ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF
A SECOND ORDER NEUTRAL EQUATION OF
DISCRETE TYPE WITH OSCILLATING COEFFICIENTS

RADHANATH RATH AND B. L. SIBABRATA BARIK

(Communicated by L. Berezansky)

Abstract. In this paper, we obtain sufficient conditions so that every solution of neutral functional difference equation
\[\Delta^2(y_n - p_n y_{\tau(n)}) + q_n G(y_{\sigma(n)}) = f_n, \]
optic or tends to zero as \(n \to \infty \), where the sequence \(\{q_n\} \) may change sign. Here \(\Delta \) is the forward difference operator given by \(\Delta x_n = x_{n+1} - x_n \), \(\{\tau_n\} \) and \(\{\sigma_n\} \) are increasing sequences, which are less than \(n \) and approaches \(\infty \) as \(n \) approaches \(\infty \). This paper generalizes and extends some recent results.

1. Introduction

Consider the higher order neutral functional difference equation
\[\Delta^m(y_n - p_n y_{\tau(n)}) + q_n G(y_{\sigma(n)}) = f_n, \]
where \(\Delta \) is the forward difference operator given by \(\Delta x_n = x_{n+1} - x_n \), \(\{p_n\} \), \(\{q_n\} \), \(\{f_n\} \) are infinite sequences of real numbers and \(m \) is any positive integer. Further, assume that \(G \in C(\mathbb{R}, \mathbb{R}) \), and \(\tau(n) \leq n, \sigma(n) \leq n \) are monotonic increasing sequences which are unbounded. Recently, the oscillatory and asymptotic behavior of solutions of (1.1) with fixed sign \(q_n \) have been investigated by many authors (see [2], [5]–[9], [11, 13, 14, 15, 18]). However, it is difficult to study the oscillation of (1.1) for the general case, when \(q_n \) is allowed to change sign, since the difference \(\Delta^m(y_n - p_n y_{\tau(n)} - F_n) \) of any non-oscillatory solution \(\{y_n\} \) of (1.1) is oscillatory, where \(\{F_n\} \) is an infinite sequence such that \(\Delta^m F_n = f_n \). Therefore the results on oscillation of (1.1) with oscillating \(q_n \), are relatively scarce; see [16, 17, 10]. Such result for \(m = 1 \) is found in recently published paper [10], where sufficient conditions are obtained so that every solution of (1.1) oscillates or tends to zero as \(n \to \infty \). The technique adopted in the paper, however, fails when applied to (1.1) for \(m > 1 \). Hence our objective in this work is to extend some of these results and study the asymptotic behaviour of solutions of neutral difference equation
\[\Delta^2(y_n - p_n y_{\tau(n)}) + q_n G(y_{\sigma(n)}) = f_n, \]
where \(q_n \) may change sign.

For the purpose, we define \(q^+_n = \max(q_n, 0) \) and \(q^-_n = \max(-q_n, 0) \) then the above equation takes an alternate form

\[
\Delta^2(y_n - p_n y_{\tau(n)}) + q^+_n G(y_{\sigma(n)}) - q^-_n G(y_{\sigma(n)}) = f_n. \tag{1.3}
\]

We would in fact, study the neutral difference equation with positive and negative coefficients (1.3) under the following assumptions:

\((H_0) \) for any sequence \(\{x_n\} \), if \(\liminf_{n \to \infty} |x_n| > 0 \) then \(\liminf_{n \to \infty} |G(x_n)| > 0 \);
\((H_1) \) \(xG(x) > 0 \) for \(x \neq 0 \);
\((H_2) \) \(G \) is bounded;
\((H_3) \) \(\sum_{n=0}^{\infty} q^+_n = \infty \);
\((H_4) \) \(\sum_{n=0}^{\infty} nq^-_n < \infty \);
\((H_5) \) there exists a bounded sequence \(\{F_n\} \) such that \(\Delta^2 F_n = f_n \);
\((H_6) \) the sequence \(\{F_n\} \) in \((H_5) \) satisfies \(\lim_{n \to \infty} F_n = 0 \).

