QUASI–PERIODIC SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS VIA THE FLOQUET–LIN THEORY

J. BEN SLIMENE AND J. BLOT

(Communicated by H.-O. Walther)

Abstract. We use a Floquet theory for quasi-periodic linear ordinary differential equations due to Zhensheng Lin to obtain results on the quasi-periodic solutions of quasi-periodic nonlinear ordinary differential equations. First we obtain an existence result, secondly we obtain a result on the continuous dependence by using a parametrized fixed point theorem, and thirdly we obtain a local result on the differentiable dependence by using an implicit function theorem in function spaces.

1. Introduction

Our aim is to study quasi-periodic solutions of ordinary differential equations in the following forms:

\[\dot{x}(t) = A(t)x(t) + f(t, x(t)), \]
\[\dot{x}(t) = A(t)x(t) + g(t, x(t), u(t)), \]
\[\dot{x}(t) = g(t, x(t), u(t)), \]

where \(A \) is a quasi-periodic matrix, \(u \) is a quasi-periodic function (a forcing term or a control term), \(f \) and \(g \) are quasi-periodic with respect to \(t \).

To treat these problems we use the properties of the following forced linear ordinary differential equation

\[\dot{x}(t) = A(t)x(t) + b(t), \]

where \(b \) is a quasi-periodic function. To study equation (1.4) we use a Floquet theory of quasi-periodic equations due to Zhensheng Lin [8], [9], [10], and several tools of Nonlinear Functional Analysis.

In Section 2 we fix our notation on the quasi-periodic function spaces.

In Section 3 we recall results of Lin and we use them to study equation (1.4), notably to obtain a generalization to (1.4) of a classical theorem of Bohr and Neugebauer on the constant coefficients systems.

In Section 4, by using results of Section 3, we build a Fixed Point approach to obtain an existence result on quasi-periodic solutions of equation (1.1).

\textit{Keywords and phrases}: quasi-periodic solutions, Floquet theory, fixed-point theorem, implicit function theorem.
In Section 5, by using results of Section 3, we build a Parametrized Fixed Point approach to obtain an existence result and a continuous dependence results on quasi-periodic solutions of equation (1.2).

In Section 6, by using results of Section 3, we build an Implicit Function Theorem approach to obtain a differentiable perturbation result on the quasi-periodic solutions of equation (1.3).

2. Notation

$AP^0(\mathbb{R}^n)$ denotes the space of the almost periodic functions from \mathbb{R} into \mathbb{R}^n in the sense of H. Bohr, [6], [7], [5]. Endowed with the norm $\| \varphi \|_{\infty} = \sup_{t \in \mathbb{R}} \| \varphi(t) \|$, it is a Banach space.

When $k \in \mathbb{N}^\ast = \mathbb{N} \backslash \{0\}$, $C^k(\mathbb{R}, \mathbb{R}^n)$ denotes the space of the functions from \mathbb{R} into \mathbb{R}^n which are of class C^k. $AP^k(\mathbb{R}^n)$ denotes the space of the functions $\varphi \in AP^k(\mathbb{R}^n) \cap C^k(\mathbb{R}, \mathbb{R}^n)$ such that the derivatives $\frac{d^j \varphi}{dt^j}$ belong to $AP^0(\mathbb{R}^n)$ for all $j = 1, \ldots, k$. Endowed with the norm:

$$\| \varphi \|_{C^k} = \| \varphi \|_{\infty} + \sum_{j=1}^k \| \frac{d^j \varphi}{dt^j} \|_{\infty},$$

$AP^k(\mathbb{R}^n)$ is a Banach space.

When $\varphi \in AP^0(\mathbb{R}^n)$ and when $\lambda \in \mathbb{R}$, we consider the Fourier-Bohr coefficient

$$a(\varphi, \lambda) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T \varphi(t)e^{-it\lambda} dt.$$

We set

$$\Lambda(\varphi) = \{ \lambda \in \mathbb{R} : a(\varphi, \lambda) \neq 0 \}$$

and $\text{Mod}(\varphi)$ is the \mathbb{Z}-module generated by $\Lambda(\varphi)$ in \mathbb{R}.

When $\omega = (\omega_1, \ldots, \omega_N)$ is a list of N real numbers which are \mathbb{Z}-linearly independent, we set

$$\langle \omega \rangle = \left\{ \sum_{j=1}^k l_j \omega_j : (l_1, \ldots, l_N) \in \mathbb{Z}^N \right\}.$$

We set

$$QP^0_\omega(\mathbb{R}^n) = \{ \varphi \in AP^0(\mathbb{R}^n) : \text{Mod}(\varphi) \subset \langle \omega \rangle \}.$$

The functions which belong to $QP^0_\omega(\mathbb{R}^n)$ are so-called ω-quasi-periodic functions. We also set

$$QP^k_\omega(\mathbb{R}^n) = AP^k(\mathbb{R}^n) \cap QP^0_\omega(\mathbb{R}^n),$$

when $k \in \mathbb{N}$. It is a Banach subspace of $AP^k(\mathbb{R}^n)$.

When \mathbb{T}^N denotes the usual N-dimensional torus, if $\varphi \in QP^k_\omega(\mathbb{R}^n)$ then there exists a unique $\phi \in C^k(\mathbb{T}^N, \mathbb{R}^n)$ such that $\varphi(t) = \phi(t\omega)$ for all $t \in \mathbb{R}$, [3].

