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REGULARITY FOR THE NAVIER-STOKES-FOURIER SYSTEM

LUIsA CONSIGLIERI

(Communicated by J.-M. Rakotoson)

Abstract. We prove the existence of strong 2-dimensional solutions for two Cauchy-Dirichlet
problems to the Navier-Stokes-Fourier system which characterizes the Newtonian fluids under
heat-conducting effects. The nonstationary Navier-Stokes system for an incompressible homo-
geneous fluid with temperature dependent viscosity is completed by the equation of balance of
energy which includes the term of dissipative heating. The regularity of solutions to the prob-
lems under study is proved through compactness methods and fixed point arguments, instead
assuming the existence of weak solutions to the problems.

1. Introduction

Let Q C R? be a bounded open domain sufficiently regular and 7 > 0. Let us
consider the Cauchy-Dirichlet problem in the following form:

du+ (u-Vyu—div(u(0)Du) =f—Vp in Qr :=Qx]0,T],

diva=0 inQr; (D)

9,0 +u-V0 —div(k(0)V0) = u(0)|Dul*+¢g in Qr, )
u’t:O = U, 6|[:0 - 60, in Q, (3)

u=u, 6=20, on dQx]0,T], 4)

where u denotes the velocity of the fluid and Du = %(Vu + VuT), 0 the temperature,
p the pressure, u the viscosity, k the thermal conductivity, f denotes the given external
body forces and g the heat source. In the present work the product of two tensors is
given by D : T = D;;7;;, under the Einstein convention, and the norm by ID|>?=D:D.

The Navier-Stokes-Fourier system arises from fluid thermomechanics. In fact, it is
constituted by momentum and energy equations when the constitutive relations for the
Cauchy stress and heat flux are assumed linear. The density is constant and assumed
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equal to one. The initial conditions are given in (3) and we assume Dirichlet bound-
ary conditions in (4). For the sake of clarity we found convenient that the boundary
conditions are taken to be homogeneous,

u=0 and 6=0. )
The abstract mathematical viscosity can be illustrated with Arrhenius law:

() = pgeol/0=1/0/R
where Lo, Eg, 0, are constants of reference and R is the gas constant.

In the seventies, Lauder and Spalding proposed the k — € model (it consists of two
equations for the turbulence kinetic energy & and the rate of dissipation € of the turbu-
lent energy) to describe the mean of a turbulence flow. Unfortunately, the turbulence is
essentially a three dimensional phenomenon and it is not clear that this model produces
physically relevant results (a positive energy, for example). Despite the fact that the
validity of k — & model is not universal, it presents a good compromise between sim-
plicity and generality (see [18]). In this context, the equations (1) represent the averaged
Navier-Stokes equation in which u, 7 and f are the mean values of velocity, pressure
and external forces, respectively, the viscosity is the eddy viscosity, and the equation
(2) represents the k — & model, that is, 6 denotes the mean turbulent kinetic energy and
g=—0|60] 1/2 denoting the Navier-Stokes turbulence. More physical motivation can be
found in [1, 3] for instance.

Several authors proved existence of solutions to similar mathematical problems
in fluid thermomechanics (see for example [4, 8, 13, 16, 19, 23] and the references
therein). The existence of at least a weak solution is given in [6] for different consti-
tutive relations in the Cauchy stress and in the Fourier heat flux. We refer to [7] for
the existence of strong and classical solutions to the stationary coupled system under
general constitutive relations.

Although the continuity of the coefficients, to prove the regularity of solution to
the coupled system, additional terms appear which invalidate the direct application of
known regularity results ([9, 11, 12, 15, 17, 25] between others). Notice that if the
velocity u is a weak solution to (1) in the sense of u € L2(0,T; H}(Q)), the Joule ef-
fect term w(0)|Du|? belongs to L'(Qr) and the existence of a solution of the energy
equation (2) requires L -theory (see [5, 6] and the references therein). We wish to em-
phasize that at the present work we do not show regularity for every weak solution, we
prove existence results under smallness restrictions only on the ratio between the deriva-
tives of the viscosity and the thermal conductivity functions and their lower bounds (cf.
(12)). Indeed, here we prove that the equation (which is satisfied by the solution) is
valid almost everywhere in Qr, which means that the strong solutions coincide by the
uniqueness result with the weak solutions in a smaller space.

The outline of the paper is as follows. In next section we present the appropriate
functional framework and we state two main existence results and the corresponding
uniqueness without any additional assumption on the data. First existence result is
established under a given heat-production profile g = g(x,#) and the second one is
given for g = —60|0|/2. In Section 3, we recall and prove some technical results for
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any dimension n > 2. In Section 4, we deal with the apriori estimates. Sections 5 and 6
are devoted to the proofs of the solvability of the problems under study. The uniqueness
results are proved in Section 7.

2. Assumptions and main results

Let Q C R? be a bounded open domain with sufficiently smooth boundary 9Q.
In the framework of Lebesgue and Sobolev spaces, we introduce for g > 1, see [11],

JH(Q)={ue WH(Q): V-u=0inQ},

where the vector spaces of vector-valued or tensor-valued functions are denoted by
bold. It is known that J5*(Q) = J14(Q) N W(Q) with norm

I lee=1V-lsg-

We will use the following Banach spaces, for 1 < g,r < o=, see [12],

LY (Qr)=L"(0,T;L1(Q))
W, 0(Qr) = L4(0,T;W'4(Q))
W, (0r) = L7(0, T;W"9(Q)) nW!4(0,T; LY(Q))

W' (Qr) = L9(0, T W9(Q)) nW9(0, T3 L7(Q)).

