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Abstract. Using the techniques of some new measures of noncompactness we prove in this paper
some existence theorems concerning the global attractivity and ultimate positivity of the solu-
tions for a nonlinear functional integral equation. Our investigations are placed in the Banach
space of real-valued functions defined, continuous and bounded on unbounded intervals together
with the applications of a recent measure theoretic fixed point theorem of Dhage [7]. On one
hand, our results generalize the attractivity results of Dhage [9] with a different method and the
results of Banas and Rzepka [4] and Banas and Dhage [5] with similar method but under weaker
conditions and on the other hand they are new to the literature as regards ultimate positivity of the
solutions for nonlinear functional integral equations. A few realizations of the obtained results
are also indicated.

1. Introduction

Nonlinear integral equations with bounded intervals have been studied extensively
in the literature as regard various aspects of the solutions. This includes existence,
uniqueness, stability and extremality of solutions. But the study of nonlinear inte-
gral equations with unbounded intervals is relatively new and exploited for the new
characteristics of attractivity and asymptotic attractivity of solutions. There are two ap-
proaches for dealing with these characteristics of solutions, namely, classical fixed point
theorems involving the hypotheses from analysis and topology and the fixed point the-
orems involving the use of measure of noncompactness. Each one of these approaches
has some advantages and disadvantages over the others (cf. Dhage [8, 9]).

In this paper we are going to prove some theorems on the existence and global
attractivity and positivity of solutions for a functional integral equation by using fixed
point theorem involving the use of measures of noncompactness. Our investigations
will be situated in the Banach space of real functions which are defined, continuous and
bounded on the right hand real half axis R+ . The mentioned equation has rather general
form and contains as particular cases a lot of functional equations and nonlinear integral

Mathematics subject classification (2010): 45D05, 45G10, 47H10.
Keywords and phrases: functional integral equation, measure of noncompactness, fixed point theorem,

attractive solutions, ultimately positive solutions.

c© � � , Zagreb
Paper DEA-02-20

299



300 BAPURAO C. DHAGE

equations of Volterra type. The main tool used in our considerations is the technique of
measures of noncompactness and a fixed point theorem of Dhage [7].

The measures of noncompactness used in the paper allows us not only to obtain the
existence of solutions of the mentioned functional integral equation but also to charac-
terize those solutions in terms of global attractivity and positivity on unbounded inter-
vals. This assertion means that all possible solutions of the functional integral equation
in question are globally uniformly attractive and positive in the sense which will be
defined further on. The assumptions imposed in our main existence theorems admit
several natural realizations. These realizations are constructed with help of a certain
class of subadditive functions.

The results obtained in this paper generalize and extend several ones obtained ear-
lier in a lot of papers concerning asymptotic stability of solutions for some functional in-
tegral equations (cf. [4,5,6,10,13]). It is worthwhile mentioning that the novelty of our
approach consists mainly in the possibility of obtaining the global attractivity, asymp-
totic attractivity and positivity of solutions for considered functional integral equations.

2. Notations, definitions and auxiliary results

This section is devoted to collect some definitions and auxiliary results which will
be needed in the further considerations of this paper. At the beginning we present
some basic facts concerning the measures of noncompactness. We accept the following
definition of the concept of a measure of noncompactness given in Dhage [7]. The
details of the different types of measures of noncompatness appear in Akhmerov et al.
[1], Appell [2], Banas and Goebel [3], and the references given therein.

Let E be a Banach space, P(E) , a class of subsets of E and let Pp(E) de-
note the class of all non-empty subsets of E with property p . Here p may be p =
closed (in short cl), p = bounded (in short bd), p = relatively compact (in short rcp)
etc. Thus, Pcl(E),Pbd(E),Pcl,bd(E) and Prcp(E) denote respectively the classes of
closed, bounded, closed and bounded and relatively compact subsets of E . A function
dH : P(E)×P(E)→ R

+ defined by

dH(A,B) = max

{
sup
a∈A

D(a,B) , sup
b∈B

D(b,A)
}

(2.1)

satisfies all the conditions of a metric on P(E) and is called a Hausdorff-Pompeiu
metric on E , where D(a,B) = inf{‖a−b‖ : b ∈ B} . It is known that the hyperspace
(Pcl(E),dH) is a complete metric space.

The axiomatic way of defining the measures of noncompactness has been adopted
in several papers in the literature. See Akhmerov et al. [1], Appell [2], Banas and
Goebel [3], Väth [12] and the references therein. In this paper, we adopt the following
axiomatic definition of the measure of noncompactness in a Banach space given by
Dhage [7]. The other useful forms appear in Banas and Goebel [3] and the references
therein. We need the following definitions in the sequel.
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DEFINITION 2.1. A sequence {An} of non-empty sets in Pp(E) is said to con-
verge to a set A , called the limiting set if dH(An,A) → 0 as n → ∞ . A mapping
μ : Pp(E) → R

+ is called continuous if for any sequence {An} in Pp(E) we have
that

dH(An,A) → 0 =⇒ |μ(An)− μ(A)| → 0 as n → ∞.

DEFINITION 2.2. A mapping μ : Pp(E)→R
+ is called nondecreasing if A,B ∈

Pp(E) are any two sets with A ⊆ B , then μ(A) � μ(B) , where ⊆ is a order relation
by inclusion in Pp(E) .

Now we are equipped with the necessary details to define the measures of noncompact-
ness for a bounded subset of the Banach space E .

DEFINITION 2.3. A function μ : Pbd(E) → R
+ is called a measure of noncom-

pactness if it satisfies:

1o /0 �= μ−1(0) ⊂ Prcp(E) ,
2o μ(A) = μ(A) , where A is the closure of A ,
3o μ(A) = μ(Conv(A)) , where Conv(A) is the convex hull of A ,
4o μ is nondecreasing, and
5o if {An} is a decreasing sequence of sets in Pbd(E) such that lim

n→∞
μ(An) = 0, then

the limiting set A∞ = lim
n→∞

An = ∩∞
n=0An is non-empty.

The family ker μ described in 1o is said to be the kernel of the measure of non-
compactness μ and

ker μ = {A ∈ Pbd(E) | μ(A) = 0} ⊂ Prcp(E).

A measure μ is called complete or full if the kernel ker μ of μ consists of all
possible relatively compact subsets of E . Next, a measure μ is called sublinear if it
satisfies:

6o μ(λA) = |λ |μ(A) for λ ∈ R , and
7o μ(A+B) � μ(A)+ μ(B) .
There do exist the sublinear measures of noncompactness on Banach spaces E . Indeed,
the Kuratowskii and Hausdorffmeasures of noncompactness are sublinear in E . A good
collection of different types of measures of noncompactness appears in Appell [2].

