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Abstract. In this paper, an existence result for a nonlinear second order ordinary random dif-
ferential equation is proved under a Carathéodory condition. Two existence results for extremal
random solutions are also proved for Carathéodory as well as discontinuous cases of the nonlin-
earity involved in the equations. Our investigations are placed in the Banach space of continuous
real-valued functions on closed and bounded intervals of the real line together with an application
of the random version of the Leray-Schauder principle.

1. Introduction

Let R denote the real line and let J = [0,T ] be a closed and bounded interval in
R . Let C1(J,R) denote the class of real-valued functions defined and continuously
differentiable on J . Given a measurable space (Ω,A ) and for a given measurable
function x : Ω→C1(J,R) , consider the initial value problem of second order ordinary
random differential equations (in short RDE),

⎧⎨
⎩

x′′(t,ω) = f (t,x(t,ω),ω) a.e. t ∈ J,

x(0,ω) = q0(ω), x′(0,ω) = q1(ω),
(1.1)

for all ω ∈Ω , where f : J×R×Ω→ R , q0,q1 : Ω→ R .
By a random solution of the RDE (1.1) we mean a measurable function x : Ω→

AC1(J,R) that satisfies the equations in (1.1), where AC1(J,R) is the space of real-
valued functions defined and absolutely continuously differentiable on J .

The RDE (1.1) is not new to the theory random differential equations. When the
random parameter ω is absent, the RDE (1.1) reduces to the classical RDE of first order
ordinary differential equations (in short ODE),

⎧⎨
⎩

x′′(t) = f (t,x(t)) a.e. t ∈ J,

x(0) = x0, x′(0) = x1,
(1.2)
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where f : J×R → R .
The classical ODE (1.2) has been studied in the literature by several authors for

different aspects of the solutions. See for example, Heikkilä and Lakshmikantham [8]
and the references therein. In this paper, we discuss the RDE (1.1) for existence of
solutions, as well as for existence of the extremal solutions, under suitable conditions
of the nonlinearity f which thereby generalize several existence results of the RDE
(1.2) proved in the above mentioned papers. Our analyses rely on the random versions
of the nonlinear alternative of Leray-Schauder type (see Dhage [5, 6]) and an algebraic
random fixed point theorem of Dhage [5].

The rest of the paper is organized as follows: In Section 2 we give some prelimi-
naries and definitions needed in the sequel. The main existence result is given in Section
3, while the results on extremal solutions are given in Section 4. Finally, in Section 5,
an example is presented to illustrate the abstract results proved in Section 3.

2. Auxiliary results

Let E denote a Banach space with the norm ‖ · ‖ and let Q : E → E . Then Q is
called compact if Q(E) is a relatively compact subset of E . Q is called totally bounded
if Q(B) is a totally bounded subset of E for any bounded subset B of E . Q is called
completely continuous if it is continuous and totally bounded on E . Note that every
compact operator is totally bounded, but the converse may not be true. However, both
notions coincide on bounded sets in the Banach space E .

We further assume that the Banach space E is separable, i.e., E has a countable
dense subset and let βE be the σ -algebra of Borel subsets of E . We say a mapping
x : Ω→ E is measurable if for any B ∈ βE ,

x−1(B) = {ω ∈Ω | x(ω) ∈ B} ∈ A .

Similarly, a mapping x :Ω×E → E is called jointly measurable if for any B∈ βE , one
has

x−1(B) = {(ω , ,x) ∈Ω×E | x(ω ,x) ∈ B} ∈ A ×βE ,

where A ×βE is the direct product of the σ -algebras A and βE , with those defined
in Ω and E respectively. The details of the different types of measurablity concepts of
the functions appear in Himmelberg [9]. Note that a continuous map f from a Banach
space E into itself is measurable, but the converse may not be not true.

Let Q : Ω×E → E be a mapping. Then Q is called a random operator if Q(ω ,x)
is measurable in ω for all x ∈ E and it expressed as Q(ω)x = Q(ω ,x) . In this case
we also say that Q(ω) is a random operator on E . A random operator Q(ω) on E
is called continuous (resp. compact, totally bounded and completely continuous) if
Q(ω ,x) is continuous (resp. compact, totally bounded and completely continuous) in x
for all ω ∈Ω . The details of completely continuous random operators in Banach spaces
and their properties appear in Itoh [10]. The study of random operator equations and
their solutions have been discussed in Bharucha-Reid [1] and Hans [7] which is further
applied to different types of random equations such as random differential and random
integral equations etc. See Itoh [10], Bharucha-Reid [2] and the references therein. In
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this paper, we employ the following random nonlinear alternative in proving the main
result of this paper.