We recall that the following continuous inclusion qu’l (Qr) — C5%(Q7) only occurs
ifg>4/(2—k) and 0 < o <2—k—4/q. This means for k =0 that g > 2, i.e., the
Banach space W22 A (Qr) is not embedded in the Banach space of Hoélder continuous
functions with exponent « in the x-variables and /2 in the #-variable. Note that
1(0) makes sense for all u € W,}’I(QT) since Wq“(QT) — C([0,T);L1(Q)).

The following assertions on data are assumed as well as the following assumptions
on the physical parameters appearing in the equations are established:

o f:Qr — R? is given such that f € L?(Qr) and
ot € L*(Qr); (6)
o u,k:R — R are functions of class C! such that

0 <o

< M2, Vs €R, @)
0<ky<

u(s) <, [w'(s)] <
k | <k, VsER; ®)

<
(s) <k, [K'(s)

o up € Jy*(Q)NH(Q) and 6y € H} (Q)NH?(Q) satisty the following compatibility
conditions
Vuy-n=0, V6O-n=0, onodQ, 9)

where n denotes the unit outward normal to the boundary dQ.
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The system (1)-(5) has the variational formulation
Jo, O vdxdt + [, <,u(6)Du :Dv+ (u-V)u- v) dxdt = [, f-vdxdt,

Vv e L2(0,T;J5%(Q)), u|,_, =uoin Q;

t=0
Jo, (B0 nxd + [, (k(e)ve-vn +u-V6n>dxdt — J,, <u(6)|Du\2+g>ndxdt7
vn € L*(0,T;Hy(Q)), 0],_, = 60 in Q.

(10)
REMARK 2.1. Forall u,v J(l)’z(Q), the convective term verifies
/(u-V)u-de:/Vu:v®udx:/(Vu)T:u®de:2/ Du:u®vdx.
Q Q Q Q

THEOREM 2.1. Suppose that (6)-(9) be fulfilled. Let g: Qr — R be such that
g €L*(0r) and

dg € L*(Qr). (11)
Under the assumption that
2 4 k4 k4 4
'u—z, “—23, —%, —g, and ) are sufficiently small, (12)
Uo  Ug k() k() ko

then the problem (10) admits, at least, one solution
(u,0) € L*(0,T;J5%(Q)) x L*(0,T; Hy (),

which is strong, i.e.
(u,0) € W' (0r) x W) (Qr).

Moreover, such solution is Holder continuous, (u,0) € C%%(Q7) x C%%(Q7), for some
o>0.

REMARK 2.2. The smallness of the data in (12) is not explicitly given, because
there does not exist a unique expression. For instance, we can take

o 285 26

oo 2 2%k w1
“0’2‘“0’ k(z)a k?),

d g o
M Sk SR
with R = (1,1) + 2(1,1,1,1,1) (cf. (36)). Even more the estimative functions
stated in Section 4 depend on the application of the Young’s inequality ab < a"/r+
b*/s, for a,b >0 and r,s > 1 such that 1/r+1/s = 1. Notice that (12) is verified if
the viscosity and thermal conductivity are constants, i.e. Uy =k, =0.

It is known that the pressure is recovered as a distribution from the variational
formulation thanks to the De Rham Theorem [14]. Using Theorem 2.1 we can rewrite
(1) as

Vp=f—du—(u-V)u+u'(6)VODu+ u(6)Au € L?(Qr).
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THEOREM 2.2. Suppose that (6)-(9) and (12) be fulfilled. Under g = —816|'/?,
the problem (10) admits, at least, one strong solution. Moreover, such solution is

Hélder continuous, and 6 € W (Qr), for all r < 3.

Finally, let us state the uniqueness result.

THEOREM 2.3. The solutions obtained in Theorem 2.1 and 2.2 are unique.

Henceforth we denote by C every positive constant depending on the data, but not
on the unknown functions u, p or 6.

3. Technical results

Here we assume that Q C R", for any dimension n > 2. Let us begin to recall
two important results. Indeed their apphcatlon in the present work will be only on the
two-dimensional case.

LEMMA 3.1. (interpolative inequalities [21]) The interpolative inequalities hold

(2—n)g+2n (24n)g—2n

weH (Q), [[Wiga<IVhe™ [VVIhe" | (13)
1.1
. (zzqﬂz )) e
r+ I n
Vv € Hy(Q), <V 7 IVl ™

In particular, L' (Qr) NL*(0,T:H" (Q)) — L*"*/"(Qr) and

| 2q+(22—q)n (% _ %)n
WeH;(Q), [Vlge<Ivlo™ HVVHQ,Q ; (14)
v e HY(Q), "+2 HVVHM (15)

Taking n = 2 in Lemma 3.1 we obtain L>*(Q7)NL*(0,T;H' (Q)) — L*(Qr),
and if we take n = 3 we have L>*(Q7) NL*(0,T:H'(Q)) — L'%3(Qr).

LEMMA 3.2. ([20, Lemma4]) Let 6 >0, o« >0 and g > 1. For any function
v € L=(0,T;C%%(Q)) verifying dv € LI(Qr), there exists a constant C > 0 such that

i) = v(x,12)] < CV =0 ooy + 13vlg0r) I — .

for every x € Bg and every t1,t; €]0,T|[, where B =o(q—1)/(ag+n(g—1)). In
particular, v is Holder continuous in Qr.

Next let us prove a crucial embedding proposition.