By $W^{k,2}(\mathbb{T}^N, \mathbb{R}^n)$ we denote the space of Sobolev defined as follows:
We consider the following homogeneous linear ordinary differential equation:

\[W^{k,2}(\mathbb{T}^N, \mathbb{R}^n) = \{ \phi \in L^2(\mathbb{T}^N, \mathbb{R}^n) \mid \forall \alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{N}^N \] such that \(|\alpha| \leq k, \ D^\alpha \phi \in L^2(\mathbb{T}^N, \mathbb{R}^n) \}, \]

where \(D^\alpha \phi \) is the derivative of \(\phi \) in the sense of Schwartz distributions, and \(|\alpha| = \sum_{j=1}^N \alpha_j \).

Following [13, Definition 2.1, p.5,6], a function \(g : \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n \), \((t, x, u) \mapsto g(t, x, u)\), is called almost periodic in \(t \) uniformly for \((x, u) \in \mathbb{R}^n \times \mathbb{R}^p \) when \(g \) is continuous and satisfies the following property:

\[\forall \varepsilon > 0, \forall K \text{ compact subset of } \mathbb{R}^n \times \mathbb{R}^p, \exists l_\varepsilon > 0, \]
\[\forall \alpha \in \mathbb{R}, \exists \tau \in [\alpha, \alpha + l_\varepsilon], \forall t \in \mathbb{R}, \forall (x, u) \in K, \]
\[||f(t + \tau, x, u) - f(t, x, u)|| \leq \varepsilon. \]

We denote by \(APU(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \) the space of such functions as in [1], [2]. Ever following [13, Definition 2.2, p.6], when \(g \in APU(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \), we define

\[\Lambda(g) = \{ \lambda \in \mathbb{R} : \exists (x, u) \in \mathbb{R}^n \times \mathbb{R}^p, \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T g(t, x, u)e^{-i\lambda t} dt \neq 0 \} \]

and \(\text{Mod}(g) \) is the \(\mathbb{Z} \)-module generated by \(\Lambda(g) \) in \(\mathbb{R} \).

When \(\omega = (\omega_1, \ldots, \omega_N) \) is a list of \(N \) real numbers which are \(\mathbb{Z} \)-linearly independent, we define \(\text{QPU}_\omega(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \) as the set of the functions \(g \in APU(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \) such that \(\text{Mod}(g) \subset \langle \omega \rangle \). When \(g \in \text{QPU}_\omega(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \) there exists a unique \(G \in C^0(\mathbb{T}^N \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \) such that \(g(t, x, u) = G(t\omega, x, u) \) for all \((t, x, u) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p \); see [3, Remark p.101].

We denote by \(M_{p,n}(\mathbb{R}) \) the space of the \(p \times n \) real matrices, by \(M_n(\mathbb{R}) \) the space of the \(n \times n \) real matrices, and we denote by \(GL(n, \mathbb{R}) \) the so-called general linear group of the \(n \times n \) real invertible matrices.

3. The linear case

First we recall elements of the Floquet theory for quasi-periodic systems due to Z. Lin [9]. We consider the following homogeneous linear ordinary differential equation

\[\dot{y}(t) = A(t)y(t), \] (3.1)

where

\[A \in QPU_\omega(M_n(\mathbb{R})) \text{ and } A(t) = F(t\omega) \text{ for all } t \in \mathbb{R}, \] (3.2)

where \(F \in W^{\tau,2}(\mathbb{T}^N, M_n(\mathbb{R})) \) is such that \(\int_{\mathbb{T}^N} F(u)du = 0, \tau = 2(N + 1) \left(\frac{n(n+1)}{2} + 1 \right) \), and \(\omega = (\omega_1, \ldots, \omega_N) \) satisfies the following condition.

\[\begin{cases} \text{There exists } K(\omega) \in (0, \infty) \text{ such that, for all } (l_1, \ldots, l_N) \in \mathbb{Z}^N_+, \quad |\sum_{j=1}^N l_j \omega_j| \geq K(\omega)(\sum_{j=1}^N |l_j|)^{-(N+1)}. \end{cases} \] (3.3)

We can find some properties of the condition (3.3) in [9] and [10]. Note also that a condition of this kind is used in [12, p.24]. Under conditions (3.2) and (3.3), if
\[Y(t) = \text{col}[y_1(t),...,y_n(t)] \] is a fundamental matrix of (3.1), where the notation means that the \(y_j(t) \) are the columns of \(Y(t) \), \(Z \). Lin defines the following real numbers, for \(j = 1,...,n \),

\[\beta_j = \lim_{k \to \infty} \frac{1}{t_k} \ln \| y_j(t_k) \| \text{ when } \lim_{k \to \infty} t_k \omega = 0 \mod 2\pi, \]

see [9], [10].

Lin proves that these numbers are independent of the choice of the fundamental matrix \(Y(t) \), and he calls them the FL-CER of \(A \), where FL-CER is an abbreviation of Floquet and Characteristics Exponential Roots.

In the following lemma we improve a result of Z. Lin in [9, lemma 1, p.202] by weakening the assumption of differentiability. Precisely we replace the strong differentiability by the distributional differentiability.

Lemma 3.1. Let \(f \in QP^0_\omega(\mathbb{R}^n) \) such that \(f(t) = F(t)\omega \) for all \(t \in \mathbb{R} \), where:

\[F \in W^{\tau,2}(\mathbb{T}^N,\mathbb{R}^n), \quad \tau = 2(N+1) \left(\frac{n(n+1)}{2} + 1 \right), \text{ and } \omega \text{ satisfy (3.3).} \]

Assume that \(\int_{\mathbb{T}^N} F(u) du = 0 \). Then the function \(t \mapsto G(t) = \int_0^t f(s) ds \) belongs to \(QP^0_\omega(\mathbb{R}^n) \).

