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SUBHARMONIC SOLUTIONS FOR NONAUTONOMOUS
SUBLINEAR p-HAMILTONIAN SYSTEMS

KUN L1AO AND CHUN-LEI TANG

(Communicated by C. O. Alves)

Abstract. Some existence theorems are obtained for subharmonic solutions of nonautonomous
p-Hamiltonian systems by the minimax methods in critical point theory.

1. Introduction and main results

Consider the p-Hamiltonian systems

d
- (Ja(e)[P~2a(r)) = VF(t,u(t)), ae. t€R, (1)
where p >2 and F : R x RN — R. In this paper, we always assume:

(A) F(t,x) is T-periodic (T > 0) and measurable in ¢ for each x € RY and
continuously differentiable in x for a.e. 7 € [0,T], there exist a € C(RT,R"), b €
L'(0,T;R") such that

[F(1,x)| <a(lx])b(r) and |VF(z,x)| <a(lx])b()

forall x € R and ae. t €[0,7].
When p =2, (1) reduces to the following second-order Hamiltonian systems

ii(t) =VF(t,u(t)), ae. t €R. )

It has been proved that problem (2) has infinitely subharmonic solutions under suitable
conditions (see [2, 3, 8, 11, 12]). In recent years, authors have devoted to the existence
of T -periodic solutions for problem (1) (see [1, 6, 9, 13, 14, 15]). But there were a
few papers about the infinitely subharmonic solutions for problem (1). Ma and Zhang
in [4] studied the existence of subharmonic solutions for problem (1) by using the
Generalized Mountain Pass Theorem, the subharmonic solutions for problem (1) under
nonsmooth potential are considered in [7] and [13].
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Recently, Ye and Tang in [16] consider the existence of T -periodic solutions for
problem (2) under conditions that

F(t,x) =G(x)+H(t,x),
where VH is sublinear, that is, there exist f, g € L'(0,T;R") and « € [0,1) such that
IVH (1,x)] < f(1)[x]* + (1)
forall x € R and a.e. t € [0,T], and there exists r < T2 such that
(VG(x) = VG(y),x—y) = —rlx—yI>

for all x, y € RN and a.e. t € [0,T]. Motivated by the results in [16], in the present
paper, we obtain some new results of infinitely many subharmonic solutions for p-
Hamiltonian systems (1) with o € [0,p — 1) by using the Saddle Point Theorem.

Our main results are the following theorems.

THEOREM 1. Suppose that F(t,x) satisfies (A) and the following conditions:
(I) there exists g € L'(0,T;R") such that

|VH(t,x)| < g(t) forall xe RN anda.e. t €[0,T],
(Iy) there exists r € R such that
(VG(x) = VG(y),x—y) = —rlx— I

forall x, y e RN and a.e. t € [0,T],
(I3) there exists y € L'(0,T) such that

F(t,x) <y(t) forallx RN anda.e.t€[0,T),
(I4) there exists a subset E of [0,T] with meas (E) > 0 such that
F(t,x) = —co as |x| m oo forae t€E.
Then problem (1) has a kT -periodic solution u, € Wkl for every positive integer k

such that ||ug||e — oo as k — oo, where |Jug||e = (nax |ug (2)],

<<

lp = {u:[0,kT] — RN | u is absolutely continuous, u(0) = u(kT),
and i € LF (0,kT;RY)}

is a Banach space with the norm

= (" oears [ |pdr)
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REMARK 1. Let F(t,x) = G(x)+ H(t,x) with G(x) = —rcosx;, where x; is the
first coordinate of x, and

H(t,x) = —|sinwt|In(1+ |x|?)

for all x € RN and 7 € [0,T]. Then F satisfies our Theorem 1 but does not satisfy the
assumptions in [4] and [13].

THEOREM 2. Suppose that F(t,x) satisfies (A), () and the following condi-
tions:

(Is) there exist f, g € L'(0,T;R") and o € [0,p — 1) such that
IVH(2,x)| < f(2)|x]% + (1)

forall x e RN and a.e. t € [0,T],
(Is) there holds true
|x| 9%F (t,x) — —oo as |x| — oo uniformly for a.e. t € [0,T],
where o is the same as in (Is) and q = -£<. Then problem (1) has a kT -periodic

p-1r
solution uy € Wle’p for every positive integer k such that ||ug||s — oo as k — oo.