Let \(n_0 \) be a fixed nonnegative integer. Let \(\rho = \min\{\tau(n_0), \sigma(n_0)\} \). By a solution of (1.2) we mean a real sequence \(\{y_n\} \) which is defined for all positive integer \(n \geq \rho \) and satisfies (1.2) for \(n \geq n_0 \). Clearly if the initial condition

\[
y_n = a_n \quad \text{for} \quad \rho \leq n \leq n_0, \tag{1.4}
\]

is given then the equation (1.2) has a unique solution satisfying given initial condition (1.4). A solution \(\{y_n\} \) of (1.2) is said to be oscillatory if for every positive integer \(n_0 > 0 \), there exists \(n \geq n_0 \) such that \(y_n y_{n+1} \leq 0 \), otherwise \(\{y_n\} \) is said to be non-oscillatory. In the sequel, unless otherwise specified, when we write a functional inequality, it will be assumed to hold for all \(n \) sufficiently large.

2. Main Results

To begin with, we state some lemmas from [1, 4, 12] which would be useful for our work.

Lemma 2.1. [1] Let \(\{f_n\}, \{q_n\} \) and \(\{p_n\} \) be sequences of real numbers defined for \(n \geq N_0 > 0 \) such that

\[
f_n = q_n - p_n q_{\tau(n)}, \quad n \geq N_1 \geq N_0,
\]

where \(\{\tau(n)\} \) is an increasing unbounded sequence such that \(\tau(n) \leq n \). Suppose that \(p_n \) satisfies one of the following three conditions:

\[-1 < -b_1 \leq p_n \leq 0, \quad -b_2 \leq p_n \leq -b_3 < -1, \quad \text{and} \quad 0 \leq p_n \leq b_4 < \infty, \]

for all \(n \in \mathbb{N} \), where \(b_1, b_2, b_3 \) and \(b_4 \) are constants. If \(q_n > 0 \) for \(n \geq N_0 \), \(\liminf_{n \to \infty} q_n = 0 \) and \(\lim_{n \to \infty} f_n = L \) exists, then \(L = 0 \).
LEMMA 2.2. [4] If \(\sum u_n \) and \(\sum v_n \) are two positive term series such that
\[
\lim_{n \to \infty} \left(\frac{u_n}{v_n} \right) = l,
\]
where \(l \) is a non-zero finite number, then the two series converge or diverge together. If \(l = 0 \), then \(\sum v_n \) is convergent implies the convergence of \(\sum u_n \). If \(l = \infty \), then \(\sum v_n \) is divergent implies the divergence of \(\sum u_n \).

Before we state and prove our next result, we need the following definition and further discussion.

DEFINITION 1. Define the factorial function (cf [3, page-20]) by
\[
n^{(k)} := n(n - 1) \ldots (n - k + 1),
\]
where \(k \leq n \) and \(n \in \mathbb{Z} \) and \(k \in \mathbb{N} \). Note that \(n^{(k)} = 0 \), if \(k > n \).

Then we have
\[
\Delta n^{(k)} = kn^{(k-1)},
\]
where \(n \in \mathbb{Z} \), \(k \in \mathbb{N} \) and \(\Delta \) is the forward difference operator. One can show, by summing up (2.1) that
\[
\sum_{i=m}^{n-1} i^{(k)} = \frac{1}{k+1} \left(n^{(k+1)} - m^{(k+1)} \right),
\]
(2.2)
holds. Now set
\[
b_k(n,m) := \begin{cases} 1, & k = 0 \\ \sum_{j=m}^{n} b_{k-1}(n,j), & k \in \mathbb{N}. \end{cases}
\]
(2.3)
Here, we evaluate \(b_k \) by recursion. Clearly, for \(k = 1 \) in (2.3), we have
\[
b_1(n,m) = \sum_{j=m}^{n} b_0(n,j) = \sum_{j=m}^{n} 1 = (n + 1 - m) = (n + 1 - m)^{(1)}.\]

By (2.2) and for \(k = 2 \) in (2.3), we get
\[
b_2(n,m) = \sum_{j=m}^{n} b_1(n,j) = \sum_{j=m}^{n} (n + 1 - j)^{(1)}
= \sum_{i=1}^{n+1-m} i^{(1)} = \frac{1}{2} (n + 2 - m)^{(2)} - \frac{1}{2} (2)^{(2)} = \frac{1}{2} (n + 2 - m)^{(2)}.
\]