Proof. \(F(u) \) can be expressed as follows:

\[F(u) = \sum_{k \neq 0} a_k e^{i(k,u)}. \]

Then we have:

\[\frac{\partial^\tau F(u)}{\partial u_j^\tau} = \sum_{k \neq 0} (ik_j)^\tau a_k e^{i(k,u)}, \text{ for all } j = 1,...,N \]

and, for all \(k = (k_1,...,k_N) \in \mathbb{Z}_+^N \),

\[(ik_j)^\tau a_k = \left(\frac{1}{2\pi} \right)^N \int_0^{2\pi} \cdots \int_0^{2\pi} \left(\frac{\partial^\tau F(u)}{\partial u_j^\tau} \right) e^{-i(k,u)} du. \]

Let \(\|k\|_\infty = \max |k_1|,...,|k_N| \), by taking \(j \) such that \(\|k\|_\infty = |k_j| \), and by using the Cauchy-Schwarz inequality, we have:

\[\|k\|_\infty \|a_k\| \leq \left\| \frac{\partial^\tau F(u)}{\partial u_j^\tau} \right\|_{L^2(\mathbb{T}^N)} \left(\frac{1}{2\pi} \right)^N \int_{Q_N} |e^{-i(k,u)}|^2 du \right)^{\frac{1}{2}} = \left\| \frac{\partial^\tau F(u)}{\partial u_j^\tau} \right\|_{L^2(\mathbb{T}^N)}, \]

where \(Q_N = (0,2\pi)^N \), thus:

\[|a_k| \leq \|k\|_\infty^{-\tau} \left\| \frac{\partial^\tau F(u)}{\partial u_j^\tau} \right\|_{L^2(\mathbb{T}^N)}. \]
Let
\[M = \max_{1 \leq j \leq N} \left\| \frac{\partial^\tau F(u)}{\partial u_j^\tau} \right\|_{L^2(\mathbb{T}^N)}. \]
Then we obtain:
\[|a_k| \leq M \| k \|_{\infty}^{-\tau}. \] (3.4)

Now, for all integer \(r \in \mathbb{N}_* \), we define:
\[C(r, N) = \sum_{\| k \|_{\infty} = r} 1 = 2N(2r + 1)^{N-1} = 2N \sum_{j=1}^{N-1} C_j^{N-1}(2r)^j. \]

Therefore, there is a constant \(C(N) \) such that:
\[C(r, N) \leq C(N) r^{N-1}. \] (3.5)

Let \(\| k \|_1 = |k_1| + \ldots + |k_N| \). Since \(\| k \|_1 \leq N \| k \|_{\infty} \), we have \(\| k \|_1^{-\tau} \leq N^\tau \| k \|_{\infty}^{-\tau} \). Now combining this one with (3.3) and (3.4), we obtain
\[
\sum_{\| k \|_{\infty} = r} \left| \frac{a_k}{\langle k, \omega \rangle} \right| \leq \frac{1}{K(\omega)} \sum_{\| k \|_{\infty} = r} |a_k| \cdot \| k \|_1^{N+1}
\leq \frac{M}{K(\omega)} \sum_{\| k \|_{\infty} = r} \| k \|_{\infty}^{-\tau} \cdot \| k \|_1^{N+1}
\leq \frac{M}{K(\omega)} \sum_{\| k \|_{\infty} = r} \| k \|_{\infty}^{-\tau} \cdot N^{N+1} \cdot \| k \|_1^{N+1}
= \frac{M}{K(\omega)} N^{N+1} \sum_{\| k \|_{\infty} = r} \| k \|_{\infty}^{-\tau} \cdot (N+1)\]
= \frac{M}{K(\omega)} N^{N+1} \left(\sum_{\| k \|_{\infty} = r} 1 \right) r^{N-\tau+(N+1)}
\leq \frac{M}{K(\omega)} N^{N+1} C(r, N) r^{N-\tau+(N+1)}
\]
and by using (3.5), we get
\[
\sum_{\| k \|_{\infty} = r} \left| \frac{a_k}{\langle k, \omega \rangle} \right| \leq \frac{M}{K(\omega)} N^{N+1} C(N) r^{N-1} r^{N-\tau+(N+1)}.
\]

Thus we have proved that for all \(r \in \mathbb{N}_* \),
\[
\sum_{\| k \|_{\infty} = r} \left| \frac{a_k}{\langle k, \omega \rangle} \right| \leq C_0(N) r^{-\tau+2N}
\]
where \(C_0(N) = \frac{M}{K(\omega)} N^{N+1} C(N) \). Hence
\[
\sum_{r=1}^N \sum_{\| k \|_{\infty} = r} \left| \frac{a_k}{\langle k, \omega \rangle} \right| \leq \sum_{r=1}^N C_0(N) r^{-\tau+2N}
\]
and if $\tau = s + 2(N + 1)$, where $s \in \mathbb{N}_*$, we have

$$\sum_{r=1}^{\infty} \sum_{\|k\| = r} \left| \frac{a_k}{\langle k, \omega \rangle} \right| \leq C_0(N) \sum_{r=1}^{\infty} r^{-(r+2)} < \infty.$$

Hence the series $\sum_{k \neq 0} \frac{a_k}{\langle k, \omega \rangle} e^{i\langle k, u \rangle}$ converges absolutely and G is a quasi-periodic function.

Remark 3.2. Using this lemma, in Theorem 3 in [9, p.210], we can replace the assumption $A \in C^\tau(M_n(\mathbb{R}))$ by (3.2) to get the following theorem.

Theorem 3.3. Under (3.2) and (3.3), there exists $C \in M_n(\mathbb{R})$ such that the FL-CER of A are the real parts of the eigenvalues of C, there exists $S \in \text{QP}_\omega^1(GL(n, \mathbb{R}))$ such that if z is a solution of the equation

$$\dot{z}(t) = Cz(t),$$

then $t \mapsto y(t) = S(t)z(t)$ is a solution of (3.1), and conversely if y is a solution of (3.1) then $t \mapsto z(t) = S(t)^{-1}y(t)$ is a solution of (3.6).