REMARK 2. Let F(t,x) = G(x) 4+ H(t,x) with G(x) = —5|x||?, where x| is the
first coordinate of x, and H(t,x) = —|x|'*%, where 0 < a < p— 1. Then F satisfies
our Theorem 2 but does not satisfy the assumptions of [4] and [13].

We shall prove a more general result than Theorems 1 and 2.

THEOREM 3. Suppose that F(t,x) satisfies (A), (o), (I3),(Is) and the following
condition:

(I7) there exists a subset E of [0,T] with meas(E) > 0 such that
|x|79%F (t,x) — —e= as |x| > oo forae. t €E.

Then problem (1) has a kT -periodic solution u;, € Wklllp for every positive integer k
such that ||ug||ee — oo as k — oo.

REMARK 3. When p = 2, the conditions of Theorem 3 are similar to the ones of
Theorem 3 in [16]. But in [16], the authors studied the existence of T -periodic solu-
tions for problem (2) while the infinitely many subharmonic solutions for problem (1)
are considered in our paper. Since ||ug||c — oo as k — oo, then {||u||} has a subse-
quence with infinitely distinct elements, so the infinitely many solutions for problem
(1) are indeed distinct.
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2. Proof of theorems

Lp
For u e W7, let

k
u:%/oTu(t)dz and @(t) = u(t) — 7.

Then due to Proposition 1.1 in [5], there exists a constant ¢ such that

" kT
2 < [l P, G)

and
kT kT
[ laora<a [ upra. @
0 0

It follows from (A) that the functional ¢ on Wklilp given by

o (u) = %/OkT|u(t)|1’dt+ OkTF(t,u(t))dt

is continuously differentiable on Wle’p (see Theorem 1.4 in [5]). Moreover, one has

kT kT
(k) = [ O 2 0.5 di+ [ (VF (ru0) v ds

for all u, v e Wle’p . It is well known that the kT -periodic solutions of problem (1)
correspond to the critical points of the functional .

For convenience to quote we state an analog of Egorov’s theorem (see Lemma 2
in [10]), in which we replace F by —F'.

LEMMA 1. (see [10]) Suppose that F satisfies (A) and E is a measurable subset
of [0,T]. Assume that

F(t,x) = —oo as |x| — oo

fora.e. t € E. Then for every 8§ > O there exists a subset Eg of E with meas(E\Eg) <
O such that

F(t,x) — —o as |x| — e
uniformly for all t € E§.
LEMMA 2. Assume that F(t,x) satisfies (A), (I), (I3), (Is) and (I7). Then @

satisfies the (P.S.) condition, that is, {u,} has a convergent subsequence whenever it
satisfies @) (un) — 0 as n— oo and {@(uy)} is bounded.
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Proof. By (4), we have

kT % 1 kT %
(/ un<t>|Pdt) <ﬁn<<1+cm(/ un<t>|1’dt) )
0 0

for all n. For any € > 0, it follows from (/5) and Young’s inequality that

kT kT
| (VH Gt ) ar] < [ @) e+ [ g

kT N N kT N
< [ 2 + )l + [ glo)lae)
0 0
kT kT
<2 (@ + a2l [ S+l [ gl
| kT q
< 2%z + 2% 7l ([ sar )
0
kT kT
ol |+l ~
w2al et [T pwdi+ il [ s

Let € = 1/(2*2pcy), by (3) we have

a+l1

1

I <VH<t,u<r>>,a(t>>dt‘ <o Tl +ia ( | ”uwd,) '

4G (/OkT zl(t)|”dt> ’

for all u € Wle’p and some positive constants C;, C; and Cs3. From (l;) and (3) we
obtain

kT kT
/0 (VG (u(t)) () dr = /0 (VG (u(t)) — VG(@), i(r)) dr
—r/kT (1) P
0

> —rkT |2

kT ;
> _rkT (ck / u(t)|1’dt>
0

WV

forall u € Wle’p . Hence one has
il = [(@% (1), iin)|

kT kT
_ ‘/0 |un(t)\1’dt+/0 (VF (t,un(t)) , in(t)) dt

kT kT kT
_ ‘/ |un(t)\1’dt+/ (VG(un(t)),ﬁn(t))dt—l-/ (VH (1, un(t)) ,iin(1)) dt
0 0 0
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a+l1