PROPOSITION 3.1. Assuming v € L24=V(Qr), for any q > 2, and dyv € L*(Qr)
then v belongsto L=(0,T;L7(Q)).
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Proof. Let us argue as in [10] writing

T d
0l = [ vt |’1ds—q/| )72 (,5)av (-, 5)ds

Integrating with respect to the space variable and using the Schwarz’s inequality, it

follows
Wsa® <q [ Iy

Yat) . 1/2
- 2
<q</0 ||v2(Z_1)’st> (/O ayv||2’9ds) .

Then we can conclude

sup V]2 (1) <alvZ. ) o

0<e<T

Finally, let us prove the following regularity result.

PROPOSITION 3.2. Assuming v € L>*(Qr)NL*(0,T;H'(Q)) and d,v € L*(Qr)
then v belongs to L1(Qr), for any q < 2(n+1)/(n—1). Moreover, v belongs to
L(Qr), forany r <2n/(n—1).

Proof. From Lemma 3.1, we have v e L2("+2)/ "(Qr) and we apply Proposition
3.1 with 2(¢—1)=2(n+2)/n,ie., g=1+ (n+2)/n. Next, using Lemma 3.1 with
v e LI t2)/ne(0ryNL2(0,T; H (Q)) we obtain v € L2 H1+(+2)/m/n(0)  Define

n+2 _nt+1l+4qo
n ’ an= n

q0 =

and arguing by iteration, we apply Proposition 3.1 with 2(g — 1) = 2¢y, i.e., g =1+
gx. Now, using Lemma 3.1 with v € L'T9%>=(Q7)NL*(0,T;H'(Q)) we obtain v €

n+l+qp
L2 —

m (Or).

Thus defining by recurrence

n+1+4 gy
gk+1 = Y keN,

this sequence is monotone increasing, bounded onto ]0,(n+ 1)/(n—1)[ and its limit
is ¢ = (n+1)/(n— 1), which concludes the first statement of the proof of Proposition
3.2.

Again applying Proposition 3.1 with 2(r—1) =g <2(n+1)/(n—1), ie., r=
q/2+1<2n/(n—1),we get veLI/*1=(Qr) if g > 2.
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4. Apriori estimates

The main result theorems 2.1 and 2.2 are proved using the following fixed point
argument. We fix & € W, (QT) and we consider the following auxiliary problems:

<a’u’V>(J(1)‘2(Q))’><J(1)‘2(Q)+/Q (u(&)Du:Dv—i—v@u:Vu) dx

:/f.vdx, ac.1€[0,T], Welt¥(Q), u|,_,=uyinQ; (16)
A _

(00,1110t +/ Ve-vn+u~ven)dx
—/ \Du|2+g)ndx ac.1€[0,T], ¥ € HY(Q), 0] _,=0inQ. (7

In this section, we assume the existence of solutions to (16)-(17) and we prove
some apriori estimates. In order to emphasize the key ideas, in the sequel the apriori
estimates technique is taken care of (see Remark 4.1).

PROPOSITION 4.1. Under the assumptions £ € L>(Qr), (7) and uy € J(l)’z(Q),
if VE € LY(Qr) then any possible solution u of (16) is such that Vu belongs to a
bounded set of L=(0,T;L?(Q)) OLZ(O,T;J(I)’Z(Q)) depending on & in the sense of
(19) and (20), respectively. Moreover, it satisfies

l
IVull} o, < ff(z—ljgl ). (18)
0

with & the positive strictly increasing function on its argument defined by

4 4 2
Z(d) = — (T||Vuo|? o + F(d);
(d) “O( [Vuoll2 0 m ) F(d)

F(d) = exp[d](1+dexpld]).
Proof. We choose v = Au as a test function in (16) (cf. Remark 4.1), then

/ 9, (Vu) -Vudx+/ {W(E)VE @ Du+ u(E)V*u} : Viudx
Q Q
—/ Au®u: Vudx—/ f-Audx.
Q Q
Here V2u= (J;D;;) is a third order tensor, with D;; = ((dju;+du;)/2),and VE®@Du:
V2u = déD; 0kD;; under the Einstein convention.

Using the assumption (7) and the property of the convective term vanishes in the
two dimensional space (cf. [17], for instance) we have

u\2dx<u2/ IVE®Du: V2u|dx+/ f- Au|dx.

2dt
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Applying the Holder’s inequality and integrating in time for each ¢ €]0, T [, it follows

1 '
—HV“H%.Q(I)‘FMO/ / |V2u|?dxds
2 i 0 JQ

1
< =|[Vu(0
J119u(0)

t 1
Jatta [ [VElsalVulsal Vulaads+ [ 820 Vul2ads

Applying Lemma 3.1, (15) with n =2 and v = Vu, to the second term on right hand
side of the above inequality and successively using the Young’s inequality, we obtain

1 t 1 wh ot
SIVulBa()+ ko [ IVulBads < S1Vu(0) 3 ads+ L2 [ 9] ol Vul} ads
2 0 2 4ug Jo
3ug [* 2 gt o [
+220 [IVulBads+ = [ I3 ads+ 5 [ |V%ul3 ads.
4 Jo Uo Jo 8 Jo
Thus, we deduce

1 Mo [
SIVulBa@)+5 [ 1v2ul3 gds

2 t

2

+—/ f
207 oH

Thus we conclude the estimate in L*(0,7;L?(Q)) with help of the Gronwall’s
lemma

1
< =V
2H Uo

4 t
2 ) 4 2
ds+—/ \Y Vu ds.
2.Q 4“8 o | 5”4,9” Hz,sz

4
ess sup [[Vu|3q < (TIIVUO||5,9+%Hf S0r)exp[#4(8)] (19)

t€[0,T]
I 4
where ¢(&) = mHV’éHAQT'
Next the estimate in L2(0,7;H}(Q)) follows
2112 4 2 42
IVulz,0, < %(TIIVllollz,mL %Hsz,Q,)(l +9(S)exp[@(S)]).  (20)
Finally applying Lemma 3.1, (15) with n =2 and v = Vu, Vu belonging to
L%(0,T;H)(Q) NL2=(Qr) implies (18).