It is not difficult to verify that the transformation S satisfies the following relation for all $t \in \mathbb{R}$,

$$\dot{S}(t) = A(t)S(t) - S(t)C. \quad (3.7)$$

We also recall a classical result, due to Bohr and Neugebauer, on the constant coefficients linear systems [11].

Theorem 3.4. Let $\Omega \in M_n(\mathbb{R})$ be such that the real parts of all the eigenvalues of Ω are non zero. Then for all $d \in \text{AP}_\omega^0(\mathbb{R}^n)$ there exists a unique $z_d \in \text{AP}_\omega^1(\mathbb{R}^n)$ which is a solution of the following equation

$$\dot{z}(t) = \Omega z(t) + d(t). \quad (3.8)$$

Moreover there exists a constant $\alpha \in (0, \infty)$ such that $\|z_d\|_\infty \leq \alpha \|d\|_\infty$ for all $d \in \text{AP}_\omega^0(\mathbb{R}^n)$.

Definition 3.5. We so-call the Bohr-Neugebauer constant the least constant α which satisfies the last assertion of the Bohr-Neugebauer theorem.

Lemma 3.6. Let $A \in \text{QP}_\omega^0(M_n(\mathbb{R}))$ which satisfies (3.2) and (3.3) and the following condition:

the FL-CER β_1, \ldots, β_n of A are non zero. \quad (3.9)

Then for all $b \in \text{QP}_\omega^0(\mathbb{R}^n)$ there exists a unique $y_b \in \text{QP}_\omega^1(\mathbb{R}^n)$ which is a solution of (1.4). Moreover there exists a constant $\gamma \in (0, \infty)$ such that $\|y_b\|_\infty \leq \gamma \|b\|_\infty$ for all $b \in \text{QP}_\omega^0(\mathbb{R}^n)$.

Proof. We consider C and S provided by Theorem 3.3. Let $b \in \mathcal{P}_{\omega}^{0}(\mathbb{R}^{n})$ be arbitrarily chosen. We set $d(t) = S(t)^{-1}b(t)$, and then we have $d \in \mathcal{P}_{\omega}^{0}(\mathbb{R}^{n})$. Since $\beta_{1},...,\beta_{n}$ are the real parts of the eigenvalues of C, condition (3.9) permits us to use the Bohr-Neugebauer theorem with $\Omega = C$, and so we can assert that there exists a unique $z_{d} \in \mathcal{P}_{\omega}^{0}(\mathbb{R}^{n})$ such that $\dot{z}_{d}(t) = Cz_{d}(t) + d(t)$ for all $t \in \mathbb{R}$. Now we set $y_{b}(t) = S(t)z_{d}(t)$, then we have $y_{b} \in \mathcal{P}_{\omega}^{1}(\mathbb{R}^{n})$ and by using (3.7), we obtain, for all $t \in \mathbb{R}$,

$$
\dot{y}_{b}(t) = S(t)z_{d}(t) + S(t)\dot{z}_{d}(t) = [A(t)S(t) - S(t)C]z_{d}(t) + S(t)[Cz_{d}(t) + d(t)] = A(t)y_{b}(t) + 0 + S(t)d(t) = A(t)y_{b}(t) + b(t).
$$

That proves the existence.

If $y \in \mathcal{P}_{\omega}^{1}(\mathbb{R}^{n})$ also satisfies $\dot{y}(t) = A(t)y(t) + b(t)$, for all $t \in \mathbb{R}$, by setting $z(t) = S(t)^{-1}y(t)$, we verify that $\dot{z}(t) = Cz(t) + d(t)$ and the uniqueness provided by the Bohr-Neugebauer theorem implies $z = z_{d}$ which implies $y = y_{b}$. And the uniqueness is proven.

We denote by α the Bohr-Neugebauer constant of C. Since S and $S^{-1} = [t \mapsto S(t)^{-1}]$ are quasi-periodic, they are bounded on \mathbb{R}, and consequently we have:

$$
\|y_{b}\|_{\infty} = \|Sz_{d}\|_{\infty} \leq \|S\|_{\infty}\|z_{d}\|_{\infty} \\
\leq \|S\|_{\infty}\alpha\|d\|_{\infty} = \|S\|_{\infty}\alpha\|S^{-1}b\|_{\infty} \\
\leq \|S\|_{\infty}\alpha\|S^{-1}\|_{\infty}\|b\|_{\infty},
$$

and so it suffices to take $\gamma = \|S\|_{\infty}\alpha\|S^{-1}\|_{\infty}$.

Definition 3.7. We call the Bohr-Neugebauer constant of A the least constant γ which satisfies the last assertion of Lemma 3.6.

4. An existence result

In this section we obtain an existence result by using the Z. Lin theorem and the Picard-Banach fixed point theorem.

Theorem 4.1. Let $A \in \mathcal{P}_{\omega}^{0}(M_{n}(\mathbb{R}))$ and $f \in \mathcal{P}_{\omega}^{0}(\mathbb{R} \times \mathbb{R}^{n}, \mathbb{R}^{n})$. We assume that (3.2), (3.3) and (3.9) are fulfilled. Let γ denote the Bohr-Neugebauer constant of A. We also assume that the following condition is fulfilled:

$$
\begin{cases}
\text{there exists } c \in (0,(\|A\|\gamma + 1 + \gamma)^{-1}) \text{ such that } \\
\|f(t,x) - f(t,y)\| \leq c\|x - y\| \\
\text{for all } t \in \mathbb{R} \text{ and for all } x,y \in \mathbb{R}^{n}.
\end{cases}
$$

Then equation (1.1) possesses a unique solution in $\mathcal{P}_{\omega}^{1}(\mathbb{R}^{n})$.
Proof. We consider the following linear operator \(L : QP^1_\omega(\mathbb{R}^n) \rightarrow QP^0_\omega(\mathbb{R}^n) \) defined by \(Lx = [t \mapsto x(t) - A(t)x(t)] \). By using Lemma 3.6 we know that \(L \) is invertible, and for all \(b \in QP^0_\omega(\mathbb{R}^n) \), \(L^{-1}(b) = x_b \) the unique solution of \(\dot{x}(t) = A(t)x(t) + b(t) \) in \(QP^1_\omega(\mathbb{R}^n) \).