THEOREM 2.1. (Dhage [5, 6]) Let E be a separable Banach space and let Q :
Ω×E→ E be a completely continuous random operator. Then, either

(i) the random equation Q(ω)x = x has a random solution, i.e., there is a measurable
function ξ :Ω→ E such that Q(ω)ξ (ω) = ξ (ω) for all ω ∈Ω , or

(ii) the set E = {x : Ω→ E is measurable | λ (ω)Q(ω)x = x} is unbounded for some
measurable λ : Ω→ R with 0 < λ (ω) < 1 on Ω .

An immediate corollary to above theorem in applicable form is

COROLLARY 2.1. Let E be a separable Banach space and let Q : Ω×E→ E be
a completely continuous random operator. Then, either

(i) the random equation Q(ω)x = x has a random solution, i.e., there is a measurable
function ξ :Ω→ E such that Q(ω)ξ (ω) = ξ (ω) for all ω ∈Ω , or

(ii) the set E = {x :Ω→E is measurable | λQ(ω)x = x} is unbounded for some ω ∈Ω
satisfying 0 < λ < 1 .

The following theorem is often used in the study of nonlinear discontinuous ran-
dom differential equations. We also need this result in the subsequent part of this paper.

THEOREM 2.2. (Carathéodory) Let Q :Ω×E →E be a mapping such that Q(·,x)
is measurable for all x ∈ E and Q(ω , ·) is continuous for all ω ∈ Ω . Then the map
(ω ,x) �→ Q(ω ,x) is jointly measurable.

The following lemma is useful in the study of second order initial value problems
of ordinary random differential equations via fixed point techniques.

LEMMA 2.1. For any function h : J → L1(J,R) , a function x : J →C1(J,R) is a
solution to the differential equation⎧⎨

⎩
x′′(t) = h(t) a.e. t ∈ J,

x(0) = q1, x′(0) = q2,
(2.1)

if and only if it is a solution of the integral equation

x(t) = q0 +q1t +
∫ t

0
(t − s)h(s)ds. (2.2)

3. Existence result

We seek random solutions of RDE (1.1) in the Banach space C(J,R) of continuous
real-valued functions defined on J . We equip the space C(J,R) with the supremum
norm ‖ · ‖ defined by

‖x‖ = sup
t∈J

|x(t)|.
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It is known that the Banach space C(J,R) is separable. By L1(J,R) we denote the
space of Lebesgue measurable real-valued functions defined on J . By ‖·‖L1 we denote
the usual norm in L1(J,R) defined by

‖x‖L1 =
∫ T

0
|x(t)|dt.

DEFINITION 3.1. A function f : J×R×Ω→ R is called random Carathéodory
if the following conditions are satisfied:

(i) the map (t,ω) → f (t,x,ω) is jointly measurable for all x ∈ R , and

(ii) the map x → f (t,x,ω) is continuous for all t ∈ J and ω ∈Ω .

DEFINITION 3.2. A Carathéodory function f : J×R×Ω→ R is called random
L1 -Carathéodory if for each real number r > 0 there is a measurable and bounded
function hr :Ω→ L1(J,R) such that

| f (t,x,ω)| � hr(t,ω) a.e. t ∈ J

for all ω ∈ Ω and x ∈ R with |x| � r . Similarly, a Carathéodory function f is
called random L1

R
-Carathéodory if there is a measurable and bounded function h :Ω→

L1(J,R) such that
| f (t,x,ω)| � h(t,ω) a.e. t ∈ J

for all ω ∈Ω and x ∈ R .

We consider the following set of hypotheses in what follows:

(H0) The functions q0,q1 : Ω→ R are measurable and bounded with

Q0 = supω∈Ω q0(ω) and Q1 = supω∈Ω q1(ω) .

(H1) The function f is random Carathéodory on J×R×Ω .