REMARK 4.1. The correctness of the test function should be understood as local,
after flattening the boundary, and by the well-known method of tangential differential
quotients due to Nirenberg, i.e. making use of the operator

Tipv(x,t) =v(x+he,t), 1<i<n—1,heR,

and e; being the unit vector in the direction x; then, for 4 # 0 small enough, we take

Tin+Ti—h—2
)"
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Next applying discrete integration by parts, using the fact that the adjoint of the operator
T, 1S T; _p, the square integrability to all second derivatives of u follows from the
passage to the limit as / tends to zero.

LEMMA 4.1. Under the assumptions of Proposition 4.1, (8), 6y € L*(Q) and
g € L*(Qr), then any possible solution (u,0) of (16)-(17) satisfies

1 2 2
< — ; (2D

“0( QT)

2
1 2 wh
Ollio, < — (Tl60l3a+— (Ui F (=% 2 : 22
(0ligr < 1 (T1oBa+ 2 (w722 )+ el @)
Proof. The energy inequalities hold

(23)

! L 2
030 +k [ 10 Bads < [00l30+¢ [ (ul o) ds

To prove the estimates in L™(0,T;L?(Q)) N L*(0,T;H}(Q)) we do simultaneously as
in standard manner. Using (15) and (18) we obtain (21)-(22).

REMARK 4.2. If g = —6|0|'/? the energy inequality on 6 given in the proof of
Lemma 4.1 can be simplified since

/ngxz—/ 16]'/26%dx < 0.
Q Q

Consequently (22) reads

1
ol or < . (

PROPOSITION 4.2. Under the assumptions of Lemma 4.1, and 6y € Hj(Q), if

VE € L*(Qr) then any possible solution 0 of (17) is such that VO belongs to a

bounded set of L=(0,T;L?(Q))NL*(0,T;H}(Q)) depending on & in the sense of (26)
and (27), respectively. Moreover, it satisfies

) (25)

>)2

4 2
A ) 24
LDV o)) en

4 2/
IVO|14,, < 22 2||
ST 2.“()

where F€ is defined, for all d,d; € R, by

4
k—(ufﬁ(dn
0

4
H(dy,dy) = % (TV60||%,Q+

F(dy+—= (TH“0||2Q+ ”fHZQT) ),

2
Mok

with % and F given as in Proposition 4.1.
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Proof. Proceeding as in the proof of Proposition 4.1, we choose 1 = A0 as a test
function in (17), then we have

1 ! 1
3IV0Bal)+k [ IV20]30ds < 5[VO(0) B

t
+ky A 9||27ggds

t
s [ [VulEol V2

denoting by V? the tensor (9;;) of second order spatial derivatives.
Applying interpolation (15) and the Young’s inequality, we deduce

1 t 1
§||V9||§.g(t)+ko/ IV26]3 qds < —HV90||§,Q

+4llc3/(

3k0
/||V29H2Qd5+ - [ WhIvuligds+ glBa) s+ [ V013 qs

@) VO[3 gds

Using (18) and (21), from the Gronwall’s lemma we conclude

ess sup ||V9||§’Q

t€[0,T]
2 A 4
< (TIV8 30t 07 (L2 VEg,) Newls@)] @8
ko Z‘LLO
where y 5
2k2 2
#(8)= TIVEl o0+ o (Tl o110, )
Then we get
4 4 i
V2012, < - 2 At g 4 2 )
IV20/Bo, < g (TIV0IBa-+ 087 (S IV )+ slBoy)

(1+.7(&)exp[7(S)]) 27
and consequently (25).

REMARK 4.3. For g = —0|60]|'/2, the proof of Proposition 4.2 is still valid if we
take into account that

1/2

ollAb]l2.0.

Consequently, using (24) we conclude (25) with ||g||2,0, replaced by

4
(RN (T 6oli3.0+ 5;1) Z( !jg IVEI3 0,)) /k0)*.
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PROPOSITION 4.3. Under the assumptions (6)-(7) and (9), if & € W41"1(QT)
such that VE(0) = V6 then any solution u of (16) is such that dyu belongs to a
bounded set of L=(0,T;L?*(Q))NL*(0,T;HL(Q)) depending on & in the sense of (30)
and (31), respectively. Moreover, it satisfies

|dru

s <2 (L velt o o) (28)
4,07 X 2“8 4~,QT"uO 15 114,01

where & is defined, for all dy,d, € R, by

1 2 ?
P(dy,dp) = % (TA2 + ||atf||%7QT +dp + Z.—?ﬁ(dl)) F(),

2
2,07 |

with F and F given as in Proposition 4.1, and A denoting some constant depending
on Wi, W, [[Vaol[(1y2.0, [[VOollaa and [[£(0)]2.q-

2
g =T <T110||%,g+

1
—||f
g Ho

Proof. Differentiating (16) with respect to time and choosing v = dyu as a test
function (cf. Remark 4.4), and using the orthogonality property of the convective term
(cf. [11, p. 128]), we obtain

1d
Sl [ W/(E)aEDu+u(E)aDu]: Dudx
:/ H,Zuatudx—k/ 0 [u(&)Du] : Do,udx
Q Q
= —/ 8;u®8tu:Vudx+/ of-dudx.
Q Q

Using the assumption (7), the Holder’s inequality and integrating in time for each ¢ €
10, T, it follows

1
§7Q+/ [EX:
0

1
VulsalVaulaods+ [ aul}alva

1 ? 1
Sloulo+uo [ [ [vauPdsds < 31au()
2 ’ 0 Jo 2

1
1) /0 [

209l 0ds

40 2.0ds. (29)

Let us study separately each term of the right hand side of the above inequality.