Note that \(1^{(2)} = 0 \). By (2.2) and for \(k = 3 \) in (2.3), we get
\[
b_3(n,m) = \sum_{j=m}^{n} b_2(n,j) = \frac{1}{2} \sum_{j=m}^{n} (n + 2 - j)^{(2)}
= \frac{1}{2} \sum_{i=2}^{n+2-m} i^{(2)} = \frac{1}{6} \left(n + 3 - m \right)^{(3)} - 2^{(3)} = \frac{1}{3!} (n + 3 - m)^{(3)}.
\]
Using a simple induction, we obtain
\[b_k(n,m) = \frac{1}{k!} (n+k-m)^k. \] (2.4)

Lemma 2.3. [12] Let \(p \in \mathbb{N} \) and \(x(n) \) be a nonoscillatory eventually positive real valued function. If there exists an integer \(p_0 \in \{0,1,\ldots,p-1\} \) such that \(\Delta^{p_0} w(\infty) \) exits (finite) and \(\Delta^i w(\infty) = 0 \) for all \(i \in \{p_0+1,\ldots,p-1\} \) then
\[\Delta^p w(n) = -x(n), \] (2.5)
implies
\[\Delta^{p_0} w(n) = \Delta^{p_0} w(\infty) + \frac{(-1)^{p-p_0-1}}{(p-p_0-1)!} \sum_{i=n}^{\infty} (i+p-p_0-1-n)^{(p-p_0-1)} x(i), \] (2.6)
for all sufficiently large \(n \).

Proof. Summing (2.5) from \(n \) to \(\infty \), we get
\[\Delta^{p-1} w(\infty) - \Delta^{p-1} w(n) = -\sum_{i=n}^{\infty} x(i), \]
that is
\[\Delta^{p-1} w(n) = \sum_{i=n}^{\infty} x(i) = \sum_{i=n}^{\infty} b_0(i,n) x(i). \] (2.7)

Summing (2.7) from \(n \) to \(\infty \), we get
\[\Delta^{p-2} w(n) = \Delta^{p-2} w(\infty) - \sum_{i=n}^{\infty} \sum_{j=i}^{\infty} b_0(j,i) x(j) = -\sum_{j=n}^{\infty} \sum_{i=n}^{j} b_0(j,i) x(j) \]
\[= -\sum_{j=n}^{\infty} b_1(j,n) x(j) = -\sum_{i=n}^{\infty} b_1(i,n) x(i). \] (2.8)

Further, summing (2.8) from \(n \) to \(\infty \), we obtain
\[\Delta^{p-3} w(n) = \sum_{j=n}^{\infty} \sum_{i=j}^{\infty} b_1(i,j) x(i) = \sum_{i=n}^{\infty} \sum_{j=n}^{i} b_1(i,j) x(i) \]
\[= \sum_{i=n}^{\infty} b_2(i,n) x(i). \]

By the emerging pattern, we have
\[\Delta^j w(n) = (-1)^{p-j-1} \sum_{i=n}^{\infty} b_{p-j-1}(i,n) x(i), \quad j \in \{p_0+1,\ldots,p-1\}. \]
Letting \(j = p_0 + 1 \), we get
\[
\Delta^{p_0+1} w(n) = (-1)^{p-p_0-2} \sum_{i=n}^{\infty} b_{p-p_0-2}(i, n) x(i).
\] (2.9)

Summing (2.9) from \(n \) to \(\infty \) we get
\[
\Delta^{p_0} w(n) = \Delta^{p_0} w(\infty) + (-1)^{p-p_0-1} \sum_{i=n}^{\infty} b_{p-p_0-1}(i, n) x(i).
\] (2.10)

Clearly, (2.6) follows from (2.4) and (2.10). And the proof of the Lemma is complete.

Now, we state our first main result.

Theorem 2.4. Suppose that \((H_0)-(H_5)\) hold. Assume that there exists a positive constant \(b_1 \) such that the sequence \(\{p_n\} \) satisfies the condition
\[
0 \leq p_n \leq b_1 < 1, \quad \text{or} \quad -1 < -b_1 \leq p_n \leq 0.
\] (2.11)

Then every non-oscillatory solution of (1.2) is bounded.

