisfied:
k A

(i) 0<A; <A* and —a

>0,
i£ji=1 |ai
— ! Y P k NYZE

‘ “ 0.
S olai—aiPPi L2 lai— )PP

Then A <S(Aj).

Proof. TFO<A;< A and u — 0, from Lemma 3.1 it follows that

4 (x—a)|P
AQ/RN(\VZ“ x—aj)| Z)L e I )dx

~ |x — a;|P
Aj |Z,uj(x)‘p ‘Z,u
=/N<\Vzu’(X)\”—M g ) o Y [
R x| ,7,g,,1 R |x+a, a,\
%
= S(A / 4 “ —————dx+ o(1)
l#” L Jmy |x—|—aj—al\1’

Cu( 2 A

i£)i=1 |ai —ajlP
Cu? |lnu| (Aj + o(1)), A; =A%,
CuPPi(Aj + o(1)), A* < Aj < A

+o (1)),0</1,<)L*,
< S(A) —

Under the assumption either (i) or (if), we have that A < S(4;).
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Proof of Theorem 1.1.  Let {u,} C D"P(R") be a minimizing sequence for A. By
the homogeneity of the quotient we can assume that [pn |1y, |P" = 1. From the Ekeland’s
variational principle we can assume that the sequence has the Palais-Smale property:

k Al P2
o(vll) = /R Vi [P, Vvdx— Y, /R 4?2t
i=1

|x — ai|P
Hence J'(u,) — 0 in D~1'P(RY) and J(u,) — +A. Note that S(1) is strictly decreas-
ing with respect to A . By (%) and Lemma 3. 2 we have

A<S() <S(hr) < <S(A1), S(A) <S(A), S(Ak) < S(0).

Consequently,

dx—A/ |un\1’*72unvdx.
RN

A< min{S(O), S(A), S(A2), -+, S(Ak), S(i)},
A< AT (min{S(0), S(h), S(), -+, (), S} )7

By Lemma 2.1 we conclude that {u,} has a subsequence converging strongly to some
ug € DVP(RN). Moreover, J(ug) = +A. Thus ug achieves the infimum in (1.9). From
the fact that J(ug) = J(Juo|) it follows that |ug| is also a minimizer in (1.9) and therefore

vo = AP*=7 |ug| is a nonnegative solution of (1.1). By the maximum principle [20], we
have vp > 0 in RV \ {a},ay,--,a;}. The proof of Theorem 1.1 is complete. O

4. Proof of Theorem 1.2
In order to prove Theorem 1.2, we first establish several lemmas.

LEMMA 4.1. Let zﬁ (x) be the function defined as in (3.6). Thenforany & € RV,
A €(0,A) and u — +oo we have
A

Al A E 1 A
/RN |x+§‘pdx—/RN o dx+0(1)—/RN o). @

Proof. Setting x = uy, we have

2 » A(X\|P A

75 (x < !
/ |z ()] dx:“p—zv/ de:/ |Zl(y§>| dy. 4.2)
R v+ &P S A

Note that |%\ — 0 as u — co. By the continuity property of convolution and density
arguments we have

A 2 A
/RN k) (y)lpdy:/RN |zt O)IP dy + o(1) = /RN ‘ZM(Y)V?dy—i—O(l). (4.3)

y+ &P [P [P

From (4.2) and (4.3) we can reach the desired conclusion (4.1).
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LEMMA 4.2. Assume that a; €RY, A, e R,i=1,2,---.,k, and A € (0, /l_) is de-
finedasin (3.1). Then A < S(A).

Proof. By Lemma 4.1, as u large enough we have

)

e (o (v B0 ()
- (/RN <| u\” |“|L )dx> (/RN |Zﬁ|p*dx>;+o(l):S(i) + o(1).

Taking 4 — +-co we can conclude the lemma.

LEMMA 4.3. Assume that ; >0, i=1,2,---.k and A <A. Then

A=S(A). (4.4)
Proof. Forany a € RY uc D"P(RV) and u >0 a.e. in RV, we have [21]:
2 *(.\|P"
/RNM dx = /RN |u* (x)|7 dx, (4.5)

fo ﬁdmAN\u*(x>|P((|xia‘)*)pdx,

where u* = inf{t > 0: [{y € RV, u(y) > t}| < wy|x|"} is the Schwarz symmetrization
of u and |-| is the Lebesgue measure of R, @y is the volume of the unit ball in RY .
Direct calculation shows that 1 1
*
(\x—a|> T

14 * )4
/ A P / el ) (4.6)
RN |x—a‘1’ RN |x|P

From the Pdlya-Szego inequality it follows that

Consequently,

[Vu* |Pdx < |Vu|Pdx. 4.7
RN RN

Thus for all u € D'"?(RV) and u > 0 a.e. in RV we have that

P
3

(L5 2 o) ([ Sorar)
></ (|V P *'u*p> x) (/Rwu*"*dxy'%w(i). (4.8)
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Note that the Rayleigh quotient above remains unchanged when replacing u with |u].

Thus we have
k
/ < Z 1 [x — a,\l’>
A= inf

ueDLP(RN )\ {0} 40 .\
eDlP(BY)\ (0}, </updx)
]RN

From (4.8) it follows that A > § (;1), which together with Lemma 4.2 implies that (4.4)
holds.

Proof of Theorem 1.2. We argue by contradiction. Assume that the infimum in
(1.9) is attained by some ug € D'P(RY)\ {0} . Since |u| is also a minimizer in (1.9),
we may assume that up > 0 a.e. in RV and therefore the Schwarz symmetrization ;)
can be employed. From (4.5)-(4.8) we obtain

L
3

(/ (1Viol? - i ’l_”;Op) )(/RN”S*‘”)_”
> (/ (1925l — |”(|’L >dx> (/RN u3|p*dx)’)p* >S(). (4.9)

From Lemma 4.3 we deduce that all inequalities in (4.9) are indeed equalities. In par-

ticular we have:
P
Vi |P — A |”3‘p dx = S(A 7 ax ) 4.10
RN U x=S(4) RNWO\ X (4.10)

/( Vito|? — Ek: l‘p>dx—/ (\V 5P — |”(|’L )dx. @.11)

Thus from (4.6), (4.7) and (4.11) it follows that

koAb o |ug|?
p r 0 0
Og/RN\Vu(ﬂ dx— / [Vug| dx—2| —al R <0.
Therefore
/ |Vu0\1’dx=/ |Vug|Pdx. (4.12)
RV RN

By (4.10) we infer that u) is a minimizer of § (1) and solves the equation (1.4) with a =
0 and A = A. From [1] it follows that u;; must belongs to the family of u~%U, (M)

for some 1 >0 and A = A, where U . 1s defined as in (1.5). From the fact that u*(|x])
is strictly decreasing we have

| {x € RV| Vg (x) = 0}| = (4.13)



GROUND STATES OF THE QUASILINEAR PROBLEMS 365

By (4.12) and (4.13) we conclude that there exists some point xg € RN such that
uo = u§(- —xo) [3]. Thus up is spherically symmetric with respect to xo. Since ug

1
isa minimizer in (1.9), vo = AP"~Puy is a solution of the problem (1.1). Consequently,
21_ 1 ‘x @ | > must be spherically symmetric with respect to xq, which gives a contradic-

tion.

Therefore the infimum in (1.9) cannot be achieved. The proof of Theorem 1.2 is

complete. O
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