(H2) There exists a measurable and bounded function γ : Ω→ L1(J,R) and a continu-
ous and nondecreasing function ψ : R+ → (0,∞) such that

| f (t,x,ω)| � γ(t,ω)ψ(|x|) a.e. t ∈ J

for all ω ∈Ω and x ∈ R . Moreover, we assume that
∫ ∞
C

dr
ψ(r) = ∞ for all C � 0.

Our main existence result is

THEOREM 3.1. Assume that the hypotheses (H0)-(H2) hold. Suppose that

∫ ∞

C

dr
ψ(r)

> ‖γ(ω)‖L1 (3.1)

for all ω ∈ Ω, where C = Q0 + Q1 T . Then the RDE (1.1) has a random solution
defined on J .
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Proof. Set E = C(J,R) and define a mapping Q : Ω×E → E by

Q(ω)x(t) = q0(ω)+q1(ω)t +
∫ t

0
(t − s) f (s,x(s,ω),ω)ds (3.2)

for all t ∈ J and ω ∈Ω .
Now the map t �→ q0(ω) + q1(ω)t is continuous for all ω ∈ Ω . Again, as the

indefinite integral is continuous on J , Q(ω) defines a mapping Q : Ω×E → E . We
show that Q satisfies all the conditions of Corollary 2.1 on E.

First we show that Q is a random operator on E . Since f (t,x,ω) is random
Carathéodory, the map ω �→ f (t,x,ω) is measurable in view of Theorem 2.2. Similarly,
the product (t − s) f (s,x(s,ω),ω) of a continuous and a measurable function is again
measurable. Further, the integral is a limit of a finite sum of measurable functions,
therefore, the map

ω �→ q0(ω)+q1(ω)t +
∫ t

0
(t − s) f (s,x(s,ω),ω)ds = Q(ω)x(t)

is measurable. As a result, Q is a random operator on Ω×E into E .
Let B be a bounded subset of E . Then, there is real number r > 0 such that

‖x‖ � r for all x ∈ B . Next, we show that the random operator Q(ω) is continuous on
B . Let {xn} be a sequence of points in B converging to the point x in B . Then it is
enough to prove that limn→∞Q(ω)xn(t) = Q(ω)x(t) for all t ∈ J and ω ∈ Ω . By the
dominated convergence theorem, we obtain,

lim
n→∞

Q(ω)xn(t) = q0(ω)+q1(ω)t + lim
n→∞

∫ t

0
(t − s) f (s,xn(s,ω),ω)ds

= q0(ω)+q1(ω)t +
∫ t

0
(t − s) lim

n→∞
[ f (s,xn(s,ω),ω)]ds

= q0(ω)+q1(ω)t +
∫ t

0
(t − s) f (s,x(s,ω),ω)ds

= Q(ω)x(t)

for all t ∈ J and ω ∈Ω . This shows that Q(ω) is a continuous random operator on E .
Now, we show that Q(ω) is a totally bounded random operator on E . We prove

that Q(ω)(B) is a totally bounded subset of E for each bounded subset B of E . To
finish, it is enough to prove that Q(ω)(B) is a uniformly bounded and equi-continuous
set in E for each ω ∈Ω . Since the map ω �→ γ(t,ω) is bounded, by hypothesis (H1 ),
there is a constant c such that ‖γ(ω)‖L1 � c for all ω ∈Ω . Let ω ∈Ω be fixed. Then
for any x :Ω→ B , one has

|Q(ω)x(t)| � |q0(ω)|+ |q1(ω)|t +
∫ t

0
(t− s)| f (s,x(s,ω),ω)|ds

� |q0(ω)|+ |q1(ω)|t +
∫ t

0
(t− s)γ(s,ω)ψ(|x(s,ω)|)ds
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� Q0 +Q1 t +
∫ T

0
(t− s)γ(s,ω)ψ(‖x(ω)‖)ds

� (Q0 +Q1T )+
∫ T

0
T γ(s,ω)ψ(r)ds

� (Q0 +Q1T )+T‖γ(ω)‖L1ψ(r) � K1,

for all t ∈ J , where K1 = (Q0 +Q1T )+ cT ψ(r) . This shows that Q(ω)(B) is a uni-
formly bounded subset of E for each ω ∈Ω .