Observe that the limiting set A∞ from 6o is a member of the family ker μ . In fact,
since μ(A∞) � μ(An) = μ(An) for any n , we infer that μ(A∞) = 0. This yields that
A∞ ∈ kerμ . This simple observation will be essential in our further investigations.

Now we state a key fixed point theorem of Dhage [7] which will be used in the
sequel. Before stating this fixed point result, we give a useful definition.

DEFINITION 2.4. A mapping Q : E →E is called D -set-Lipschitz if there exists a
continuous nondecreasing function φ : R

+ →R
+ such that μ(Q(A)) � φ(μ(A)) for all

A ∈ Pbd(E) with Q(A) ∈ Pbd(E) , where φ(0) = 0. Sometimes we call the function
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φ to be a D -function of Q on E . In the special case, when φ(r) = kr,k > 0, Q is
called a k -set-Lipschitz mapping and if k < 1, then Q is called a k -set-contraction on
E . Further, if φ(r) < r for r > 0, then Q is called a nonlinear D -set-contraction on
E .

THEOREM 2.1. (Dhage [7]) Let C be a non-empty, closed, convex and bounded
subset of a Banach space E and let Q : C →C be a continuous and nonlinear D -set-
contraction. Then Q has a fixed point.

REMARK 2.1. Let us denote by Fix(Q) the set of all fixed points of the oper-
ator Q which belong to C . It can be shown that the set Fix(Q) existing in Theo-
rem 2.1 belongs to the family ker μ . In fact if Fix(Q) �∈ ker μ , then μ(Fix(Q)) >
0 and Q(Fix(Q)) = Fix(Q) . Now from nonlinear D -set-contraction it follows that
μ(Q(Fix(Q))) � φ(μ(Fix(Q))) which is a contradiction since φ(r) < r for r > 0.
Hence Fix(Q) ∈ ker μ .

Our further considerations will be placed in the Banach space BC(R+,R) consist-
ing of all real functions x = x(t) defined, continuous and bounded on R+ . This space
is equipped with the standard supremum norm

||x|| = sup{|x(t)| : t ∈ R+} .

For our purposes we will use the Hausdorff or ball measure of noncompactness in
BC(R+,R) . A handy formula for Hausdorff measure of noncompactness useful in
application is defined as follows. Let us fix a nonempty and bounded subset X of the
space BC(R+,R) and a positive number T . For x ∈ X and ε � 0 denote by ωT (x,ε)
the modulus of continuity of the function x on the closed and bounded interval [0,T ]
defined by

ωT (x,ε) = sup{|x(t)− x(s)| : t,s ∈ [0,T ], |t− s| � ε} .

Next, let us put
ωT (X ,ε) = sup{ωT (x,ε) : x ∈ X} ,

ωT
0 (X) = lim

ε→0
ωT (X ,ε) .

It is known that ωT
0 is a measure of noncompactness in the Banach space C([0.T ],R)

of continuous and real-valued functions defined on a closed and bounded interval [0,T ]
in R which is equivalent to Hausdorff or ball measure χ of noncompactness in it. In
fact, one has

χ(X) =
1
2
ωT

0 (X)

for any bounded subset X of C([0,T ],R) (See Banas and Goebel [3] and the references
therein). Finally, we define

ω0(X) = lim
T→∞

ωT
0 (X) .
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Now, for a fixed number t ∈ R+ let us denote

X(t) = {x(t) : x ∈ X},
‖X(t)‖ = sup{|x(t| : x ∈ X} ,

and
‖X(t)− c‖= sup{|x(t)− c| : x ∈ X} .

Finally, let us consider the functions μ ′s defined on the family Pcl,bd(X) by the for-
mulas

μa(X) = max

{
ω0(X) , lim sup

t→∞
diamX(t)

}
, (2.2)

μb(X) = max

{
ω0(X) , lim sup

t→∞
‖X(t)‖

}
, (2.3)

and

μc(X) = max

{
ω0(X) , lim sup

t→∞
‖X(t)− c‖

}
. (2.4)

Let T > 0 be fixed. Then for any x ∈ BC(R+,R) define

δT (x) = sup{∣∣ |x(t)|− x(t)
∣∣ : t � T}.

Similarly, for any bounded subset X of BC(R+,R) define

δT (X) = sup{δT (x) : x ∈ X} ,

and
δ (X) = lim

T→∞
δT (X).

Define the functions μad ,μbd ,μcd : Pbd(E) → R+ by by the formulas

μad(X) = max{μa(X) , δ (X)}, (2.5)

μbd(X) = max{μb(X) , δ (X)}, (2.6)

and
μcd(X) = max{μc(X) , δ (X)} (2.7)

for all X ∈ Pcl,bd(E) .

REMARK 2.2. It can be shown as in Banas and Goebel [3] that the functions μa ,
μb, μc , μad , μbd and μcd are measures of noncompactness in the space BC(R+,R) .
The kernels ker μa , ker μb and ker μc of the measures μa , μb and μc consist of
nonempty and bounded subsets X of BC(R+,R) such that functions from X are lo-
cally equicontinuous on R+ and the thickness of the bundle formed by functions from
X tends to zero at infinity. Moreover, the functions from ker μc come closer along a
line y(t) = c and the functions from ker μb come closer along the line y(t) = 0 as t
increases to ∞ through R+ . A similar situation is also true for the kernels ker μad ,
ker μbd , and ker μcd of the measures of noncompactness μad , μbd and μcd . Moreover,
these measures μad , μbd and μcd characterize the ultimate positivity of the functions
belonging to the kernels of ker μad , ker μbd , and ker μcd .
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The above expressed property of ker μa , ker μb , ker μc and ker μad , ker μbd , ker μcd

permits us to characterize solutions of the integral equations considered in the sequel.
In order to introduce further concepts used in this paper, let us assume that E =

BC(R+,R) and let Ω be a subset of X . Let Q : E → E be an operator and consider
the following operator equation in E ,

Qx(t) = x(t) (2.8)

for all t ∈ R+ . Below we give different characterizations of the solutions for the oper-
ator equation (2.8) on R+ .

DEFINITION 2.5. We say that solutions of the equation (2.8) are locally attractive
if there exists a closed ball Br(x0) in the space BC(R+,R) for some x0 ∈ BC(R+,R)
such that for arbitrary solutions x = x(t) and y = y(t) of equation (2.8) belonging to
Br(x0)∩Ω we have that

lim
t→∞

(x(t)− y(t)) = 0. (2.9)

In the case when the limit (2.9) is uniform with respect to the set B(x0,r)∩Ω , i.e.,
when for each ε > 0 there exists T > 0 such that

|x(t)− y(t)|� ε (2.10)

for all x,y ∈ Br(x0)∩Ω being solutions of (2.1) and for t � T , we will say that solu-
tions of equation (2.8) are uniformly locally attractive on R+ .