By using the Bohr-Neugebauer constant we know that \(\|x_b\|_\infty \leq \|b\|_\infty \), and moreover we have \(\|\dot{x}_b\| \leq \|A\|\|x_b\| + \|b\| \leq (\|A\|\|\gamma + 1\|)\|b\|_\infty \). And so we obtain

\[
\|L^{-1}(b)\| \leq (\|A\|\|\gamma + 1\|)\|b\|_\infty,
\]

that implies the following inequality for the norm of the inverse operator:

\[
\|L^{-1}\| \leq \|A\|\|\gamma + 1\|. \tag{4.2}
\]

We note that when \(x \in QP^0_\omega(\mathbb{R}^n) \) there exists \(\varphi \in C^0(\mathbb{T}^N, \mathbb{R}^n) \) such that \(x(t) = \varphi(t\omega) \) for all \(t \in \mathbb{R} \); [3, Theorem 2, p.97]. Since \(f \in QPU_\omega(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n) \), by using Remark p.101 in [3], we know that there exists \(F \in C^0(\mathbb{T}^N \times \mathbb{R}^n, \mathbb{R}^n) \) such that \(f(t,x) = F(t\omega, x) \) for all \(t \in \mathbb{R} \) and for all \(x \in \mathbb{R}^n \). It is clear that the function \(\psi \), defined by \(\psi(\theta) = F(\theta, \varphi(\theta)) \) for all \(\theta \in \mathbb{T}^N \), belongs to \(C^0(\mathbb{T}^N, \mathbb{R}^n) \) as a composition of continuous periodic functions. Consequently, we have \([t \mapsto f(t,x(t))] = \psi(t\omega) \in QP^0_\omega(\mathbb{R}^n) \). And so the superposition operator build on \(f \), \(N_f : QP^0_\omega(\mathbb{R}^n) \rightarrow QP^0_\omega(\mathbb{R}^n) \), \(N_f(x) = [t \mapsto f(t,x(t))] \), is well defined. From the assumption (4.1) it is easy to obtain the following inequality:

\[
\|N_f(x) - N_f(y)\|_\infty \leq c\|x - y\|_\infty \tag{4.3}
\]

for all \(x, y \in QP^0_\omega(\mathbb{R}^n) \).

Consequently by setting \(c_1 = c(\|A\|\|\gamma + 1\|)^{-1} \) we have \(c_1 \in (0, 1) \) and by using (4.2) and (4.3), the following inequality holds:

\[
\|L^{-1} \circ N_f(x) - L^{-1} \circ N_f(y)\|_\infty \leq c_1\|x - y\|_\infty
\]

for all \(x, y \in QP^0_\omega(\mathbb{R}^n) \). And so the operator \(L^{-1} \circ N_f : QP^0_\omega(\mathbb{R}^n) \rightarrow QP^0_\omega(\mathbb{R}^n) \) is a contraction. Then by using the Picard-Banach Fixed Point Theorem, we obtain that there exists a unique \(x \in QP^0_\omega(\mathbb{R}^n) \) such that \(L^{-1} \circ N_f(x) = x \).

We note that, for \(x \in QP^0_\omega(\mathbb{R}^n) \), \(L^{-1} \circ N_f(x) = x \) is equivalent to say that \(x \) is a solution of (1.1) in \(QP^1_\omega(\mathbb{R}^n) \), and so the theorem is proven.

5. A continuous dependence result

In this section, we establish the existence of quasi-periodic solutions of equation (1.2) and a continuous dependence result with respect to the parameters functions \(u \).

First we recall a theorem on fixed points which is proven in [14, p.103].

Theorem 5.1. (Parametrized fixed point) Let \(E \) be a complete metric space, let \(\Lambda \) be a topological space and let \(\phi : E \times \Lambda \rightarrow E \) be a mapping which satisfies the two following properties:

\[
\text{for all } x \in E, \lambda \mapsto \phi(x, \lambda) \text{ is continuous from } \Lambda \text{ into } E, \tag{5.1}
\]
and

\[
\left\{ \begin{array}{l}
\text{there exists } k \in (0, 1) \text{ such that,} \\
\text{for all } \lambda \in \Lambda \text{ and for all } x, y \in E, \\
\text{the following inequality holds:}
\end{array} \right.
\]
\[
d(f(x, \lambda), f(y, \lambda)) \leq k \cdot d(x, y).
\]

(5.2)

Then, for all \(\lambda \in \Lambda \), denoting by \(a[\lambda] \) the unique fixed point of the partial mapping \(f(., \lambda) \), the mapping \(\lambda \mapsto a[\lambda] \) is continuous from \(\Lambda \) into \(E \).