First term. To estimate || d;u(0)|3 o, we choose v = du(0) as a test function in (16) for
the particular case t = 0. Thus, we observe that

||u’(O)H%79+/Qu’(O)®u0:Vuodx—/gf(O)n’(O)dx

= —/Qy(é(O))Duo : Du’ (0)dx.



594 LUISA CONSIGLIERI

Using the Green’s formula and (9) it follows
W (0)]2 g+ / ' (0) @ up : Vug dx— / £(0) - u/(0)dx
' Q Q

= /Qﬂl(é(o))Duo 1 VE(0) @u'(0)dx + /QM(&(O))AUO'“/(OWX-
Applying the Holder’s inequality, we get
[’ (0)[|2,0 < 2| V6o l4.alVuollao+ il Vuoll (1) 2.0+
+luoll4.elVuollse + [If(0) 2,0 := A.

Note that f € L?(Qr) and o,f € L?(Qr) then £ € C([0,T];L?(Q)).
Second term. It is sufficient the use of the Young’s inequality.
Third term. Applying the Young’s inequality, it follows:

2
u
2[0S [laelVullaol Voule < ﬁ{ll&‘zélligﬂL IVull o}

40
Ho
+ ZHV@“H%,Q-

Forth term. Applying the interpolation inequality (15), with n = 2 and v = dyu, and
using the Young’s inequality, it follows

|dru

421,Q||V“ 2.0 < |9l 0lVaul, ol Vull2o

1 Mo
< —||Vull3 oI5 o+ == ||Voul3 .
“OH ull2 olldull3 o+ n Vol

Substituting each calculation in (29), we get
2 ! 2 2 ! 2
3o+ s [ (Voul3ads <42+ [ a1 qds

2 t 1
‘l:lo2 / i i / < .qu : ) :

) Vu ds 1 Vu du ds.
A (|| 15”4,9 | ||4,Q) A [Vull30 | 9]z 0

From the Gronwall’s lemma and using (18) and (23), we conclude that

ess sup Ha[uH%7Q < {TA2—|—||9,fH%7QT
t€[0,T]

2 4
“2( 4 (M 4 )]
+—=( |l + F(—=||V exple]. 30
o 19:€ 3.0, (2H3H Sllsg,) )| exple].  (30)
Subsequently we obtain that

1
IVaulBo, < o [74% + 19830,

13 T
+ o (10 g+ 7 IVl o)) | 1+ exler)) - 3D

and that d;u verifies (28).
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REMARK 4.4. To differentiate (16) with respect to the variable ¢ and the choice
of the test function have meaning in the following sense. We first form the difference
ratio of the identity with respect to ¢, choose as a test function the difference ratio of
the solution with respect to 7, and then pass to the limit as Ar — 0. Or equivalently,
the argument of Remark 4.1 can be repeated.

PROPOSITION 4.4. Under the assumptions (6)-(9) and (11), if & € W41’1(QT)
such that VE(0) = V6 any solution 0 given at Proposition 4.2 is such that 0,0 be-
longs to L*(0,T;H} (Q))NL™(0,T;L*(Q)). In particular, the following estimate holds

264
kg

Ve

4
u

101130, < 2(55 11V o, tor
2uy

2k3

1 4 s B
—=||a — 19 —=1|0,
P el L

i) G2
with 2 the positive strictly increasing function on its arguments defined by
2(dy,dy,d3,dy,ds) = (TB> +dy+ A (dy,dy)

1 2
+ —“ (TA2—|— Hc?,fH%QT +ds+ —Zz ﬁ(dﬁ) (1+ o exp|])
0 0

1
F(dy) +ds),

+ P(d1,ds) + F () + 1108l 0r)F (T + 5

with correspondent estimative functions according to Propositions 4.1, 4.2, 4.3, and
B denoting some constant depending on ki, ka, 1, [[Vuollag, [[V6ol1)20 and
lg(0)||2.0. Moreover, VO belongs to L(Qr) for any g < 6.

Proof. We recall the equation in the sense of distributions
%0 +u-VO—V-(k(E)VO) = u(&)|Dul*+ g in Or.
Differentiating the above equation with respect to time, we deduce
20—V - (k(E)AVO) =V - (K (E)EVH) —du-VO
—u-9,VO + 1/ (£)9,E|Duf* + u(&)2Du: g, Du+ 9,g. (33)

If multiply (33) by n = d,6, using the orthogonality property of the convective
term, after standard calculations it follows

5/O Eua,eumdwko/o /Q|va,9| dxds
t 1

</ /k’(g)a,gve.vatedde/ / -V, 0dxds
0 JQ 0 JQ

t !
+ / / (1 (E)0E |Duf? +2u(E)3Du : Du)d; Odxds+ / / 3126, 0dxds.
0 JQ 0 JQ
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Using the assumption (7) and the Holder’s inequality, we get
1 2 ' 2 1 2
§||8,6||27Q(t)+k0/0 V0|5 qds < EHate(O)Hz,g

t
+o [ 10€010]V0142]V90 0 ds

1
JAL
0
!

t
+2u A 9||27gds. (34)

Let us examine separately each term of RHS of the above inequality.
First term. Choosing 1 = ¢,0(0) as a test function in (17) for the particular case 1 =0
and applying (9), we obtain

10030+ [ w0-60'(0)dx— [ g(0)0'0)dx— [ u(E(0))iDuoP6'(0)dx
~ | K(E(©)V6y- VO'(0)dx = /Q (k(é(O))Aeo+k’<é<o>>\veo\2)6’<o>dx.