Next, we show that Q(ω)(B) is an equi-continuous set in E . Let x ∈ B be arbi-
trary. Then, for any t1,t2 ∈ J , one has

|Q(ω)x(t1)−Q(ω)x(t1)| � |q1(ω)t1−q1(ω)t2|

+
∣∣∣∣
∫ t1

0
(t1 − s) f (s,x(s,ω),ω)ds−

∫ t2

0
(t2 − s) f (s,x(s,ω),ω)ds

∣∣∣∣
� |q1(ω)| |t1 − t2|

+
∣∣∣∣
∫ t1

0
(t1 − s) f (s,x(s,ω),ω)ds−

∫ t1

0
(t2 − s) f (s,x(s,ω),ω)ds

∣∣∣∣
+

∣∣∣∣
∫ t1

0
(t2 − s) f (s,x(s,ω),ω)ds−

∫ t2

0
(t2 − s) f (s,x(s,ω),ω)ds

∣∣∣∣
� |q1(ω)| |t1 − t2|+

∣∣∣∣
∫ T

0
(t1 − t2) f (s,x(s,ω),ω)ds

∣∣∣∣
+

∣∣∣∣
∫ t1

t2
(t2 − s) f (s,x(s,ω),ω)ds

∣∣∣∣
� Q1 |t1 − t2|+

∣∣∣∣
∫ T

0
(t1 − t2) f (s,x(s,ω),ω)ds

∣∣∣∣
+

∣∣∣∣
∫ t1

t2
T f (s,x(s,ω),ω)ds

∣∣∣∣
� Q1 |t1 − t2|+

∫ T

0
|t1− t2| | f (s,x(s,ω),ω)|ds

+
∫ t1

t2
T | f (s,x(s,ω),ω)|ds

� Q1 |t1 − t2|+
∫ T

0
|t1− t2|γ(s,ω)ψ(|x(s,ω)|)ds

+
∣∣∣
∫ t1

t2
Tγ(s,ω)ψ(|x(s,ω)|)ds

∣∣∣
� Q1 |t1 − t2|+ |t1− t2|‖γ(ω)‖L1ψ(r)+ |p(t1,ω)− p(t2,ω)|
�

[
Q1 + cψ(r)

]|t1− t2|+ |p(t1,ω)− p(t2,ω)| (3.3)

for all ω ∈Ω , where p(t,ω) =
∫ t
0 T γ(s,ω)ψ(r)ds .
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Hence, for all t1,t2 ∈ J ,

|Q(ω)x(t1)−Q(ω)x(t1)| → 0 as t1 → t2,

uniformly for all x∈B and ω ∈Ω . Therefore, Q(ω)(B) is an equi-continuous set in E .
As Q(ω)(B) is uniformly bounded and equi-continuous, it is compact by the Arzelá-
Ascolli theorem for each ω ∈ Ω . Consequently, Q(ω) is a completely continuous
random operator on B .

Finally, we prove that the set E given in conclusion (ii) of Corollary 2.1 does not
hold. Let u ∈ E be arbitrary and let ω ∈ Ω be fixed. Then u(t,ω) = λQ(ω)u(t) for
all t ∈ J and ω ∈Ω , where 0 < λ < 1. Then, one has

|u(t,ω)| � λ |Q(ω)u(t)|

� |q0(ω)|+ |q1(ω)|t +
∫ t

0
(t− s)| f (s,u(s,ω),ω)|ds

� Q0 +Q1T +
∫ t

0
(t − s)γ(s,ω)ψ(|u(s,ω)|)ds

� C+T
∫ t

0
γ(s,ω)ψ(|u(s,ω)|)ds (3.4)

for all t ∈ J and ω ∈Ω , where C = Q0 +Q1T .
Let m(t,ω) = sups∈[0,t] |u(s,ω)| . Then, there is a t∗ ∈ [0,t] such that m(t,ω) =

|u(t∗,ω)| . Then from the inequality (3.3) it follows that

m(t,ω) = |u(t∗,ω)|

= Q0 +Q1T +T
∫ t∗

0
γ(s,ω)ψ(|u(s,ω)|)ds

� C+T
∫ t

0
γ(s,ω)ψ(m(s,ω))ds.

Put

w(t,ω) = C+T
∫ t

0
γ(s,ω)ψ(m(s,ω))ds

for t ∈ J . Now differentiating this with respect to t , we obtain
⎧⎨
⎩

w′(t,ω) = T γ(t,ω)ψ(m(t,ω)),

w(0,ω) = C,

for all t ∈ J . From the above inequality, we obtain
⎧⎨
⎩

w′(t,ω) � T γ(t,ω)ψ(w(t,ω)),

w(0,ω) = C,
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or ⎧⎨
⎩

w′(t,ω)
ψ(w(t,ω)) � T γ(t,ω),

w(0,ω) = C.