Proof. Let \(y = \{y_n\} \) be any non-oscillatory solution of (1.2) for \(n \geq N_1 \), where \(N_1 \) is a fixed positive integer. Then \(y_n > 0 \) or \(y_n < 0 \). Suppose \(y_n > 0 \) eventually. There exists positive integer \(n_0 \geq N_1 > 0 \) such that \(y_n > 0, y_{\tau(n)} > 0, \) and \(y_{\sigma(n)} > 0 \) for \(n \geq n_0 \). For \(n \geq n_0 \), let
\[
z_n = y_n - p_n y_{\tau(n)}.
\] (2.12)

Define for \(n \geq n_0 \)
\[
T_n = \sum_{i=n}^{\infty} (n - i - 1) q_i G(y_{\sigma(i)}).
\] (2.13)

Due to the assumptions \((H_2)\) and \((H_4)\), \(\{T_n\} \) is a well defined real sequence which is convergent. This implies
\[
\lim_{n \to \infty} T_n = 0
\] (2.14)
and
\[
\Delta^2 T_n = -q_n G(y_{\sigma(n)}).
\] (2.15)

Set,
\[
w_n = y_n - p_n y_{\tau(n)} + T_n - F_n.
\] (2.16)

From (1.2), (2.15), and (2.16), it follows due to \((H_1)\) that
\[
\Delta^2 w_n = -q_n^+ G(y_{\sigma(n)}) \leq 0.
\] (2.17)

Then there exists \(n_1 \geq n_0 \) such that \(w_n, \Delta w_n, \) are monotonic and of constant sign for \(n \geq n_1 \). For the sake of a contradiction assume that \(y_n \) is not bounded. Then there exists a subsequence \(\{y_{n_k}\} \) such that
\[
n_k \to \infty, y_{n_k} \to \infty \quad \text{as} \quad k \to \infty,
\]
Since $\tau(n) \to \infty$ and $\sigma(n) \to \infty$ as $n \to \infty$, we may choose k large enough so that for $\tau(n_k) \geq n_1$, and $\sigma(n_k) \geq n_1$. For $0 < \varepsilon$, because of (2.14) and \((H_5)\), we can find a positive integer n_2 and a constant γ such that, for $k \geq n_2 \geq n_1$ implies $|T_{n_k}| < \varepsilon$ and $|F_{n_k}| < \gamma$. If the condition $0 \leq p_n \leq b_1 < 1$ holds, then using (2.16) and (2.18) we obtain
\[
w_{n_k} \geq y_{n_k}(1 - b_1) - \varepsilon - \gamma,
\]
for $k \geq n_2$. Similarly, if $-1 < -b_1 \leq p_n \leq 0$ holds, then for $k \geq n_2$, we have
\[
w_{n_k} \geq y_{n_k} - \varepsilon - \gamma.
\]
Taking $k \to \infty$, we find $\lim_{n \to \infty} w_n = \infty$, because of the monotonic nature of w_n. Consequently, $w_n > 0$, and $\Delta w_n > 0$ for $n \geq n_2 \geq n_1$.

Next we show that y_n is bounded below by a positive constant, which will be used for bounding the G term from below. Using that w_n is positive and increasing, and that $\tau(n) \leq n$, we have for sufficiently large n: for the case $0 \leq p_n \leq b_1 < 1$,
\[
w_n \leq w_n + p_n w_{\tau(n)} = y_n + T_n - F_n + p_n[y_{\tau(n)} - p_{\tau(n)}y_{\tau(n)}] + T_{\tau(n)} - F_{\tau(n)},
\]
and for the case $-1 < -b_1 \leq p_n \leq 0$,
\[
(1 - b_1) w_n \leq w_n - b_1 w_{\tau(n)} \leq w_n + p_n w_{\tau(n)} = y_n + T_n - F_n + p_n[y_{\tau(n)} - p_{\tau(n)}y_{\tau(n)}] + T_{\tau(n)} - F_{\tau(n)}.
\]
We may note that p_n and $p_{\tau(n)}$ have the same sign in each of the two inequalities above, and $1 - b_1 \leq 1$ which implies
\[
(1 - b_1) w_n \leq y_n + \varepsilon + \gamma + b_1 \varepsilon + b_1 \gamma, \quad \text{for } n \geq n_1.
\]
As $\lim_{n \to \infty} w_n = \infty$, it follows that $\lim_{n \to \infty} y_n = \infty$. Then there exists $n_2 \geq n_1$ such that for $n \geq n_2$: $y_n, y_{\sigma(n)}$ are bounded below by a positive constant. By \((H_0)\), \((H_1)\), for $i \geq n_2$, $G(y_{\sigma(i)})$ is bounded below by a positive constant α. Summing (2.17) from $n = n_2$ to $n = k - 1$, we obtain
\[
\Delta w_k = \Delta w_{n_2} - \sum_{n=n_2}^{k-1} q_n^+ G(y_{\sigma(n)}) \leq \Delta w_{n_2} - \alpha \sum_{n=n_2}^{k-1} q_n^+.
\]
Note that by \((H_3)\), the right-hand side approaches $-\infty$, while the left-hand side is positive. This contradiction implies that the non-oscillatory positive solution y_n of (1.2) is bounded.