Zp—l kT ) » o kT ] » P
> 2 [T i~ il o [ lin(o)rar
P Jo 0

—C; (/OkT I/.ln(t)|pdl)ll) s (Ck /()"T |lln(t)1’dz> ;

for large n. By (5) and the above inequality we have

Cli| 7 > (/OkT un(r)”dr) e (©6)
for some constants C > 0, C4 > 0 and all large n, which implies that
il < Cs(laa] 7 +1)
for all large n and some positive constant C5 by (3). Then one has
)] > lita] = 10 (6)| > lta| = | > Jia] = Cs (Jital 7 +1)

for all large n and every ¢ € [0,kT].
If {|i,|} is unbounded, we may assume that, going to a subsequence if necessary,

|iy| — oo as n— oo @)

Hence

|t ] ®)

S

lun(t)] =

for all large n and every ¢ € [0,kT] because of |u,(¢)| > |it,| — Cs <|12n|ql_(’1 + 1) .

Set 0 = meas(E/2). It follows from (I7) and Lemma 1 that there exists a subset
Es of E with meas (E\Es) < § such that

|x|791%F (t,x) — —o0 as |x| — oo
uniformly for all ¢ € E5, which implies that
meas(Eg) = meas(E) — meas(E\Eg) > 0 > 0, ©)
and for every 8 > 0, there exists M > 1 such that
x| T1F (t,x) < =B (10)
forall |x| > M and all ¢ € Es. By (8) and (7), one has

lun(t)| > M (11)



NONAUTONOMOUS SUBLINEAR p-HAMILTONIAN SYSTEMS

for large n and every 7 € [0,kT]. It follows from (3), (6), (8) and (9)-(11) that
o) < (Cl T +a) [yl /mu (O]
0AT)\Es

< (clan ¥ +¢)"+ / y(t)d —279% iz, |15 B
[0.KT\Eg

for all large n. Hence we have

lim sup | | 7%y (1) < CP — 27995 B.

n—oo

By the arbitrariness of > 0, one has

limsup |, | 9% @ (uy) = —oo,

n—oo

79

which contradicts the boundedness of ¢y (u,). Hence {|i,|} is bounded. Furthermore,
{un} is bounded by (5) and (6). Then we can use a same argument as in [15] to show

that ¢ satisfies the (P.S.) condition. O

Now we prove our Theorem 3 first.

PROOF OF THEOREM 3. It follows from Lemma 2 that ¢y satisfies the (P.S.)
condition. Now we prove that ¢y satisﬁes the other conditions of the Saddle Point

Theorem (see Theorem 4.7 in [5]). Let Wk be the subspace of WkT given by

kT —{uEWkT | u =0}.
Set

ex(t) = k(cosk™ ' wt)xg

forall 7 € R and some xg € RV with |xo| = I, where @ = 2. Then we have

ér(t) = —w(sink‘lwt)xo

forall + € R. By the Saddle Point Theorem we only need to prove
(1) @u) = oo as [lu]| — oo in W7,
(ii) Qr(x+ex) — —oo as |x| — oo in R

It follows from (I3) and (10) that

1 kT kT
(pk(x—i-ek):;/o alPdi+ [Pt e)d

N

1 kT
—PKT + | F (t,x+k(cosk™ ' ot)xo) dt
)4 0

lw”kT—i— / y(t)dt—B/’x—i-k(cosk*lwt)xo’qadt
b [0,kT]\E§ Es

N
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1
< LorkT+ / y(£)dt — BM®meas(Es)
P [0.kT]\E5
1
< —PkT + / y(t)dt — Bmeas(Es)
b [0T)\E;

for all |x| > M + k, which implies (ii) by the arbitrariness of f3.
It follows from (I5) and (3) that

‘/kT H (t,u(t))—H(t,0) dt‘_‘/kT/ VH(t,su(t (t))dsdt’

< /0 /0 FO)lsu(0)|* u(r)dsds
+/ /g (¢)|dsdt
< [7 romolars [ gwlutolar
1 kT
< )t / fydi+ |l [ gods
0 0
kT o+l kT
<C6(/0 \u(t)|1’dt> g +C7(/O \u(t)|1’dt)
forall u € VT/le’p and some positive constants Cg and C7. By (/) and (3) we have
kT kT p1
/ (G (u(1)) — G(0)]dr = / / (VG (sut)) — VG(0),u(t)) dsd
0
kT
_ / /O (VG (su(t)) — VG(0), su(t)) dsdt

kT
/ / r52|u ) dsdt
0

==

forall u € VT/le’p . Hence one has

o)~ [P0 = | /kT\<|sz+ [ 6 - coa

0
kT
+/ H(t,u(t))—H(t,0)]dt

> %/OkTu(z)th—Cﬁ (/OkT|u(z)|Pdt) !
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—-C; (/OkT u@)”dr) : - rkTT (ck /OkT u@)”dr)ﬁ

forall u € Wle’p , which implies (i) by (5). So there exists a critical point u; € Wle’p for
@ such that