Consequently, we find

16"(0)|l2.2 < k1[I V6ol 1.2

8Ol

Note that g € L*(Qr) and d,g € L*(Qr) then g € C([0,T];L*(Q)).
Second and third terms. Applying the Young’s inequality, we have

k2|9 4.2 VO a0l VaBl20 < 31T+ 7 \

kzw 2va0130

Ol20 < Ellé’z@\\ig-

Forth term. Using interpolation inequality (15) and the Young’s inequality we get

2 2
0l15/al96155

uzllo, B0lls.0 < Ua2||0

4
u ko
4—;0||az e||%7g+z||vafe||%7g,

Fifth term. Using interpolation inequality (15) and the Young’s inequality we get

1/2 1/2
0ll5ala6ly g

i 0lls,0 < |
2
u ko
< 2| Voul3o+ —HVuIIZ‘,gH@GII%,g +—Vabq.
2 ko 4

Sixth term. It is sufficient the use of the Young’s inequality.
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Then, introducing all these terms in (34) we conclude
2 ko [ 2 2 2k§ ! 4 ' 4
3630+ [ IVa0Bads <52+ 22 [ [aEliads+ [ [VO]qds
0

t t 1 “4
+u? [ IVauBads+ [ (143 IVulia+ 22 10E )5 0) 106]3 ds
0 0 2k0 2k0

1 t t 1
5 [ 1ouliads+ [ 19uliads+ [ IagiBads.
0 0 0
Recalling Propositions 4.1, 4.2 and 4.3, we use the Gronwall’s lemma to obtain

2k3
kS

4
4,01

10:

ess sup [9013.q < explA(£)] (T +
t€[0,T]
263
o 2 IVE N, ) +iEIVanlLg,
0

w
-h%”( [IVE
2u3
1w s W 4 1w 4 2
+Z| =]V ,—=||2 +.7 | =V + |0, , (35
(25 IVElt o, S213E1 g, ) +7 (25 IVElLg, ) +1aslRg,). G5

with
= zZ “_g 4 4 4
BE)=T+ J(Z‘ugHV§”4,Q7)+“2Hal€H47QT /(2ko).
0

Applying (31) and this result in the last expression we conclude the desired result and
consequently (32).

Finally applying Proposition 4.2, VO belongs to L?(0,T;H' (Q))NL>(0,T;L*(Q)).
Since we also have 0,VO € L?(Qr) then Proposition 3.2 implies that VO belongs to
L4(Qr) forany g < 6.

REMARK 4.5. For g = —6|60|'/2, the result of Proposition 4.4 is still valid if in
its proof we take into account that

3
/a,ga,edxz——/ 16]1/219,62dx < 0.
Q 2Ja

PROPOSITION 4.5. Under the assumptions (7) and (11), if 0 is any solution
given at Proposition 4.4, then 9?0 belongs to L*(0,T;H™'(Q)).

Proof. Considering (33) and since we already proved that

duand VO € L*(Qr),
ue L7(0,T;L*(Q)) and 9,VO € L?(Q7),
Vu € L=(0,T;L*(Q)) and Vdu € L?(Qr),
\Vul? € L*(0,T;L*3(Q)),
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we have
920 —V- (K (E)A,EVO+K(E)VA0) € L*(0,T;L1(Q).

Taking the operator div: L?(Q) — H~!(Q), it permits to get
V- (K(E)A,EVO+K(E)VV,0) € L*(0,T:H 1 (Q)),
then it results that 970 € L*>(0,T;H~'(Q)).
PROPOSITION 4.6. Under the assumptions of Propositions 4.2, 4.3 and 4.4, any

solution 0 of (17) is such that 0,0 belongs to L(0,T;L*"%(Q)) for some & >0, and
consequently to L*+9(Qr).

Proof. In consequence of Proposition 4.5, 970 does notbelong in L?(Qr) and we
cannot apply the argument used in Proposition 4.4. Let us argue as in [2], multiplying
(33)by n = ,0|9,0|° and integrating over the space variable, we obtain

/8,268t6\8t6|5dx+(1+5)/(k(é)&tve +K(E)AEVO)-V(5,0]0,0]%)dx
+/ 3 (u Ve)ate\(?te\‘sdx—/ 3 ((&)|Dul )8t6\8t6|5dx+/Btg8t6|8t6| dx.