if y_n is an eventually negative solution of (1.2) for large n then we set $x_n = -y_n$ to obtain $x_n > 0$ and then (1.2) reduces to
\[
\Delta^2 (x_n - p_n x_{\tau(n)}) + q_n \tilde{G}(x_{\sigma(n)}) = \tilde{f}_n,
\]
where

\[\tilde{f}_n = -f_n, \quad \text{and} \quad \tilde{G}(v) = -G(-v). \]

Further,

\[\tilde{F}_n = -F_n \quad \text{implies} \quad \Delta^2(\tilde{F}_n) = \tilde{f}_n. \]

In view of the above facts, it can be easily verified that \(\tilde{G} \) and \(\tilde{F} \) satisfy the corresponding conditions satisfied by the functions \(G \) and \(F \) in the theorem. Proceeding as in the proof for the case \(y_n > 0 \), we may complete the proof of the theorem.

The following result follows immediately from the above theorem.

Corollary 2.5. Suppose that the hypotheses \((H_0)-(H_5)\) and (2.11) hold. Then every unbounded solution of (1.2), if exists, is oscillatory.

Also note that by setting \(p_n = 0 \), Theorems 2.4 can be applied to the equation

\[\Delta^2(y_n) + q_nG(y_{\sigma(n)}) = f_n, \]

with oscillating \(q_n \).

2.1. Results for bounded solutions

In this subsection, we study the behaviour of bounded solutions of (1.2) and we do not require the assumption \((H_2)\). However, we need a condition

\[\sum_{n=n_0}^{\infty} nq_n^+ = \infty, \quad (2.19) \]

which is less restrictive than \((H_3)\).

Theorem 2.6. Assume that \((H_0), (H_1), (H_4), (H_6)\) and (2.19) hold. Then every bounded solution of (1.2) is oscillatory or tends to zero as \(n \to \infty \), for each one of the following cases:

\[0 \leq p_n \leq b_1 < 1, \quad \forall n \in \mathbb{N}, \quad (2.20) \]

\[-1 < -b_1 \leq p_n \leq 0, \quad \forall n \in \mathbb{N}, \quad (2.21) \]

\[b_2 \leq p_n \leq b_3 < -1, \quad \forall n \in \mathbb{N}, \quad (2.22) \]

\[1 < b_4 \leq p_n \leq b_5, \quad \forall n \in \mathbb{N}, \quad (2.23) \]

where \(b_1, b_2, b_3, b_4, b_5 \) are constants.

Proof. Let \(y = y_n \) be a bounded solution of (1.2) for \(n \geq N_1 \). If it oscillates then there is nothing to prove. If it does not oscillate then \(y_n > 0 \) or \(y_n < 0 \) eventually. Suppose \(y_n > 0 \) for large \(n \). There exits positive integer \(n_0 \geq N_1 > 0 \) such that \(y_n > 0, y_{\tau(n)} > 0 \), and \(y_{\sigma(n)} > 0 \) for \(n \geq n_0 \). Set \(z_n, T_n \) and \(w_n \) as in (2.12), (2.13) and (2.16) respectively, to obtain (2.17). \(T_n \) is well defined due to the boundedness of \(y_n \).
and note that it satisfies (2.14). Then w_n, and Δw_n are monotonic and single sign for $n \geq n_1 \geq n_0$. Boundedness of y_n implies that of z_n and w_n. Using (2.14), (H_6) and monotonic nature of w_n, we obtain $\lim_{n \to \infty} z_n = \lim_{n \to \infty} w_n = \lambda$, which exists finitely. Then applying Lemma 2.3 to (2.17) for $p = 2$ and $p_0 = 0$ we obtain for $n \geq n_1$,

$$w_n = \lambda - \sum_{i=n}^{\infty} (i-n+1)q_i^+ G(y_{\sigma(i)}). \quad (2.24)$$