DEFINITION 2.6. The solution x = x(t) of equation (2.8) is said to be globally
attractive if (2.9) holds for each solution y = y(t) of (2.8) on Ω . In other words,
we may say that solutions of the equation (2.8) are globally attractive if for arbitrary
solutions x(t) and y(t) of (2.8) on Ω , the condition (2.9) is satisfied. In the case when
the condition (2.9) is satisfied uniformly with respect to the set Ω , i.e., if for every
ε > 0 there exists T > 0 such that the inequality (2.10) is satisfied for all x,y ∈ Ω
being the solutions of (2.8) and for t � T , we will say that solutions of the equation
(2.8) are uniformly globally attractive on R+ .

The following definitions appear in Dhage [8].

DEFINITION 2.7. A line y(t) = c , where c a real number, is called an attractor
for a solution x ∈ BC(R+,R) to the equation (2.8) if limt→∞[x(t)− c] = 0. In this case
the solution x to the equation (2.8) is also called to be asymptotic to the line y(t) = c
and the line is an asymptote for the solution x on R+ .

Now we introduce the following definition useful in the sequel.

DEFINITION 2.8. The solutions of the equation (2.8) are said to be globally asymp-
totically attractive if for any two solutions x = x(t) and y = y(t) of the equation (2.8),
the condition (2.9) is satisfied and there is a line which is a common attractor to them on
R+ . In the case when condition (2.9) is satisfied uniformly, that is, if for every ε > 0
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there exists T > 0 such that the inequality (2.10) is satisfied for t � T and for all x,y
being the solutions of (2.8) and having a line as a common attractor, we will say that
solutions of the equation (2.8) are uniformly globally asymptotically attractive on R+ .

REMARK 2.3. Let us mention that the concepts of global attractivity of solutions
are recently introduced in Hu and Yan [11] while the concepts of local and global
asymptotic attractivity have been presented in Dhage [8]. Similarly, the concepts of
uniform local and global attractivity (in the above sense) were introduced in Banas and
Rzepka [4].

Next, we introduce the new concept of local and global asymptotic positivity of
the solutions for the operator equation (2.8) in BC(R+,R) .

DEFINITION 2.9. A solution x of the equation (2.8) is called locally ultimately
positive if there exists a closed ball Br(x0) in BC(R+,R) for some x0 ∈ BC(R+,R)
such that x ∈ Br(x0) and

lim
t→∞

[|x(t)|− x(t)
]
= 0. (2.11)

In the case when the limit (2.11) is uniform with respect to the solution set of the
operator equation (2.8), i.e., when for each ε > 0 there exists T > 0 such that

||x(t)|− x(t)|� ε (2.12)

for all x being solutions of (2.8) and for t � T , we will say that solutions of equation
(2.8) are uniformly locally ultimately positive on R+ .

DEFINITION 2.10. A solution x ∈C(R+,R) of the equation (2.8) is called glob-
ally ultimately positive if (2.11) is satisfied. In the case when the limit (2.11) is uniform
with respect to the solution set of the operator equation (2.8) in C(R+,R) , i.e., when
for each ε > 0 there exists T > 0 such that (2.12) is satisfied for all x being solutions of
(2.8) and for t � T , we will say that solutions of equation (2.8) are uniformly globally
ultimately positive on R+ .

REMARK 2.4. We note that the global attractivity and global asymptotic attrac-
tivity implies respectively the local attractivity and local asymptotic attractivity of the
solutions for the operator equation (2.8) on R+ . Similarly, global ultimate positivity
implies local ultimate positivity of the solutions for the operator equation (2.8) on un-
bounded intervals. However, the converse of the above two statements may not be true.
A few details of ultimate positivity are given Dhage [10].

In the following section we prove the main results of this paper.
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3. Attractivity and positivity results

In this section we will investigate the following functional integral equation (in
short FIE)

x(t) = q(t)+ f (t,x(α1(t)),x(α2(t)))+
∫ β (t)

0
g(t,s,x(γ1(s)),x(γ2(s)))ds , (3.1)

for all t ∈ R+ , where q : R+ → R, f : R+ ×R×R → R, g : R+ ×R+ ×R×R → R

and α1,α1,β ,γ1,γ2 : R+ → R+ .
By a solution of the FIE (3.1) we mean a function x ∈ C(R+,R) that satisfies

the equation (3.1), where C(R+,R) is the space of continuous real-valued functions
defined on R+ .

When α1(t) = t = γ1(t) for t ∈R+ , the FIE (3.1) reduces to the functional integral
equation

x(t) = q(t)+ f (t,x(t),x(α2(t)))+
∫ β (t)

0
g(t,s,x(s),x(γ2(s)))ds , (3.2)

for t ∈ R+ . The integral equation (3.2) has been studied in Dhage [9] for the global at-
tractivity and global asymptotic attractivity of solutions via classical hybrid fixed point
theory due to the present author (see Dhage [9] and the references given therein). Ob-
serve that the above integral equation (3.2) includes several classes of functional, inte-
gral and functional integral equations considered in the literature (cf. [4,5,6,10,13] and
references therein). Let us also mention that the following functional integral equation
considered in Banas and Dhage [5],

x(t) = f (t,x(α(t)))+
∫ β (t)

0
g(t,s,x(γ(s)))ds , (3.3)

is also a spacial case of the equation (3.2) which further includes the functional integral
equation considered in Banas and Rzepka [4], where α(t) = β (t) = γ(t) = t , t ∈ R+ .
Therefore, our FIE (3.1) is more general and so, the attractivity and positivity results
of this paper include the attractivity and positivity results for all the above mentioned
integral equations which are also new to the literature.

The equation (3.1) will be considered under the following assumptions.

(H0) The functions α1,α2,β ,γ1,γ2 : R+ → R+ are continuous and satisfy t � α1(t) ,
t � α2(t) for all t ∈ R+ .

(H1) The function q : R+ → R is continuous and bounded.

(H2) The function f : R+×R×R → R is continuous and there exists a bounded func-
tion � : R+ → R with bound L and a positive constant M such that

| f (t,x1,x2)− f (t,y1,y2)| � �(t)max{|x1− y1|, |x2− y2|}
M +max{|x1− y1|, |x2 − y2|}

for t ∈ R+ and for x1,x2,y1,y2 ∈ R . Moreover, we assume that L � M .
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(H3) The function t → f (t,0,0) is bounded on R+ with

F0 = sup{| f (t,0,0)| : t ∈ R+}.