Integrating from 0 to t ,
∫ t

0

w′(s,ω)
ψ(w(s,ω))

ds � T
∫ t

0
γ(s,ω)ds.

By change of variable,

∫ w(t,ω)

C

dr
ψ(r)

� T ‖γ(ω)‖L1 <

∫ ∞

C

dr
ψ(r)

= ∞.

Now an application of the mean value theorem for integral calculus, there exists a con-
stant M > 0 such that

u(t,ω) � m(t,ω) � w(t,ω) � M

for all t ∈ J and ω ∈ Ω . Hence the conclusion (ii) of Corollary 2.1 does not hold. As
a result, the conclusion (i) holds and the operator equation Q(ω)x = x has a random
solution. This further implies that the random differential equation (1.1) has a random
solution defined on Ω× J . This completes the proof.

4. Extremal random solutions

A closed set K of the Banach space E is called a cone if:

(i) K +K ⊆ K ,
(ii) λK ⊂ K for all λ ∈ R+ , and
(iii) {−K}∩K = {θ},
where θ is the zero element of E . We introduce an order relation � in E with the
help of the cone K in E as follows. Let x,y ∈ E , then we define

x � y ⇐⇒ y− x ∈ K. (4.1)

A cone K in the Banach space E is called normal, if the the norm ‖ · ‖ is semi-
monotone on K i.e., if x,y ∈ K , then ‖x+ y‖ � ‖x‖+ ‖y‖ . Again a cone K is called
regular, if every nondecreasing order bounded sequence in E converges in norm. Sim-
ilarly, a cone K is called fully regular, if every nondecreasing norm-bounded sequence
converges in E . The details of different types of cones and their properties appear in
Deimling [3], Heikkilä and Lakshmikantham [8] and Zeidler [14].

We introduce an order relation � in C(J,R) with the help of a cone K in it
defined by

K = {x ∈C(J,R) | x(t) � 0 for allt ∈ J}.
Thus, we have

x � y =⇒ x(t) � y(t) for all t ∈ J.
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It is known that the cone K is normal in C(J,R) . For any function a,b : Ω→C(J,R)
we define a random interval [a,b] in C(J,R) by

[a,b] = {x ∈C(J,R) | a(ω) � x � b(ω) ∀t ∈ J}
=

⋂
ω∈Ω

[a(ω),b(ω)].

DEFINITION 4.1. A operator Q :Ω×E → E is called nondecreasing if Q(ω)x �
Q(ω)y for all ω ∈Ω and for all x,y ∈ E for which x � y .

We use the following random fixed point theorem of Dhage [4, 5] in what follows.

THEOREM 4.1. (Dhage [4]) Let (Ω,A ) be a measurable space and let [a,b] be
a random order interval in the separable Banach space E . Let Q : Ω× [a,b] → [a,b]
be a completely continuous and nondecreasing random operator. Then Q has a least
fixed point x∗ and a greatest random fixed point y∗ in [a,b] . Moreover, the sequences
{Q(ω)xn} with x0 = a and {Q(ω)yn} with y0 = b converge to x∗ and y∗ respectively.

We need the following definitions in the sequel.

DEFINITION 4.2. A measurable function a : Ω→C1(J,R) is called a lower ran-
dom solution for the RDE (1.1) if

⎧⎨
⎩

a′′(t,ω) � f (t,a(t,ω),ω) a.e. t ∈ J,

a(0,ω) � q0(ω), a′(0,ω) � q1(ω),

for all t ∈ J and ω ∈ Ω . Similarly, a measurable function b : Ω→C1(J,R) is called
an upper random solution for the RDE (1.1) if

⎧⎨
⎩

b′′(t,ω) � f (t,b(t,ω),ω) a.e. t ∈ J,

b(0,ω) � q0(ω), b′(0,ω) � q1(ω),

for all t ∈ J and ω ∈Ω .

Note that a random solution for the RDE (1.1) is a lower as well as an upper random
solution for the RDE (1.1) defined on J .