As $\lim_{n \to \infty} w_n$ exists, from (2.24) it follows that

$$\sum_{i=n}^{\infty} (i-n+1)q_i^+ G(y_{\sigma(i)}) < \infty, \quad n \geq n_1. \quad (2.25)$$

Using Lemma 2.2 in (2.25), we obtain

$$\sum_{i=n}^{\infty} i q_i^+ G(y_{\sigma(i)}) < \infty, \quad n \geq n_1. \quad (2.26)$$

From (2.26), it follows due to (2.19) that $\liminf_{n \to \infty} G(y_{\sigma(n)}) = 0$. When $\lim_{n \to \infty} \sigma(n) = \infty$, we have $\liminf_{n \to \infty} G(y_n) = 0$. This implies due to (H_0) that $\liminf_{n \to \infty} y_n = 0$. Then using Lemma 2.1, we may obtain $\liminf_{n \to \infty} z_n = 0$. If (2.20) holds then

$$0 = \lim_{n \to \infty} z_n = \limsup_{n \to \infty} (y_n - p_n y_{\tau(n)})$$

$$\geq \limsup_{n \to \infty} y_n + \liminf_{n \to \infty} (- p_n y_{\tau(n)})$$

$$\geq (1-b_1) \limsup_{n \to \infty} y_n.$$

This implies $\limsup_{n \to \infty} y_n = 0$ and consequently $y_n \to 0$ as $n \to \infty$. If (2.21) or (2.22) holds then, since $y_n \leq z_n$, it follows that $y_n \to 0$ as $n \to \infty$. If p_n satisfies (2.23), then $z_n \leq y_n - b_4 y_{\tau(n)}$, and it follows that

$$0 = \liminf_{n \to \infty} z_n \leq \liminf_{n \to \infty} [y_n - b_4 y_{\tau(n)}]$$

$$\leq \limsup_{n \to \infty} y_n + \liminf_{n \to \infty} [- b_4 y_{\tau(n)}]$$

$$= (1-b_4) \limsup_{n \to \infty} y_n.$$

Then $\limsup_{n \to \infty} y_n = 0$, which implies $\lim_{n \to \infty} y_n = 0$.

If y_n is eventually negative for large n, then we may proceed with $x_n = -y_n$.

2.2. Results for bounded or unbounded solutions

Clearly, the condition (H_5) implies (2.19), so we combine the results Corollary 2.5 and Theorem 2.6 to state the following result.

Theorem 2.7. Suppose that either (2.20) holds or (2.21) holds. Further assume (H_0)-(H_6) to hold. Then every solution of (1.2) is oscillatory or tends to zero as $n \to \infty$.

For our results in this paper, we need G to be bounded, continuous, and to satisfy (H_0) and (H_1). The prototype of such a function $G(x)$ is $\frac{2^x}{1+x^2} \text{sgn}x$.

To emphasize the need for the condition (H_4) or that of (H_2), for our results we present the following example.

Example 1. Consider the equation

$$\Delta^2 y_n + q_n y_{n-m} = 0, \quad (2.27)$$

where m is any positive and even integer and

$$q_n = \begin{cases} -1, & n \text{ is even,} \\ 2, & n \text{ is odd.} \end{cases}$$

Then, q_n is oscillatory but, does not satisfy (H_4). Moreover, $G(u) = u$, does not satisfy (H_2). Note that $(H_0), (H_1), (H_3), (H_5)$ and (H_6) hold, but we cannot apply Theorem 2.4, 2.6 or Theorem 2.7 to the equation (2.27). In fact,

$$y_n = \begin{cases} 1, & n \text{ is odd,} \\ 2, & n \text{ is even,} \end{cases}$$

is a solution of the above delay equation which neither oscillates nor tends to zero as $n \to \infty$.

We present some examples to illustrate our main results.