Applying the Holder’s inequality under the relations for the exponents

1 1-26 146 1 3-56 6 1 3
+ot———+5=1, 6<§ <<

=,

1
4 4 T 2 25" 10 "2

it follows

t
248 2 )
2+5/ dlua,euzimds+ko(1+5)/0 /Q|va,9| 10,0 dxds

1
<11+12+13+14+15+//atgatedxds,
0 JQ

with
= ka(1+8) [ 1€ 1sal VOl 250l V012020 ads,
b= [ 1900l 9614250l 40/ ds.
= [ TulsalVa0lal0]os .0l 0lads
e = 1t [ 19.€llallDuli 2 ald015E ds,
Is =20 | aDulhallDullsald0 ] 55,0013 ads
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From Proposition 4.4, 9,6 belongs to L?(0,T;H'(Q))NL~(0,T;L*(Q)) and VO be-
longs to LI(Qr) — L¥(-20)4(0r) « L4/ (1-20)4/3(Qr) for any g < 6. Conse-
quently, choosing § < 1/6 we obtain

ess sup H3r9||(2$,£z’
t€(0,T]
< |[9ulla,0,1VOla(1-25).4/3,0r€58 s[l(l)p]HatGHéB‘s»
te

I <110 |2.0:1IVOl4/(1-25) 4,07

observing that from Proposition 4.3 and Lemma 3.1, d;u belongs to L(0, T;H!(Q)) N
L*(0,T;L2(Q)) — L*(0r).

Thanks to Proposition 4.1, we get u € L(0,7;H!(Q)) — L=(0,T;L3(Q)), and
thanks to Proposition 4.4, we get 9,0 belongs to L2(0,T;H'(Q))NL>(0,T;L*(Q)) —
L'0/3=58).2(0r) forany 8 < 3/5. Then, we obtain

L < [ulfs e 07| 10:01l10/(3-55),2,0,€88 S[UP] ”819”3,9'
1€[0,T

Thanks to Propositions 4.1 and 3.2, Vu belongs to
L2(0,T;H' (Q)) NL=(0,T;L3(Q)) — L¥1-298/3(0p)

for any 0 < 1/6. Then, it follows

5
14<CHat§||4QTHV“||8/1 28),8/3,0r°8S S[UP HateHlJr

From Proposition 4.1, Vu belongs to L*(0,7;H'(Q)) N L~(0,T;L?(Q)). From
Proposition 4.3, d,u belongs to L?(0,T;H'(Q)) NL=(0,T;L?(Q)). In particular, ap-
plying Proposition 3.2 we have Vu € L’(Q7). From Proposition 4.4, ;6 belongs to
L2(0,T;HY(Q))NL=(0,T;L2(Q)) — L'0/G=38).10/3(0) for any § < 1/5. Then, we
obtain

19 Vull2,0,119:01l10/(3-55),10/3.0,€55 SHP] 100113 o-

t€(0,T

Therefore we conclude an estimate for 9,0 in L>*%=(Qr) and applying Lemma
3.1 we obtain L>*T9=(Q7)NL*(0,T;H (Q)) — L**9(Qr).

5. Proof of Theorem 2.1

In order to apply Schauder theorem, we build an operator .’ defined on W,"' (Qr),
which maps
EeK—u=u()—0 €W41’1(QT),

where K :={& € W41’1(QT) 1 VE(0) =V, |E|| <R}, and u and 6 are the solutions
to the problems (16) and (17), respectively.
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Step 1. Let us prove that .Z is a well defined mapping. For each & € W4l ’1(QT),
from the existence theory for the Navier-Stokes system there is a unique 2-dimensional
solution u € L=(0, T;L2(Q)) NL2(0,T;J3*(Q)) to (16), du € L2(0,T; (J;*(Q))) (see
for example [11, 14, 25]). Hence, thanks to Proposition 4.1 we have Vu € L4(QT).
Thus from the existence theory for the parabolic equations there is

0 € L=(0,T;L*(Q)) NL2(0,T; HA(Q)),

which is the unique solution to the problem (17) so that 9,0 € L?(0,T; H~'(Q)). Then,
Propositions 4.2 and 4.4 guarantee the sufficient regularity to obtain 6 € W41 1 (0r).

Step 2. From Propositions 4.2 and 4.4, £ maps the convex closed set K into
itself, choosing R > 0 such that

4 4 4 402 4 4
2k 2% 2%
R> H(A5R 2R+ 2(ELR 2R 2R Z2R J2R) (36)
Ko Ho ko Mo Ky 0

under the assumption (12).

Step 3. In order to prove that . is compact, we take a sequence &, weakly
convergentto & in W4l A (Qr), and corresponding solutions u,, and 6,, to the problems
(16) and (17), respectively. The estimates (25) and (32) infer that we can extract a
subsequence, still denoted by 6,,, such that

VO, — VO inL*(Qr), 0, — 3,0 in L*(Qr).

From Propositions 4.2 and 4.4, we have V6, and 9,V 6,, boundedin L?(0,7;H}(Q))
and L?(Qr), respectively. Moreover 9,6,, bounded in L*(0,T;H}(Q)) and from
Proposition 4.5 we get 976,, bounded in L?(0,T;H~'(Q)). Then by a compactness
result (cf. [22] or [24, p. 90]) we obtain

V6, — VO in L*(0,T;LI(Q)), g < oo,
0 0m — 3,0 in L*(0,T;LY(Q)), ¢ < -ce.

In order to apply these strong convergences we use Proposition 3.2 to V0, ob-
taining that it is bounded in L’ (Q7) and consequently

V6, — V6 in L*(0r).
Next using Proposition 4.6, it follows
060 — 0,0 in L*(Or).

Therefore we conclude that 6 is the limit solution to the problem (17).

In conclusion, Schauder Theorem guarantees the existence of at least one fixed
point and accordingly there exists a strong solution (u, 0) in the conditions of Theorem
2.1.