(H4) The function g : R+ ×R+ ×R×R → R is continuous and there exists a contin-
uous function b : R+ ×R+ → R+ such that

|g(t,s,x,y)| � b(t,s)

for t,s ∈ R+ . Moreover, we assume that

lim
t→∞

∫ β (t)

0
b(t,s)ds = 0 .

REMARK 3.1. Hypothesis (H2) is satisfied if in particular, the function f satis-
fies the condition,

| f (t,x1,x2)− f (t,y1,y2)| �
�(t)

[|x1− y1|+ |x2− y2|
]

2M +
[|x1− y1|+ |x2− y2|

] (3.4)

for all t ∈ R+ and x1,x2,y1,y2 ∈ R , where L � M , and the function � is defined as in
hypothesis (H2) which further yields the usual Lipschitz condition on the function f ,

| f (t,x1,x2)− f (t,y1,y2)| � �(t)
2M

[|x1− y1|+ |x2− y2|
]

(3.5)

for all t ∈ R+ and x1,x2,y1,y2 ∈ R provided L < M . As mentioned in Dhage [9], our
hypothesis (H2) is more general than that existing in the literature.

Then we can formulate our main results of this paper.

THEOREM 3.1. Under the above assumptions (H0)-(H4) , the FIE (3.1) has at
least one solution in the space BC(R+,R) . Moreover, solutions of the equation (3.1)
are globally uniformly attractive on R+ .

Proof. Consider the operator Q defined on the space BC(R+,R) be the formula

Qx(t) = q(t)+ f (t,x(α1(t)),x(α2(t)))+
∫ β (t)

0
g(t,s,x(γ1(s)),x(γ2(s)))ds . (3.6)

Observe that in view of our assumptions, for any function x ∈ BC(R+,R) the function
Qx is continuous on R+ . Moreover, for arbitrarily fixed t ∈ R+ we obtain:

|(Qx)(t)| � |q(t)|+ | f (t,x(α1(t)),x(α2(t)))|+
∫ β (t)

0
|g(t,s,x(γ1(s)),x(γ2(s)))|ds

� ‖q‖+ | f (t,x(α1(t)),x(α2(t)))− f (t,0,0)|+ | f (t,0,0)|+
∫ β (t)

0
b(t,s)ds
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� ‖q‖+
Lmax{|x(α1(t))|, |x(α2(t))|}

M +max{|x(α1(t))|, |x(α2(t))|} + | f (t,0,0)|+
∫ β (t)

0
b(t,s)ds

� ‖q‖+
L||x||

M + ||x|| +F0 + v(t) � ‖q‖+
L||x||

M + ||x|| +F0 +V

� ‖q‖+L+F0+V ,

where we denoted

v(t) =
∫ β (t)

0
b(t,s)ds , V = sup{v(t) : t ∈ R+} .

Obviously in view of assumption (H4) , we infer that V is finite.
From the above estimate we deduce that

||Qx|| � ‖q‖+L+F0+V (3.7)

for all x∈BC(R+,R) . This means that the operator Q transforms the space BC(R+,R)
into itself. More precisely, from (3.7) we obtain that the operator Q transforms contin-
uously the space BC(R+,R) into the closed ball Br(0) , where r = ‖q‖+L+F0 +V .
Because of this fact, the existence of solutions for the FIE (3.1) is global in nature.

In what follows we will consider the operator Q as a mapping from Br(0) into
itself. Now we show that the operator Q is continuous on the ball Br(0) . To do this
let us fix arbitrarily ε > 0 and take x,y ∈ Br(0) such that ||x− y||� ε . Then we get:

|(Qx)(t)− (Qy)(t)| � | f (t,x(α1(t)),x(α2(t)))− f (t,y(α1(t)),y(α2(t)))|

+
∫ β (t)

0
|g(t,s,x(γ1(s)),x(γ2(s)))−g(t,s,y(s),y(γ2(s)))|ds

� Lmax{|x(α1(t))− y(α1(t))|, |x(α2(t))− y(α2(t))|}
M +max{|x(α1(t))− y(α1(t))|, |x(α2(t))− y(α2(t))|}

+
∫ β (t)

0
[|g(t,s,x(γ1(s)),x(γ2(s)))|+ |g(t,s,y(s),y(γ2(s)))|]ds

� L||x− y||
M + ||x− y|| +2

∫ β (t)

0
b(t,s)ds

� ε +2v(t).

Hence, in virtue of assumption (H4) , we infer that there exists T > 0 such that v(t) � ε
for t � T . Thus, for t � T from above estimate, we derive that

|(Qx)(t)− (Qy)(t)| � 3ε . (3.8)

Further, let us assume that t ∈ [0,T ] . Then, evaluating similarly as above we get:

|(Qx)(t)− (Qy)(t)| � ε+
∫ β (t)

0
|g(t,s,x(γ1(s)),x(γ2(s)))−g(t,s,y(s),y(γ2(s)))|ds
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� ε+
∫ β (t)

0
ωT

r (g,ε)ds � ε +βTωT
r (g,ε), (3.9)

where we denoted
βT = sup{β (t) : t ∈ [0,T ]} ,

and

ωT
r (g,ε) = sup{|g(t,s,x1,x2)−g(t,s,y1,y2)| : t ∈ [0,T ],s ∈ [0,βT ]

x1,x2,y1,y2 ∈ [−r,r], |x1− y1| � ε, |x2 − y2| � ε} . (3.10)

Obviously we have that βT <∞ . Moreover, from the uniform continuity of the function
g(t,s,x,y) on the set [0,T ]× [0,βT ]× [−r,r]× [−r,r] we derive that ωT

r (g,ε) → 0 as
ε → 0. Now, linking (3.9), (3.10) and the above established facts we conclude that the
operator Q maps continuously the closed ball Br(0) into itself.