Example 2. Consider the delay equation

$$\Delta^2 (y_n) + q_n y_{n-m} = (\frac{5}{4}) 2^{-n}, \quad (2.28)$$

where m is any positive and odd integer and q_n is as given by

$$q_n = \begin{cases} (\frac{9}{4}) 2^{-m}, & n \text{ is even,} \\ -2^{-n}, & n \text{ is odd.} \end{cases}$$

It is easily verified that equation (2.28) satisfies all the conditions of Theorem 2.6. Hence every solution (2.28) oscillates or tends to zero as $n \to \infty$. As a result one may find that this equation admits a nonnegative solution given by

$$y_n = \begin{cases} 2^{-n}, & n \text{ is odd,} \\ 0, & n \text{ is even,} \end{cases}$$

which tends to zero as $n \to \infty$.
EXAMPLE 3. Consider the delay equation
\[\Delta^2(y_n) + q_n G(y_{n-m}) = f_n, \quad (2.29) \]
where \(m \) is any positive and odd integer, \(G(u) = \frac{u^2}{(1+u^2)} \text{sgn} u \), \(q_n \) and \(f_n \) are as given below:

\[
q_n = \begin{cases}
(9/4)(1 + 2^{n-m})2^{-n}, & \text{n is odd}, \\
-(9/4)2^{-n-m}(1 + 2^{-2n+2m}), & \text{n is even}.
\end{cases}
\quad (2.30)
\]

\[
f_n = \begin{cases}
0, & \text{n is odd}, \\
(9/4)(8^{-n} + 2^{-n}), & \text{n is even}.
\end{cases}
\]

It is easily verified that eq. (2.29) satisfies all the conditions of Theorem 2.7. As such, every solution of (2.29) oscillates or tends to zero as \(n \to \infty \) and in fact, this equation admits a oscillatory solution given by

\[
y_n = \begin{cases}
-2^n, & \text{n is odd}, \\
2^n, & \text{n is even},
\end{cases}
\]

which tends to zero as \(n \to \infty \).

EXAMPLE 4. Consider the non-linear neutral equation (2.29) with \(q_n \) as in (2.30); \(G(u) \) and \(m \) as defined in the above example. Define

\[
f_n = \begin{cases}
(13/4)2^{-n}, & \text{n is odd}, \\
(-9/4)8^{-n} + (1/4)2^{-n}, & \text{n is even}.
\end{cases}
\]

Then the non-linear neutral equation (2.29) satisfies all the conditions of Theorem 2.4. Hence every non-oscillatory solution of this difference equation is bounded as per the conclusion of the theorem. One may verify that \(y_n = 2^{-n} \) is a non-oscillatory solution of (2.29), which is clearly bounded.

Remark

The authors in [12] assumed the conditions:

\[
\liminf_{|u| \to \infty} G(u)/u > 0, \quad (2.31)
\]

\[
G \text{ is non-decreasing}, \quad (2.32)
\]

and

\[
H \text{ is bounded},
\]

in order to study the oscillatory behaviour of solutions of the neutral equation

\[
\Delta^m(y_n - p_n y_{\tau(n)}) + v_n G(y_{\sigma(n)}) - u_n H(y_{\alpha(n)}) = f_n.
\]
Since both the conditions (2.31) and (2.32) are incompatible to the condition \((H_2)\), we removed these conditions and thus, could generalize, improve the work in [12] and apply it to study (1.2) with oscillating \(q_n\). Further, we may add that no result in the cited papers in the reference can be applied to the equations (2.28) or (2.29) due to the reason that either the conditions on \(G\) are not satisfied or because \(q_n\) is not of constant sign.

Before we close this article, we would like to give our final comments, which might be helpful for further research.

Final Comments

Our results (see Theorems 2.4 and 2.7) of this paper do not hold for \(G(u) \equiv u\) because of our assumption \((H_2)\). Hence, it would be interesting to study the oscillation of solutions of (1.2) either by relaxing the condition \((H_2)\) or by considering the corresponding linear equation.

Acknowledgements. The authors are thankful and obliged to the referees for their various suggestions to improve the presentation of this paper.

REFERENCES

(Received March 1, 2009)
(Revised June 18, 2009)

Radhanath Rath
Department of Mathematics
Veer Surendra Sai University of Technology, BURLA
Sambalpur, 768018
Orissa, India
e-mail: radhanathmath@yahoo.co.in

B. L. Sibabrata Barik
Department of Mathematics
Konark institute of science and technology
Bhubaneswar
Orissa, India
e-mail: barikmath@yahoo.com