Theorem 5.2. Let \(A \in \text{QP}_0(M_{n}(\mathbb{R})) \) and \(g \in \text{QP}_U(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \). We assume that (3.2), (3.3) and (3.9) are fulfilled, and \(\gamma \) denotes the Bohr-Neugebauer constant. We also assume that the following condition is fulfilled.

\[
\left\{ \begin{array}{l}
\text{There exists } d \in (0, (\|A\|_{\infty} \gamma + 1 + \gamma)^{-1}) \\
\text{such that } ||g(t, x, u) - g(t, y, u)|| \leq d \cdot ||x - y||
\end{array} \right.
\]
\[
\text{for all } u \in \mathbb{R}^p.
\]

(5.3)

Then, for all \(u \in \text{QP}_0(\mathbb{R}^p) \) there exists a unique solution \(x[u] \in \text{QP}_1(\mathbb{R}^n) \) of (1.2), and moreover the mapping \(u \mapsto x[u] \) is continuous from \(\text{QP}_0(\mathbb{R}^p) \) into \(\text{QP}_1(\mathbb{R}^n) \).

Proof. We consider the operator \(L \) defined in the proof of Theorem 4.1. By using on \(g \) arguments similar to these ones used on \(f \) in the proof of Theorem 4.1, we obtain that the superposition operator \(N_g : \text{QP}_0(\mathbb{R}^n) \times \text{QP}_0(\mathbb{R}^p) \rightarrow \text{QP}_0(\mathbb{R}^n) \), \(N_g(x, u) = [t \mapsto g(t, x(t), u(t))] \), is well defined. By using (5.3) we easily verify that the following property holds:

\[
||N_g(x, u) - N_g(y, u)||_{\infty} \leq d \cdot ||x - y||_{\infty}
\]

(5.4)

for all \(x, y \in \text{QP}_0(\mathbb{R}^n) \) and for all \(u \in \text{QP}_0(\mathbb{R}^p) \).

We define the nonlinear operator \(\phi : \text{QP}_0(\mathbb{R}^n) \times \text{QP}_0(\mathbb{R}^p) \rightarrow \text{QP}_0(\mathbb{R}^n) \) by setting:

\[
\phi(x, u) = L^{-1} \circ N_g(x, u) \text{ for all } (x, u) \in \text{QP}_0(\mathbb{R}^n) \times \text{QP}_0(\mathbb{R}^p).
\]

With

\[
E = \text{QP}_0(\mathbb{R}^n) \text{ and } \Lambda = \text{QP}_0(\mathbb{R}^p),
\]

by using (4.2) and (5.4) by setting \(k = d \cdot (\|A\|_{\infty} \gamma + 1 + \gamma) \in (0, 1) \), we see that \(\phi \) satisfies (5.2). By using [2, Theorem 3.5, p.47], we know that

\[
N_g^1 : AP_0(\mathbb{R}^n) \times AP_0(\mathbb{R}^p) \rightarrow AP_0(\mathbb{R}^n), \quad N_g^1(x, u) = [t \mapsto g(t, x(t), u(t))],
\]

is continuous, and since \(N_g \) is a restriction of \(N_g^1 \), \(N_g \) is also continuous. Since \(L^{-1} \) is linear continuous, \(\phi \) is continuous as a composition of continuous operators, and consequently the partial operator \(u \mapsto \phi(x, u) \) is continuous for all \(x \in \text{QP}_0(\mathbb{R}^n) \), and so \(\phi \) satisfies (5.1).

Now we can use the theorem of parametrized fixed point, and we can assert that, for all \(u \in \text{QP}_0(\mathbb{R}^p) \) there exists a unique \(x[u] = L^{-1} \circ N_g(x[u], u) \), and moreover the mapping \(u \mapsto x[u] \) is continuous from \(\text{QP}_0(\mathbb{R}^p) \) into \(\text{QP}_0(\mathbb{R}^n) \).
To say that \(\mathcal{X}[u] \) satisfies the equation \(\mathcal{X}[u] = L^{-1} \circ N_g(\mathcal{X}[u], u) \) is equivalent to say that \(\mathcal{X}[u] \in QP^1_\omega(\mathbb{R}^n) \) and \(\mathcal{X}[u] \) is a solution of (1.2).

We note that

\[
\dot{\mathcal{X}}[u](t) = A(t)\mathcal{X}[u](t) + g(t, \mathcal{X}[u](t), u(t)).
\]

Since \(u \mapsto \mathcal{X}[u] \) is continuous from \(QP^0_\omega(\mathbb{R}^p) \) into \(QP^0_\omega(\mathbb{R}^n) \) and since \(v \mapsto Av = [t \mapsto A(t)v(t)] \) is linear continuous from \(QP^0_\omega(\mathbb{R}^n) \) into \(QP^0_\omega(\mathbb{R}^n) \), we obtain that \(u \mapsto Ax[u] \) is continuous from \(QP^0_\omega(\mathbb{R}^p) \) into \(QP^0_\omega(\mathbb{R}^n) \). We have yet seen that the superposition operator \(N_g \) is continuous from \(QP^0_\omega(\mathbb{R}^n) \times QP^0_\omega(\mathbb{R}^p) \) into \(QP^0_\omega(\mathbb{R}^n) \), and it is clear that the operator \(u \mapsto (\mathcal{X}[u], u) \) is continuous from \(QP^0_\omega(\mathbb{R}^p) \) into \(QP^0_\omega(\mathbb{R}^n) \times QP^0_\omega(\mathbb{R}^p) \), and so \(u \mapsto N_g(\mathcal{X}[u], u) \) is continuous from \(QP^0_\omega(\mathbb{R}^p) \) into \(QP^0_\omega(\mathbb{R}^n) \) as a composition of continuous operators. Finally \(u \mapsto \dot{\mathcal{X}}[u] = Ax[u] + N_g(\mathcal{X}[u], u) \) is continuous from \(QP^0_\omega(\mathbb{R}^p) \) into \(QP^1_\omega(\mathbb{R}^n) \) as a sum of continuous operators. Therefore \(u \mapsto \mathcal{X}[u] \) is continuous from \(QP^0_\omega(\mathbb{R}^p) \) into \(QP^1_\omega(\mathbb{R}^n) \).