Further, let us take a nonempty subset X of the ball Br(0) . Next, fix arbitrarily
T > 0 and ε > 0. Let us choose x∈X and t1,t2 ∈ [0,T ] with |t2−t1|� ε . Without loss
of generality we may assume that t1 < t2 . Then, taking into account our assumptions
(H2) and (H4) , we get:

|(Qx)(t2)− (Qx)(t1)| (3.11)

� |q(t2)−q(t1)|+ | f (t2,x(α1(t2)),x(α2(t2)))− f (t2,x(α1(t1)),x(α2(t1)))|

+ | f (t2,x(α1(t1)),x(α2(t1))− f (t1,x(α1(t1)),x(α2(t1)))|

+
∣∣∣∣
∫ β (t2)

0
g(t2,s,x(γ1(s)),x(γ2(s)))ds−

∫ β (t2)

0
g(t1,s,x(γ1(s)),x(γ2(s)))ds

∣∣∣∣

+
∣∣∣∣
∫ β (t2)

0
g(t1,s,x(γ1(s)),x(γ2(s)))ds−

∫ β (t1)

0
g(t1,s,x(γ1(s)),x(γ2(s)))ds

∣∣∣∣

� ωT (q,ε)+
Lmax{|x(α1(t2))− x(α1(t1))|, |x(α2(t2))− x(α2(t1))|}

M +max{|x(α1(t2))− x(α1(t1))|, |x(α2(t2))− x(α2(t1))|}

+ωT
r ( f ,ε)+

∫ β (t2)

0
|g(t2,s,x(γ1(s)),x(γ2(s)))−g(t1,s,x(γ1(s)),x(γ2(s)))|ds

+
∣∣∣∣
∫ β (t2)

β (t1)
|g(t1,s,x(γ1(s)),x(γ2(s)))|ds

∣∣∣∣

� ωT (q,ε)+
Lmax{ωT (x,ωT (α1,ε)),ωT (x,ωT (α2,ε))}

M +max{ωT (x,ωT (α1,ε)),ωT (x,ωT (α2,ε))} +ωT
r ( f ,ε)

+
∫ βT

0
ωT

r (g,ε)ds +ωT (β ,ε)Gr
T , (3.12)
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where we denoted

ωT (q,ε) = sup{|q(t2)−q(t1)| : t1,t2 ∈ [0,T ], |t2− t1| � ε} ,

ωT
r ( f ,ε) = sup{| f (t2,x,y)− f (t1,x,y)| : t1,t2 ∈ [0,T ], |t2 − t1| � ε, x,y ∈ [−r,r]} ,

ωT
r (g,ε) = sup{|g(t2,s,x,y)−g(t1,s,x,y)| : t1,t2 ∈ [0,T ],

|t2− t1| � ε, s ∈ [0,βT ], x,y ∈ [−r,r]} ,

Gr
T = sup{|g(t,s,x,y)| : t ∈ [0,T ], s ∈ [0,βT ], x ∈ [−r,r]} .

From the above estimate we derive the following inequality:

ωT (QX ,ε) � ωT (q,ε)+
Lmax{ωT (X ,ωT (α1,ε)),ωT (X ,ωT (α2,ε))}

M +max{ωT (X ,ωT (α1,ε)),ωT (X ,ωT (α2,ε))}
+ωT

r ( f ,ε)+
∫ βT

0
ωT

r (g,ε)ds+ωT (β ,ε)Gr
T . (3.13)

Observe that ωT (q,ε) → 0, ωT
r ( f ,ε) → 0 and ωT

r (g,ε) → 0 as ε → 0, which is
a simple consequence of the uniform continuity of the functions q , f and g on the
sets [0,T ] , [0,T ]× [−r,r]× [−r,r] and [0,T ]× [0,βT ]× [−r,r]× [−r,r] respectively.
Moreover, it is obvious that the constant Gr

T is finite and ωT (α1,ε)→ 0, ωT (α2,ε)→
0, ωT (β ,ε) → 0 as ε → 0. Thus, linking the established facts with the estimate (3.13)
we get

ωT
0 (QX) � LωT

0 (X)
M +ωT

0 (X)
. (3.14)

Now, taking into account our assumptions, for arbitrarily fixed t ∈ R+ as well as for
x1,x2,y1,y2 ∈ X we deduce the following estimate (cf. the estimate (3.8)-(3.9)):

|(Qx)(t)− (Qy)(t)| � Lmax{|x(α1(t))− y(α1(t))|, |x(α2(t))− y(α2(t))|}
M +max{|x(α1(t))− y(α1(t))|, |x(α2(t))− y(α2(t))|}
+

∫ β (t)

0
[|g(t,s,x(γ1(s)),x(γ2(s)))|+ |g(t,s,y(s),y(γ2(s)))|]ds

� Lmax{|x(α1(t))− y(α1(t))|, |x(α2(t))− y(α2(t))|}
M +max{|x(α1(t))− y(α1(t))|, |x(α2(t))− y(α2(t))|} +2v(t)

� L max{diamX(α1(t)),diamX(α2(t))}
M +max{diamX(α1(t)),diamX(α2(t))} +2v(t) .

Hence we obtain

diam(QX)(t) � Lmax{diamX(α1(t)),diamX(α2(t))}
M +max{diamX(α1(t)),diamX(α2(t))} +2v(t) .

In view of assumptions (H0) and (H4) this yields

limsup
t→∞

diam(QX)(t) �
L limsup

t→∞
max{diamX(α1(t)),diamX(α2(t))}

M + limsup
t→∞

max{diamX(α1(t)),diamX(α2(t))}
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�
L limsup

t→∞
diamX(t)

M + limsup
t→∞

diamX(t)
. (3.15)

Further, using the measure of noncompactness μa defined by the formula (2.2) and
keeping in mind the estimates (3.14) and (3.15), we obtain

μa(QX) = max

{
ω0(QX) , limsup

t→∞
diamQX(t)

}

� max

⎧⎨
⎩

Lω0(X)
M +ω0(X)

,

L limsup
t→∞

diamX(t)

M + limsup
t→∞

diamX(t)

⎫⎬
⎭

�
Lmax

{
ω0(X), limsup

t→∞
diamX(t)

}

M +max

{
ω0(X), limsup

t→∞
diamX(t)

}

=
Lμa(X)

M + μa(X)
. (3.16)

Since L � M in view of assumption (H2) , from the above estimate we infer that
μa(QX) � φ(μa(X)) , where φ(r) = Lr

M+r < r for r > 0. Hence we apply Theorem

2.1 to deduce that the operator Q has a fixed point x in the ball Br(0) . Obviously
x is a solution of the FIE (3.1). Moreover, taking into account that the image of the
space BC(R+,R) under the operator Q is contained in the ball Br(0) we infer that the
set Fix(Q) of all fixed points of Q is contained in Br(0) . Obviously, the set Fix(Q)
contains all solutions of the FIE (3.1). On the other hand, from Remark 2.1 we con-
clude that the set Fix(Q) belongs to the family ker μa . Now, taking into account the
description of sets belonging to ker μa (given in Section 2) we deduce that all solutions
for the FIE (3.1) are globally uniformly attractive on R+ . This completes the proof.