Finally let us prove that the strong solution is Holder continuous. From Proposition
4.1, Vu belongs to L?(0,T;H'(Q)) N L>(0,T;L*(Q)). From Proposition 4.3, dju
belongs to L2(0,T;H!(Q))NL>(0,T;L*(Q)). In particular, applying Proposition 3.1
we have Vu € L>*(Qr), that is, u belongs to L*(0, T;W(l)’3(§2)) s L2(0,T;CO%(Q))
for 0 < o < 1/3. Thus using Lemma 3.2 we conclude that u is Holder continuous.
Analogous for 0.
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6. Proof of Theorem 2.2

We argue as in the proof of Theorem 2.1. Let .Z be the operator which maps
EeKcW, (Qr)—u=u()~ 6w, (Qr),

where u and 6 are the solutions to the problems (16) and (17) with g replaced by
—0]6|'/2, respectively.

Proceeding as in steps 1 and 2, the operator . is well defined considering Re-
marks 4.3 and 4.5. Consequently the argument of the proof of Theorem 2.1 can be
followed mutatis mutandis. In particular, we have, for all g <6,

VO, [Vu]> € LY?(Qr); u-VO e L1(Qr),

the corresponding term to the heat production |0|/20 € L*(Qr) and 6 is Hélder con-
tinuous. Thus, applying the regularity theory for the heat equation

00 —k(0)AO =K' (0)|VO> + u(6)|Du)* —|6]"/?60 —u-VO in Qr,

2,
we find that 6 € Wq/é(QT).

7. Uniqueness (Proof of Theorem 2.3)

7.1. Uniqueness in Theorem 2.1

We proceed in a classical manner. We suppose the existence of two solutions
(up,0;) and (uy,6;) and we define u =u; —uy and 0 = 6; — 6,. So that (u,0)
verifies the following variational formulation
Jodm-vdx+ o u(61)Du: Dvdx = [o(u(62) — u(6;))Duy : Dvdx

—Jo (Vuz :vu+Vu: v®u1>dx
ae.1€[0,7] Wwely*(Q),ul_ =0ine;
Jo(@:0)ndx+ [ k(61)VO -Vndx = [o(k(6,) —k(61))VO, - Vndx
. (u-V62+u1 -ve) ndx + fo(u(01)|Duy|? — u(6:)|Duz?)ndx
ae.1€[0,T]Vn € H)(Q), 6]_,=0in Q.

(37)

Taking v=u and n = 0, using (7) and the orthogonality property to the convec-
tive terms, and summing the resulting relations we find
2 dt

HGHZQ+“0||Du||2£2+k0||ve||2£2

—/ Vug:u®udx—/u-VGQQd)H—/(,u(Gg)—u(Ql))Duz:Dudx
Q
+/ (6,) — k(61))V6: - VOdx

+/ (6)) — 92))\Du1|29dx+/ u(6;)Du : D(u; 4 uy)0dx.
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Arguing as in [11, p. 154] we get

:l/ Vu :u®udx| <
Q

Analogously we have

_ ‘/ u-V6,0dx| <
Q

1 ko 1
Z—MOHV%H%,QH“H%,Q‘F §||V9||%,g+ T

Next using the Mean Value Theorem, for every X = (x,#) € Qr there exists Wy
between 6;(X) and 6,(X) such that

[u(61) — u(62)| = w'(wx)|0],
and successively applying (7) and the Holder’s inequality

h—/mm w(6)|

Applying (14) this term can be estimated as follows

1/2 1/2
H2H9|| aIvelly, IIVuzIImHVuIIm

||V9||2g+ HVUHZQ

Analogously we get
L= / (k(62) — k(61)) V6, - VOdx
Q

1/2 3/2 3ko
<k |6]35IVOl3 g

||V9||m

and also

Is:= /Q ((6)) — (6,))|Du, 0

2u
M2H9||4 Q||V“1||4g =2 H9||2 Q||V“1||4g+ ||V9||2Q

Finally we have

Is =/H(92)DUID(111+112) (u; +w)|l40]|Vul2.0

< 2.“1
koug

Mo
(uy +u2)||4g+ ||V9||§,g+ ZIWUH%@
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Then these inequalities imply

d
—(HUH%,QHIG\ %,Q+||V62”%,Q) ||“||%,Q

4
2 —_—
7 Ja) < m ([IVuy|

2
2,Q°

C(‘u‘()nuh;u‘2)
+ (C(|Q|7k07k2)V92||3,9+ YR ([IVuy| 3,94' [V 3,9) 6]
0

Considering that (u,0)|,—o = (0,0), the Gronwall’s lemma allows us to conclude that
(u,0) = (0,0).

7.2. Uniqueness in Theorem 2.2
Proceeding as in Section 7.2 we find

1d

1d
2.dt

2 dt
<11+12+13+14+15+16—/Q(|61\1/2— 165]'/2)6,60dx.

2 P 2
10112.0 + tol[Dull3 o + ko[ VO3 o

2
[ullz0+

For every ¢ € [0,T], define
1612+ 162"/ > 0] = fx € @ |61 (x,0)] "/ +[62(x,0)] /2 > 0}

Then the last term in RHS of the above inequality reads

_/(|91|1/2—|62|1/2)626dx:—/ 161] — 10| 6,0dx
Q

[104]1/2-+]05[1/250] |61]1/2 + |62]1/2
6]

< i S
/nel\1/2+\ez\1/2>01 161]1/2 +16,]1/2

0%dx < [ 162]'20%x < 162] /56 o

Therefore we can conclude the desired uniqueness.
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