—oo < inf @ < @r(ug) < sup .
Wle’P RN te;

For fixed x € RV, set
Ap = {t € [0,kT] ||x+k(cosk™'wt)xo | < M}.

Then we have

ks

meas(A;) < (12)

for all large k, where § is the same as the one in Lemma 2. In fact, if meas (4;) > %

2 9
there exists #; € A; such that

1 1 1
sko <t < kT — ¢ 1
8k6 n < gk 8k6 13)

or

Moreover, there exists t, € A, such that

1
lt — 11| > gké (15)
and
1
o — (KT —11)| > §k5- (16)
It follows from (16) that
1 1 1
—(k'n +hk ) - 2T > —=4. 17
2( n+kn) 3 T (17)
By (13) and (14), one has
i5<l(k_lt +kln)<T Ls (18)
16° 2 1! O T

From (17) and (18) we obtain

‘ sin (%(k‘ltl +k 'n)o) ‘ > sin <11—6w6>
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Furthermore, by (15) we have
|cos(k'wt;) — cos(k ™' wtr)|
- . 1 -1 -1 . 1 -1 -1
—2|s1n<§(k 4k t2)(1)>HSln<§(k H—k t2)(1)>|
1
> 2sin® (— )
sin (16(»5
But due to ¢1, 1, € Ay, one has
| cos(k tor) — cos(k‘lwt2)|
1
=- )x—i—k(cosk*lwtl)xo - (x+k(c0sk*1wt2)xo)‘

2M
< PR
k
which is a contradiction for large k. Hence (12) holds. Let
k—1
Ex=J(T +Es).
j=0
Then it follows from (12) that

1
meas(E\Ag) > §k5
for large k. By (10) and (/3) we have

1 kT
ko (x+ex) < —pr-i-k_l/ F(t,x—i—k(cosk‘lwt)xo) dt
0

— 3

< —PT+k! / y(t)dt — k' Bmeas(E;\Ay)

[0.ATI\(Ex\A)

< 1w”T+/T| ()i — ~58
\p b Y )

=

for every x € RV and all large k. Hence one has
1 L, T 1
sup k™ g+ ) < 0T+ [ ly(o)ldr — 558
XERN p 0 2
for all large k, which implies that
. 1 1 T 1
limsup sup k™" @ (x+¢;) < —a)pT+/ ly(e)|dt — =6p.
k—oo  xeRN p 0 2
By the arbitrariness of 8, we obtain

limsup sup &~ '@y (x+ep) = —oo,
k—oo  xeRN
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which follows that

limsupk ™ @y () = —oo. (19)

koo

Now we prove that ||ug|| — o as k — eo. If not, going to a subsequence if necessary,
we may assume that ||u || < Cg for all kK € N and some positive constant Cg. Hence
we have
kT kT
ko) = k7 | Ft,u())dr > —k~' max a(s) [ b(t)dt
0

0<s<Cy 0

— — max a(s) /O " p(nyar,

0<S<Cg
It follows that lilgn infk~ !¢y (1) > —oo, which contradicts (19). Therefore we complete
our proof. O
Then we prove our Theorems 1 and 2.

PROOF OF THEOREMS 1 AND 2. Theorem 1 follows from Theorem 3 by letting
oo = 0. Theorem 3 implies Theorem 2 because (I3) follows from (lg) and (A). In
fact, by (I) there exists M > 0 such that

|x|79*F (¢,x) <0

for all |x| > M and a.e. t € [0,T], which implies that F(z,x) < 0 for all |x| > M and
a.e. t € [0,T]. It follows from (A) that

F(t,x) < b(t
(1,x) < max a(s)b(1)

forall |x| <M and a.e. ¢ € [0,T]. Now (/3) holds with

y(r) = max a(s)b(t).

0<s<M

Hence Theorem 2 follows from Theorem 3. O
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