REMARK 3.2. When q ≡ 0, f (t,x,y) = f (t,x) and g(t,s,x,y) = g(t,s,x) in our
Theorem 3.1, we obtain the global attractivity result for the FIE (3.3). Note that the
global attractivity result for the FIE (3.3) is also proved in Banas and Dhage [5] under
the same hypotheses, but under the stronger hypothesis of (H2) that L < M . Therefore,
our Theorem 3.1 generalize and improve the existence results of Dhage [9] and Banas
and Dhage [5] and thereby the results of Banas and Rzepka [4] under weaker conditions
with a new measure of noncompactness in the Banach space BC(R+,R) .

To prove next result concerning the asymptotic positivity of the attractive solu-
tions, we need the following hypothesis in the sequel.

(H5) The functions q and f satisfy

lim
t→∞

[ |q(t)|−q(t)
]
= 0 and lim

t→∞

[ | f (t,x,y)|− f (t,x,y)
]
= 0

for all x,y ∈ R .
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THEOREM 3.2. Under the hypotheses of Theorem 3.1 and (H5) , the FIE (3.1)
has at least one solution on R+ . Moreover, solutions of the FIE (3.1) are uniformly
globally attractive and ultimately positive on R+ .

Proof. Consider the closed ball Br(0) in the Banach space BC(R+,R) , where
the real number r is given as in the proof of Theorem 3.1 and define a mapping Q :
BC(R+,R)→ BC(R+,R) by (3.7). Then it is shown as in the proof of Theorem 3.1 that
Q defines a continuous mapping from the space BC(R+,R) into Br(0) . In particular,
Q maps Br(0) into itself. Next we show that Q is a nonlinear-set-contraction with
respect to the measure μad of noncompactness in BC(R+,R) . We know that for any
x,y ∈ R , one has the inequality, |x|+ |y|� |x+ y|� x+ y, and therefore,

∣∣|x+ y|− (x+ y)
∣∣ �

∣∣ |x|+ |y|− (x+ y)
∣∣ �

∣∣|x|− x
∣∣+ ∣∣|y|− y

∣∣
for all x,y ∈ R . Now for any x ∈ Br(0) , one has

∣∣ |Qx(t)|−Qx(t)
∣∣

�
∣∣ |q(t)|−q(t)

∣∣+ ∣∣ | f (t,x(α1(t)),x(α2(t)))|− f (t,x(α1(t)),x(α2(t)))
∣∣

+
∫ β (t)

0

[ |g(t,s,x(γ1(s)),x(γ2(s)))|−g(t,s,x(γ1(s)),x(γ2(s)))
]
ds

�
∣∣ |q(t)|−q(t)

∣∣+ ∣∣ | f (t,x(α1(t)),x(α2(t)))|− f (t,x(α1(t)),x(α2(t)))
∣∣

+2v(t)
� δT (q)+ δT ( f )+2VT ,

where VT = supt�T v(t) . From the above inequality, it follows that

δT (X) � δT (q)+ δT ( f )+2VT

for all closed X ⊂ Br(0) . Taking the limit superior as T → ∞ , we obtain,

limsup
T→∞

δT (X) � limsup
T→∞

δT (q)+ limsup
T→∞

δT ( f )+2limsup
T→∞

VT = 0 (3.17)

for all closed X ⊂ Br(0) .

Hence,
δ (QX) = lim

T→∞
δT (X) = 0

for all closed subsets X of Br(0) . Further, using the measure of noncompactness μa

defined by the formula (2.2) and keeping in mind the estimates (3.14) and (3.15), we
obtain:

μad(QX) = max{μad(QX) , δ (QX)} � max

{
Lμa(X)

M + μa(X)
, 0

}

=
Lμa(X)

M + μa(X)
� Lμad(X)

M + μad(X)
(3.18)
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Since L � M in view of assumption (H2) , from the above estimate we infer that
μad(QX) � φ(μad(X)) , where φ(r) = Lr

M+r < r for r > 0. Hence we apply Theo-

rem 2.1 to deduce that the operator Q has a fixed point x in the ball Br(0) . Obviously
x is a solution of the FIE (3.1). Moreover, taking into account that the image of the
space BC(R+,R) under the operator Q is contained in the ball Br(0) we infer that the
set Fix(Q) of all fixed points of Q is contained in Br(0) . Obviously, the set Fix(Q)
contains all solutions of the equation (3.1). On the other hand, from Remark 2.1 we
conclude that the set Fix(Q) belongs to the family ker μad . Now, taking into account
the description of sets belonging to ker μad (given in Section 2) we deduce that all so-
lutions of the equation (3.1) are uniformly globally attractive and ultimately positive on
R+ . This completes the proof.

Next we prove the global asymptotic attractivity results for the FIE (3.1). We need
the following hypotheses in the sequel.

(H6) The function q : R+ → R is continuous and limt→∞ q(t) = c .
(H7) f (t,0,0) = 0 for all t ∈ R+ , and
(H8) limt→∞ �(t) = 0, where the function � is defined as in hypothesis (H2) .

THEOREM 3.3. Assume that the hypotheses (H0) , (H2)-(H4) and (H6)-(H8)
hold. Then the FIE (3.1) has at least one solution in the space BC(R+,R) . More-
over, solutions are uniformly globally asymptotically attractive on R+ .

Proof. Consider the closed ball Br(0) in the Banach space BC(R+,R) , where
the real number r is given as in the proof of Theorem 3.1 and define a mapping Q :
Br(0) → Br(0) by (3.6). Then Q is continuous and maps the space BC(R+,R) and
in particular, Br(0) into Br(0) . We show that Q is a nonlinear D -set-contraction
with respect to the measure μc of noncompatness in BC(R+,R) . Let x ∈ Br(0) be
arbitrary. Then we have

|Qx(t)− c|� |q(t)− c|+ | f (t,x(α1(t)),x(α2(t)))|

+
∫ β (t)

0
|g(t,s,x(γ1(s)),x(γ2(s)))|ds

� |q(t)− c|+ �(t) max{|x(α1(t))|, |x(α2(t))|}
M +max{|x(α1(t))|, |x(α2(t))|} + v(t)

� |q(t)− c|+ �(t)‖x‖
M +‖x‖ + v(t)

� |q(t)− c|+ �(t)r
M + r

+ v(t)

� |q(t)− c|+ �(t)+ v(t)

for all t ∈ R+ . This further implies that

‖QX(t)− c‖� |q(t)− c|+ �(t)+ v(t).
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Taking the limit superior in the above inequality, we obtain

limsup
t→∞

‖QX(t)− c‖� limsup
t→∞

|q(t)− c|+ limsup
t→∞

�(t)+ limsup
t→∞

v(t) = 0. (3.19)