DEFINITION 4.3. A random solution rM for the RDE (1.1) is called maximal if
for all random solutions of the RDE (1.1), one has x(t,ω) � rM(t,ω) for all t ∈ J and
ω ∈Ω . Similarly, a minimal random solution to the RDE (1.1) on J is defined.

DEFINITION 4.4. A function f : J×R×Ω is called random Chandrabhan if:

(i) the map (t,ω) �→ f (t,x,ω) is jointly measurable,
(ii) the map x �→ f (t,x,ω) is continuous and nondecreasing for all t ∈ J and ω ∈Ω .
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DEFINITION 4.5. A function f (t,x,ω) is called random L1 -Chandrabhan if for
each real number r > 0 there exists a measurable function hr :Ω→ L1(J,R) such that
for all ω ∈Ω

| f (t,x,ω)| � hr(t,ω) a.e. t ∈ J

for all x ∈ R with |x| � r .

We consider the following set of assumptions.

(H3) The function f is random Chandrabhan on J×R×Ω .
(H4) The RDE (1.1) has a lower random solution a and an upper random solution b
with a � b on J .
(H5) The function h : J×Ω→ R+ defined by

h(t,ω) = | f (t,a(t,ω),ω)|+ | f (t,b(t,ω),ω)|
is Lebesgue integrable in t for all ω ∈Ω .

REMARK 4.1. If the hypotheses (H3 ) and (H5 ) hold, then for each ω ∈Ω ,

| f (t,x(t,ω),ω)| � h(t,ω)

for all t ∈ J and x ∈ [a,b] and the map ω → h(t,ω) is measurable on Ω .

REMARK 4.2. Hypothesis (H3 ) is natural and used in several research papers on
random differential and integral equations (see Dhage [4, 5] and the references given
therein). Hypothesis (H4 ) holds, in particular, if there exist measurable functions u,v :
Ω→C(J,R) such that for each ω ∈Ω ,

u(t,ω) � f (t,x,ω) � v(t,ω)

for all t ∈ J and x ∈ R . In this case, the lower and upper random solutions to the RDE
(1.1) are given by

a(t,ω) = q0(ω)+q1(ω)t +
∫ t

0
(t − s)u(s,ω)ds

and

b(t,ω) = q0(ω)+q1(ω)t +
∫ t

0
(t− s)v(s,ω)ds

respectively. The details about the lower and upper random solutions for different types
of random differential equations may be found in Ladde and Lakshmikantham [11].
Finally, hypothesis (H5 ) remains valid if the function f is L1 -Carathéodory on J ×
R×Ω .

THEOREM 4.2. Assume that the hypotheses (H1) , (H3)-(H5) hold. Then the
RDE (1.1) has a minimal random solution x∗(ω) and a maximal random solution
y∗(ω) defined on J . Moreover,

x∗(t,ω) = lim
n→∞

xn(t,ω) and y∗(t,ω) = lim
n→∞

yn(t,ω)
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for all t ∈ J and ω ∈Ω , where the random sequences {xn(ω)} and {yn(ω)} are given
by

xn+1(t,ω) = q0(ω)+q1(ω)t +
∫ t

0
(t − s) f (s,xn(s,ω),ω)ds, n � 0 with x0 = a,

and

yn+1(t,ω) = q0(ω)+q1(ω)t +
∫ t

0
(t− s) f (s,yn(s,ω),ω)ds, n � 0 with y0 = b

for all t ∈ J and ω ∈Ω .

Proof. Set E = C(J,R) and define an operator Q : Ω× [a,b] → E by (3.2). We
show that Q satisfies all the conditions of Theorem 4.1 on [a,b] .

It can be shown as in the proof of Theorem 3.1 that Q is a random operator on Ω×
[a,b] . We show that it is L1 -Chandrabhan. First we show that Q(ω) is nondecreasing
on [a,b] . Let x,y : Ω→ [a,b] be arbitrary such that x � y on Ω . Then,

Q(ω)x(t) � q0(ω)+q1(ω)t +
∫ t

0
(t − s) f (s,x(s,ω),ω)ds

� q0(ω)+q1(ω)t +
∫ t

0
(t − s) f (s,y(s,ω),ω)ds

= Q(ω)y(t)

for all t ∈ J and ω ∈ Ω . As a result, Q(ω)x � Q(ω)y for all ω ∈ Ω , and so Q is
nondecreasing random operator on [a,b] .