6. A differentiable perturbation result

We fix \(\omega = (\omega_1, \ldots, \omega_n) \) a list of \(\mathbb{Z} \)-linearly independent real numbers. We consider, about the vector-field of the equation (1.3), the following condition:

\[
\begin{aligned}
g &\in QPU_\omega(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \cap C^{\tau - 1}(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n), \\
D_xg &\in QPU_\omega(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, M_n(\mathbb{R})) \cap C^\tau(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, M_n(\mathbb{R}))
\end{aligned}
\]

with \(\tau = 2(N + 1)\left(\frac{n+n+1}{2} + 1\right) \), and

\[
D_ug \in QPU_\omega(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, M_{n,p}(\mathbb{R})).
\]

In this condition, \(D_xg \) denotes the partial differential of \(g \) with respect to the second vector variable and \(D_ug \) denotes the partial differential of \(g \) with respect to the third vector variable.

Theorem 6.1. Let \(g : \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p \rightarrow \mathbb{R}^n \) be a function which satisfies (6.1) where \(\omega \) satisfies (3.3). Let \(u_* \in QP^1_\omega(\mathbb{R}^p) \) and let \(x_* \in QP^1_\omega(\mathbb{R}^n) \) be a solution of (1.3) where \(u = u_* \). We set \(J(t) = D_xg(t, x_*(t), u_*(t)) \) for all \(t \in \mathbb{R} \) and we denote by \(\beta_1, \ldots, \beta_n \) the FL-CER of \(J \). Moreover we assume that the following condition is fulfilled.

\[
\text{For all } j = 1, \ldots, n, \quad \beta_j \text{ is non zero.} \quad (6.2)
\]

Then there exists \(r \in (0, \infty) \) such that, for all \(u \in QP^0_\omega(\mathbb{R}^p) \) satisfying

\[
||u - u_*||_\infty < r,
\]

there exists \(\mathcal{X}[u] \in QP^1_\omega(\mathbb{R}^n) \) which is a solution of (1.3).

Moreover the nonlinear operator \(u \mapsto \mathcal{X}[u] \) is of class \(C^1 \) from

\[
\{u \in QP^0_\omega(\mathbb{R}^p) : ||u - u_*||_\infty < r\} \rightarrow QP^1_\omega(\mathbb{R}^n),
\]

and there exists a neighborhood \(\mathcal{N} \) of \(x_* \) in \(QP^0_\omega(\mathbb{R}^n) \) such that \(\mathcal{X}[u] \) is the unique solution of (1.3) in \(QP^1_\omega(\mathbb{R}^n) \) which belongs to \(\mathcal{N} \).

Before to do the proof of this theorem we need a lemma of Differential Calculus.
LEMMA 6.2. When \(g \in QPU_{\omega}(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \) is such that its partial differentials with respect to the second and the third vector variables exist and satisfy

\[D_xg \in QPU_{\omega}(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, M_n(\mathbb{R})) \quad \text{and} \quad D_u g \in QPU_{\omega}(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, M_n, p(\mathbb{R})), \]

then the operator

\[\Gamma : QP^1_{\omega}(\mathbb{R}^n) \times QP^0_{\omega}(\mathbb{R}^p) \longrightarrow QP^0_{\omega}(\mathbb{R}^n), \quad \Gamma(x, u) = [t \mapsto \dot{x}(t) - g(t, x(t), u(t))], \]

is well-defined and it is of class \(C^1 \).

The formula of its partial differential with respect to its first variable is the following one:

\[D_1 \Gamma(x, x, u_*)y = [t \mapsto \dot{y}(t) - D_xg(t, x_*(t), u_*(t))y(t)] \]

for all \(y \in QP^1_{\omega}(\mathbb{R}^n) \).

Proof. When \(x \in QP^0_{\omega}(\mathbb{R}^n) \) and \(u \in QP^0_{\omega}(\mathbb{R}^p) \) there exist \(\varphi \in C^0(\mathbb{T}^N, \mathbb{R}^n) \) and \(\psi \in C^0(\mathbb{T}^N, \mathbb{R}^p) \) such that \(x(t) = \varphi(t\omega) \) and \(u(t) = \psi(t\omega) \) for all \(t \in \mathbb{R} \), [3, Theorem 2, p.97]. By using Remark p.101 in [3], since \(g \in QPU_{\omega}(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \), there exists \(G \in C^0(\mathbb{T}^N \times \mathbb{R}^n \times \mathbb{R}^p, \mathbb{R}^n) \) such that \(g(t, x, u) = G(t\omega, x, u) \) for all \((t, x, u) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^p \). We set \(\chi(\theta) = G(\theta, \varphi(\theta), \psi(\theta)) \), then \(\chi \in C^0(\mathbb{T}^N, \mathbb{R}^n) \) as a composition of continuous periodic functions. Consequently we have:

\[[t \mapsto g(t, x(t), u(t))] \in QP^0_{\omega}(\mathbb{R}^n). \]

And so the operator \(\Gamma \) is well-defined.