Further, using the measure of noncompactness μc defined by the formula (2.4) and
keeping in mind the estimates (3.15) and (3.19), we obtain

μc(QX) = max

{
ω0(QX) , limsup

t→∞
‖QX(t)− c‖

}

� max

{
Lω0(X)

M +ω0(X)
, 0

}
� Lmax{ω0(X) , 0}

M +max{ω0(X),0} =
Lμc(X)

M + μc(X)
. (3.20)

Since L � M in view of assumption (H2) , from the above estimate we infer that
μc(QX) � φ(μc(X)) , where φ(r) = Lr

M+r < r for r > 0. Hence we apply Theorem

2.1 to deduce that the operator Q has a fixed point x in the ball Br(0) . Obviously x is
a solution of the functional integral equation (3.1). Moreover, taking into account that
the image of the space BC(R+,R) under the operator Q is contained in the ball Br(0)
we infer that the set Fix(Q) of all fixed points of Q is contained in Br(0) . Obviously,
the set Fix(Q) contains all solutions of the equation (3.1). On the other hand, from
Remark 2.1 we conclude that the set Fix(Q) belongs to the family ker μc . Now, taking
into account the description of sets belonging to ker μc (given in Section 2) we deduce
that all solutions of the equation (3.1) are uniformly globally asymptotically attractive
on R+ . This completes the proof.

THEOREM 3.4. Under the hypotheses of Theorem 3.3 and (H5) , the FIE (3.1)
has at least one solution on R+ . Moreover, solutions of the FIE (3.1) are uniformly
globally asymptotically attractive and ultimately positive on R+ .

Proof. The proof is similar to Theorem 3.2 with appropriate modifications. Now
the desired conclusion follows by an application of the measure of noncompactness μcd

in BC(R+,R) . This completes the proof.

4. The examples

In what follows, we show that the assumptions imposed in Theorems 3.1 and 3.2
admit some natural realizations. First, we indicate some possible forms for express-
ing the function f that satisfies the hypothesis (H2) . Define a class Φ of functions
φ : R+ → R+ satisfying the following properties:

(i) φ is continuous,
(ii) φ is nondecreasing, and
(iii) φ is subadditive, i.e., φ(x+ y) � φ(x)+φ(y) for all x,y ∈ R+ .

Notice that if φ ∈Φ , then after simple computation it can be shown that

|φ(x)−φ(y)| � φ(|x− y|)
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for all x,y ∈ R+ .
Now consider the function f : R+×R×R→ R defined by

f (t,x,y) = l(t)
φ1(|x|)+φ2(|y|)

2M +φ1(|x|)+φ2(|y|) +m(t) , (4.1)

where the functions l,m : R+ → R are continuous and bounded on R+ , i.e., l,m ∈
BC(R+,R) with supt�0 l(t) = L , φ1,φ2 ∈ Φ satisfying φ1(r) � r , φ2(r) � r , and M
is a positive constant such that L � M . It is shown as in Dhage [9] that the function
f satisfies the condition (3.4) and consequently the hypothesis (H2) . There do exist
functions φ given in the expression (4.1). Indeed, the following functions φ(r) = r ,
φ(r) = ln(1+ r) , φ(r) = arctgr , and φ(r) = 2(

√
1+ r−1) satisfy all the requirements

of the functions φ1 and φ2 given in (4.1) (cf. Banas and Dhage [5]).
Finally, we provide two examples of the nonlinear functional integral equations of

the form (3.1) for which there are global attractive and ultimate positive solutions.

EXAMPLE 4.1. Consider the following nonlinear functional integral equation

x(t) =
t

t +1
+

t2 +2
t2 +1

· arctg(|x(t)|)+ arctg(|x(2t)|)
2+ arctg(|x(t)|)+ arctg(|x(2t)|)

+
∫ t3/2

0

ln(1+ s[|x(γ1(s))|+ |x(√s)|])
(1+ t4)(1+ x2(s)+ x2(

√
s))

ds (4.2)

where t ∈ R+ .

Observe that the equation (4.2) is a special case of the equation (3.1), where we
have

α1(t) = t, α2(t) = 2t, β (t) = t3/2, γ1(t) = t, γ2(t) =
√

t, q(t) =
t

t +1
,

f (t,x,y) =
t2 +2
t2 +1

· arctg(|x|)+ arctg(|y|)
2+ arctg(|x|)+ arctg(|y|) ,

and

g(t,s,x,y) =
ln(1+ s[|x|+ |y|])

(1+ t4)(1+ x2 + y2)
.

Obviously the functions α1,α2,β and γ1,γ2 satisfy hypothesis (H0) . Further notice

that the function q(t) =
t

t +1
is continuous and bounded on R+ with ‖q‖= 1 and the

function f (t,x,y) has the form (4.1) with �(t) =
t2 +2
t2 +1

. Moreover, φ(r) = arctgr and

M = 2. Since ||�||= L = 2 we have that L � M . Additionally we have that the function
φ satisfies above discussed requirements of the class of functions Φ , so the function
f (t,x,y) satisfies assumption (H2) .

Finally, we observe that the function g(t,s,x,y) is continuous on R+×R+×R×R

and

|g(t,s,x,y)| � ln(1+ s[|x|+ |y|])
(1+ t4)(1+ x2 + y2)

� s
1+ t4

.
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Thus we can put b(t,s) =
s

1+ t4
. Indeed, we have

∫ β (t)

0
b(t,s)ds =

1
1+ t4

∫ t3/2

0
sds =

t3

1+ t4
.

Therefore,

lim
t→∞

∫ β (t)

0
b(t,s)ds = lim

t→∞

t3

1+ t4
= 0.

This yields that there is satisfied hypothesis (H4) . Now, based on Theorem 3.1 we con-
clude that the functional integral equation (4.2) has solutions in the space BC(R+,R)
and all solutions of this equation are uniformly globally attractive on R+ . Furthermore,

| f (t,x,y)| = t2 +2
t2 +1

· arctg(|x|)+ arctg(|y|)
2+ arctg(|x|)+ arctg(|y|) = f (t,x,y)

for all t ∈ R+ and x,y ∈ R . Hence the functions q and f (t,x,y) satisfy the hypoth-
esis (H5) . Hence by Theorem 3.2, solutions of the FIE (4.2) are uniformly globally
attractive and ultimately positive on R+ .