Second, by hypothesis (H4 ),

a(t,ω) � Q(ω)a(t)

= q0(ω)+q1(ω)t +
∫ t

0
(t− s) f (s,a(s,ω),ω)ds

� q0(ω)+q1(ω)t +
∫ t

0
(t − s) f (s,x(s,ω),ω)ds

= Q(ω)x(t)
� Q(ω)b(t)

= q0(ω)+q1(ω)t +
∫ t

0
(t− s) f (s,b(s,ω),ω)ds

� b(t,ω)

for all t ∈ J and ω ∈Ω . As a result Q defines a random operator Q :Ω× [a,b]→ [a,b] .
Next, since (H5 ) holds, the hypothesis (H2 ) is satisfied with γ(t,ω) = h(t,ω) for

all (t,ω) ∈ J ×Ω and ψ(r) = 1 for all real number r � 0. Now it can be shown as
in the proof of Theorem 3.1 that the random operator Q(ω) is completely continuous
on [a,b] into itself. Thus, the random operator Q(ω) satisfies all the conditions of
Theorem 4.1 and so the random operator equation Q(ω)x = x(ω) has a least and a
greatest random solution in [a,b] . Consequently, the RDE (1.1) has a minimal and a
maximal random solution defined on J . This completes the proof.



64 B. C. DHAGE, S. V. BADGIRE AND J. HENDERSON

REMARK 4.3. The conclusion of the Theorem 4.2 also remains true if we replace
the hypotheses (H3 ) and (H5 ) with the following one:

(H6 ) the function f is random L1 -Chandrabhan on J×R×Ω .

To see this, let hypothesis (H6 ) hold. Since the cone K in C(J,R) is normal, the
random order interval [a,b] is norm-bounded. Hence there is a real number r > 0 such
that ‖x‖ � r for all x ∈ [a,b] . Now f is L1 -Chandrabhan, so there is a measurable
function hr :Ω→C(J,R) such that

| f (t,x,ω)| � hr(t,ω) a.e. t ∈ J

for all x ∈ R with |x| � r and for all ω ∈ Ω . Hence, hypotheses (H3 ) and (H5 ) hold
with h(t,ω) = hr(t,ω) for all t ∈ J and ω ∈Ω .

5. An example

Let Ω = (−∞,0) be equipped with the usual σ -algebra consisting of Lebesgue
measurable subsets of (−∞,0) and let J = [0,1] be a closed and bounded interval in
R . Given a measurable function x :Ω→C1(J,R) , consider the following RDE:

⎧⎨
⎩

x′′(t,ω) = tω2 x2(t,ω)
(1+ω2)[1+x2(t,ω)] , a.e. t ∈ J,

x(0,ω) = sinω , x′(0,ω) = cosω , for all ω ∈Ω.
(5.1)

Here,

f (t,x,ω) =
tω2 x2

(1+ω2)[1+ x2]

for all (t,x,ω) ∈ J×R×Ω , and

q0(0,ω) = sinω and q1(0,ω) = cosω

for ω ∈Ω .
Clearly, the map (t,ω) �→ f (t,x,ω) is jointly continuous for all x ∈ R and hence

jointly measurable for all x∈ R . Also the map x �→ f (t,x,ω) is continuous for all t ∈ J
and ω ∈Ω . So the function f is Carathéodory on J×R×Ω . Moreover,

∣∣∣∣ tω2 x2

(1+ω2)[1+ x2]

∣∣∣∣ � t = γ(t,ω)ψ(|x|)

where, γ(t,ω) = t for all t ∈ [0,1] and ψ(r) = 1 for all real number r � 0. Clearly, γ
defines a measurable and bounded function γ : Ω→ L1(J,R) . Similarly, ψ defines a
continuous and nondecreasing function ψ : R+ → R+ satisfying

∫ ∞

C

dr
ψ(r)

=
∫ ∞

C
dr = ∞,
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for all C � 0. Again, the functions q0,q1 : Ω→ R are measurable and bounded with
supω∈Ω q0(ω) � 1 and supω∈Ω q1(ω) � 1. Now,

‖γ(ω)‖L1 =
∫ 1

0
γ(t,ω)dt =

1
2

<

∫ ∞

2

dr
ψ(r)

.

Therefore, the condition (3.1) is satisfied. Hence, by Theorem 3.1, the RDE (5.1) has a
random solution defined on [0,1] .
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