By using Theorem 5.1, p.54 in [2], we know that the superposition operator:

\[N^1_g : AP^0_{\omega}(\mathbb{R}^n) \times AP^0_{\omega}(\mathbb{R}^p) \longrightarrow AP^0_{\omega}(\mathbb{R}^n), \quad N^1_g(x, u) = [t \mapsto g(t, x(t), u(t))], \]

is of class \(C^1 \). And so the superposition operator

\[N_g : QP^0_{\omega}(\mathbb{R}^n) \times QP^0_{\omega}(\mathbb{R}^p) \longrightarrow QP^0_{\omega}(\mathbb{R}^n), \quad N_g(x, u) = [t \mapsto g(t, x(t), u(t))] \]

is of class \(C^1 \) as a restriction of \(N^1_g \). And so the following assertion holds:

\[N_g \in C^1 \left(QP^0_{\omega}(\mathbb{R}^n) \times QP^0_{\omega}(\mathbb{R}^p), QP^0_{\omega}(\mathbb{R}^n) \right). \quad (6.3) \]

The operator \(\Pi_1 : QP^1_{\omega}(\mathbb{R}^n) \times QP^0_{\omega}(\mathbb{R}^p) \longrightarrow QP^1_{\omega}(\mathbb{R}^n) \), defined by \(\Pi_1(x, u) = x \), is linear continuous, therefore the following assertion holds:

\[\Pi_1 \in C^1 \left(QP^1_{\omega}(\mathbb{R}^n) \times QP^0_{\omega}(\mathbb{R}^p), QP^1_{\omega}(\mathbb{R}^n) \right). \quad (6.4) \]

The operator \(\frac{d}{dt} QP^1_{\omega}(\mathbb{R}^n) \longrightarrow QP^0_{\omega}(\mathbb{R}^n), \quad \frac{d}{dt} x = \dot{x} \), is linear continuous, therefore the following assertion holds:

\[\frac{d}{dt} \in C^1 \left(QP^1_{\omega}(\mathbb{R}^n), QP^0_{\omega}(\mathbb{R}^n) \right). \quad (6.5) \]
The operator \(in : QP^1_{p^0}(\mathbb{R}^n) \times QP^0_{p^0}(\mathbb{R}^p) \rightarrow QP^0_{p^0}(\mathbb{R}^n) \times QP^0_{p^0}(\mathbb{R}^p) \), \(in(x,u) = (x,u) \), is linear continuous, and so the following assertion holds:

\[
in \in C^1(QP^1_{p^0}(\mathbb{R}^n) \times QP^0_{p^0}(\mathbb{R}^p), QP^0_{p^0}(\mathbb{R}^n) \times QP^0_{p^0}(\mathbb{R}^p)).
\] \tag{6.6}

We note that \(\Gamma = \frac{d}{dt} \circ \Pi_1 - N_g \circ in \), and so by using (6.3)-(6.6), \(\Gamma \) is of class \(C^1 \) as the difference of compositions of operators of class \(C^1 \).

Now, by using Theorem 5.1, p.54, in [2] and the chain rule of the differential calculus in Banach spaces, we obtain the following calculations:

\[
D_1 \Gamma(x_*,u_*) \cdot y = D \Gamma(x_*,u_*) \cdot (y,0)
\]

\[
= D \left(\frac{d}{dt} \circ \Pi_1 \right) (x_*,u_*) \cdot (y,0) - D(N_g \circ in)(x_*,u_*) \cdot (y,0)
\]

\[
= \frac{d}{dt} \circ \Pi_1(y,0) - DN_g(x_*,u_*) \cdot (y,0)
\]

\[
= \{ t \mapsto \dot{y}(t) - Dg(t,x_*(t),u_*(t)).y(t) \}.
\]

Proof of Theorem 6.1. Since \(g \) is of class \(C^{r-1} \), by using a bootstrapping argument we see that \(x_* \) is also of class \(C^r \). And so the matrix \(J(t) \) satisfies the condition (3.2). The assumption (6.2) ensures that (3.9) is fulfilled for \(A = J \). And so can use Lemma 3.6 to assert that for all \(b \in QP^0_{p^0}(\mathbb{R}^n) \), there exists a unique \(y \in QP^1_{p^0}(\mathbb{R}^n) \) such that \(\dot{y}(t) = J(t)y(t) + b(t) \) for all \(t \in \mathbb{R} \). And so, by using Lemma 6.2, we can translate this result in the following form:

\[
D_1 \Gamma(x_*,u_*) \text{ is a bijection from } QP^1_{p^0}(\mathbb{R}^n) \text{ onto } QP^0_{p^0}(\mathbb{R}^n). \] \tag{6.7}

Since \(\dot{x}_*(t) = g(t,x_*(t),u_*(t)) \) for all \(t \in \mathbb{R} \), the following assertion holds:

\[
\Gamma(x_*,u_*) = 0. \] \tag{6.8}

Since \(\Gamma \) is of class \(C^1 \), (6.7) and (6.8) permit to use the implicit function theorem of the differential calculus in Banach spaces, see [4, Theorem 4.7.1, p.61]. And so we can assert that there exist \(\mathcal{V} = \{ x \in QP^1_{p^0}(\mathbb{R}^n) : \| x - x_* \|_{C^1} < r \} \) with \(r \in (0,\infty) \), a neighborhood \(\mathcal{N} \) of \(u_* \) in \(QP^0_{p^0}(\mathbb{R}^p) \), and a \(C^1 \)-mapping \(\mathcal{X} : \mathcal{V} \rightarrow \mathcal{N} \) such that, for all \((x,u) \in \mathcal{V} \times \mathcal{N} \), we have \(\Gamma(x,u) = 0 \) if and only if \(x = \mathcal{X}[u] \).

Notice that \(\Gamma(x,u) = 0 \) is equivalent to say that \(x \) is solution of (1.3) in \(QP^1_{p^0}(\mathbb{R}^n) \). And so Theorem 6.1 is proven.

References

(Received October 20, 2009)

J. Ben Slimene
Laboratoire SAMM
Université Paris 1 Panthéon-Sorbonne, Centre P.M.F
90 rue de Tolbiac, 75634 Paris Cedex 13
France
e-mail: jihed.benslimene@laposte.net

J. Blot
Laboratoire SAMM
Université Paris 1 Panthéon-Sorbonne, Centre P.M.F
90 rue de Tolbiac, 75634 Paris Cedex 13
France
e-mail: blot@univ-paris1.fr