EXAMPLE 4.2. Consider the following nonlinear functional integral equation

x(t) =
t2 +2
t2 +1

+ e−t · arctg(|x(t)|)+ arctg(|x(2t)|)
2+ arctg(|x(t)|)+ arctg(|x(2t)|)

+
∫ t3/2

0

ln(1+ s[|x(s)|+ |x(√s)|])
(1+ t4)(1+ x2(s)+ x2(

√
s))

ds , (4.3)

where t ∈ R+ .

Observe that the equation (4.3) is a special case of the equation (3.1), where we
have

α1(t) = t, α2(t) = 2t, β (t) = t3/2, γ1(t) = t, γ2(t) =
√

t, q(t) =
t2 +2
t2 +1

,

f (t,x,y) = e−t · arctg(|x|)+ arctg(|y|)
2+ arctg(|x|)+ arctg(|y|)

and

g(t,s,x,y) =
ln(1+ s[|x|+ |y|])

(1+ t4)(1+ x2 + y2)
.

Obviously, the functions α2,β and γ2 satisfy assumption (H0) . Further, notice that the
function f (t,x,y) has the form (4.1) with �(t) = e−t and limt→∞ �(t) = limt→∞ e−t = 0.
Moreover, φ(r) = acrtgr , M = 1. Since ||�|| = 1 we have that L � M . Additionally
we have that φ ∈Φ , so the function f (t,x,y) satisfies assumption (H2) .

Finally, it is shown as in Example 4.1 that the function g(t,s,x,y) is continuous on
R+×R+×R×R and satisfies hypothesis (H4) . Now, based on Theorem 3.3 we con-
clude that the functional integral equation (4.1) has solutions in the space BC(R+,R)
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and all solutions of this equation are uniformly globally asymptotically attractive on
R+ . Furthermore,

| f (t,x,y)| = e−t · arctg(|x|)+ arctg(|y|)
2+ arctg(|x|)+ arctg(|y|) = f (t,x,y)

for all t ∈ R+ and x,y ∈ R . Hence the functions q and f (t,x,y) satisfy the hypotheses
(H5)-(H8) . Hence by Theorem 3.4, solutions of the FIE (4.1) are uniformly globally
asymptotically attractive and ultimately positive on R+ .

REMARK 4.1. We remark that the global existence as well as attractivity and pos-
itivity results of the FIE (3.1) can be extended to the FIE,

x(t) = q(t)+ f (t,x(α1(t)), . . . ,x(αn(t)))+
∫ β (t)

0
g(t,s,x(γ1(s)), . . . ,x(γn(s)))ds (4.4)

with similar method under appropriate modifications. Then so obtained results are use-
ful in determining the global attractivity and positivity and global asymptotic attrac-
tivity and positivity of solutions for the nonlinear functional integral equations defined
respectively by

x(t) =
t

t +1
+

t2 +2
t2 +1

· ∑n
i=1 arctg(|x(it)|)

n+∑n
i=1 arctg(|x(it)|)

+
∫ t3/2

0

ln
(
1+ s

[
∑n

i=1 |x(si)|])

(1+ t4)
(
1+∑n

i=1 x2(si)
) ds (4.5)

and

x(t) =
t2 +2
t2 +1

+ e−t · ∑n
i=1 arctg(|x(it)|)

n+∑n
i=1 arctg(|x(it)|)

+
∫ t3/2

0

ln
(
1+ s

[
∑n

i=1 |x(si)|])

(1+ t4)
(
1+∑n

i=1 x2(si)
) ds. (4.6)

5. The conclusion

As mentioned earlier, the fixed point theorems involving the measures of non-
compactness automatically yield the characterizations of the solutions for the nonlinear
integral equations on bounded as well as unbounded intervals. This technology de-
pends upon the clever selection of the measures of noncompactness suitable for the
characterizations of solutions. Some of the useful measures of noncompacctness in the
applications to nonlinear integral equations have been discussed in a recent paper of
Appell [2]. In this paper, by using the measures of noncomactness μad and μcd de-
fined by (2.5) and (2.7), we have been able to prove the global existence as well as
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global attractivity and ultimate positivity of the solutions for the FIE (3.1) under cer-
tain Lipschitz and growth conditions on the functions involved in it. However, other
characterizations of the solutions such as monotonic attractivity and positivity can also
be obtained by choosing the suitable measures of noncompactness in the Banach space
of continuous and bounded real-valued functions on R+ . Similarly, here all the non-
linearities involved in FIE (3.1) are assumed to be continuous on the domains of their
definitions, however, it is conjectured that the results of this paper are also true if we
replace the continuous function g by a Carathéodory one. Thus, all of these and other
problems form the further scope for the research work in the theory of nonlinear inte-
gral equations. Some of the results on the lines of monotonic attractivity and ultimate
positivity will be reported elsewhere.

RE F ER EN C ES

[1] R. R. AKHMEROV, M. I. KAMENSKII, A. S. POTAPOV, A. E. RODHINA AND B. N. SADOVSKII,
Measures of noncompactness and condensing operators, Birkhauser Verlag, 1992.

[2] J. APPELL, Measures of noncompactness, condensing operators and fixed points: an application-
oriented survey, Fixed Point Theory, 6 (2005), 157–229.

[3] J. BANAS, K. GOEBEL, Measures of Noncompactness in Banach Space, in: Lecture Notes in Pure
and Applied Mathematics, Vol. 60, Dekker, New York, 1980.

[4] J. BANAS, B. RZEPKA, An application of a measure of noncompactness in the study of asymptotic
stability, Appl. Math. Letters, 16 (2003), 1–6.

[5] J. BANAS, B. C. DHAGE, Global asymptotic stability of solutions of a functional integral equations,
Nonlinear Analysis, 69 (2008), 1945–1952.

[6] T. A. BURTON, B. ZHANG, Fixed points and stability of an integral equation: nonuniqueness, Appl.
Math. Letters, 17 (2004), 839–846.

[7] B. C. DHAGE, Asymptotic stability of nonlinear functional integral equations via measures of non-
compactness, Comm. Appl. Nonlinear Anal., 15, 2 (2008), 89–101.

[8] B. C. DHAGE, Local asymptotic attractivity for nonlinear quadratic functional integral equations,
Nonlinear Analysis, 70, 5 (2009), 1912–1922.

[9] B. C. DHAGE, Global attractivity results for nonlinear functional integral equations via a Krasnosel-
skii type fixed point theorem, Nonlinear Analysis, 70 (2009), 2485–2493.

[10] B. C. DHAGE, Applicable fixed point theory in functional differential equations on unbounded inter-
vals, Dynamic Systems & Appl., 18 (2009), 701–724.

[11] X. HU, J. YAN, The global attractivity and asymptotic stability of solution of a nonlinear integral
equation, J. Math. Anal. Appl., 321 (2006), 147–156.
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