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SUBHARMONIC SOLUTIONS FOR NONAUTONOMOUS

SUBLINEAR p–HAMILTONIAN SYSTEMS

KUN LIAO AND CHUN-LEI TANG

(Communicated by C. O. Alves)

Abstract. Some existence theorems are obtained for subharmonic solutions of nonautonomous
p -Hamiltonian systems by the minimax methods in critical point theory.

1. Introduction and main results

Consider the p -Hamiltonian systems

d
dt

(|u̇(t)|p−2u̇(t)
)

= ∇F(t,u(t)), a.e. t ∈ R, (1)

where p > 2 and F : R×R
N → R . In this paper, we always assume:

(A) F(t,x) is T -periodic (T > 0) and measurable in t for each x ∈ R
N and

continuously differentiable in x for a.e. t ∈ [0,T ] , there exist a ∈ C(R+,R+) , b ∈
L1(0,T ;R+) such that

|F(t,x)| � a(|x|)b(t) and |∇F(t,x)| � a(|x|)b(t)

for all x ∈ R
N and a.e. t ∈ [0,T ] .

When p = 2, (1) reduces to the following second-order Hamiltonian systems

ü(t) = ∇F(t,u(t)), a.e. t ∈ R. (2)

It has been proved that problem (2) has infinitely subharmonic solutions under suitable
conditions (see [2, 3, 8, 11, 12]). In recent years, authors have devoted to the existence
of T -periodic solutions for problem (1) (see [1, 6, 9, 13, 14, 15]). But there were a
few papers about the infinitely subharmonic solutions for problem (1) . Ma and Zhang
in [4] studied the existence of subharmonic solutions for problem (1) by using the
Generalized Mountain Pass Theorem, the subharmonic solutions for problem (1) under
nonsmooth potential are considered in [7] and [13].
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Recently, Ye and Tang in [16] consider the existence of T -periodic solutions for
problem (2) under conditions that

F(t,x) = G(x)+H(t,x),

where ∇H is sublinear, that is, there exist f , g ∈ L1(0,T ;R+) and α ∈ [0,1) such that

|∇H(t,x)| � f (t)|x|α +g(t)

for all x ∈ R
N and a.e. t ∈ [0,T ] , and there exists r < 4π2

T 2 such that

(∇G(x)−∇G(y),x− y) � −r|x− y|2

for all x, y ∈ R
N and a.e. t ∈ [0,T ] . Motivated by the results in [16], in the present

paper, we obtain some new results of infinitely many subharmonic solutions for p -
Hamiltonian systems (1) with α ∈ [0, p−1) by using the Saddle Point Theorem.

Our main results are the following theorems.

THEOREM 1. Suppose that F(t,x) satisfies (A) and the following conditions:

(l1) there exists g ∈ L1(0,T ;R+) such that

|∇H(t,x)| � g(t) for all x ∈ R
N and a.e. t ∈ [0,T ] ,

(l2) there exists r ∈ R such that

(∇G(x)−∇G(y),x− y) � −r|x− y|2

for all x, y ∈ R
N and a.e. t ∈ [0,T ] ,

(l3) there exists γ ∈ L1(0,T ) such that

F(t,x) � γ(t) for all x ∈ R
N and a.e. t ∈ [0,T ],

(l4) there exists a subset E of [0,T ] with meas(E) > 0 such that

F(t,x) →−∞ as |x| → ∞ for a.e. t ∈ E .

Then problem (1) has a kT -periodic solution uk ∈ W 1,p
kT for every positive integer k

such that ‖uk‖∞ → ∞ as k → ∞ , where ‖uk‖∞ = max
0�t�kT

|uk(t)| , and

W 1,p
kT = {u : [0,kT ] → R

N | u is absolutely continuous, u(0) = u(kT ),

and u̇ ∈ Lp(0,kT ;RN)}
is a Banach space with the norm

‖u‖ =
(∫ kT

0
|u(t)|pdt +

∫ kT

0
|u̇(t)|pdt

) 1
p

.
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REMARK 1. Let F(t,x) = G(x)+H(t,x) with G(x) = −rcosx1 , where x1 is the
first coordinate of x , and

H(t,x) = −|sinωt| ln(1+ |x|p)

for all x ∈ R
N and t ∈ [0,T ]. Then F satisfies our Theorem 1 but does not satisfy the

assumptions in [4] and [13].

THEOREM 2. Suppose that F(t,x) satisfies (A) , (l2) and the following condi-
tions:

(l5) there exist f , g ∈ L1(0,T ;R+) and α ∈ [0, p−1) such that

|∇H(t,x)| � f (t)|x|α +g(t)

for all x ∈ R
N and a.e. t ∈ [0,T ],

(l6) there holds true

|x|−qαF(t,x) →−∞ as |x| → ∞ uniformly for a.e. t ∈ [0,T ] ,

where α is the same as in (l5) and q = p
p−1 . Then problem (1) has a kT -periodic

solution uk ∈W 1,p
kT for every positive integer k such that ‖uk‖∞ → ∞ as k → ∞.

REMARK 2. Let F(t,x) = G(x)+H(t,x) with G(x) = − r
2 |x1|2 , where x1 is the

first coordinate of x , and H(t,x) = −|x|1+α , where 0 < α < p− 1. Then F satisfies
our Theorem 2 but does not satisfy the assumptions of [4] and [13].

We shall prove a more general result than Theorems 1 and 2.

THEOREM 3. Suppose that F(t,x) satisfies (A) , (l2), (l3),(l5) and the following
condition:

(l7) there exists a subset E of [0,T ] with meas(E) > 0 such that

|x|−qαF(t,x) →−∞ as |x| → ∞ for a.e. t ∈ E.

Then problem (1) has a kT -periodic solution uk ∈ W 1,p
kT for every positive integer k

such that ‖uk‖∞ → ∞ as k → ∞.

REMARK 3. When p = 2, the conditions of Theorem 3 are similar to the ones of
Theorem 3 in [16]. But in [16], the authors studied the existence of T -periodic solu-
tions for problem (2) while the infinitely many subharmonic solutions for problem (1)
are considered in our paper. Since ‖uk‖∞ → ∞ as k → ∞ , then {‖uk‖∞} has a subse-
quence with infinitely distinct elements, so the infinitely many solutions for problem
(1) are indeed distinct.
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2. Proof of theorems

For u ∈W 1,p
kT , let

u =
1
kT

∫ kT

0
u(t)dt and ũ(t) = u(t)−u.

Then due to Proposition 1.1 in [5], there exists a constant ck such that

‖ũ‖p
∞ � ck

∫ kT

0
|u̇(t)|pdt, (3)

and

∫ kT

0
|ũ(t)|pdt � ck

∫ kT

0
|u̇(t)|pdt. (4)

It follows from (A) that the functional ϕk on W 1,p
kT given by

ϕk(u) =
1
p

∫ kT

0
|u̇(t)|pdt +

∫ kT

0
F (t,u(t))dt

is continuously differentiable on W 1,p
kT (see Theorem 1.4 in [5]). Moreover, one has

〈ϕ ′
k(u),v〉 =

∫ kT

0
|u̇(t)|p−2 (u̇(t), v̇(t))dt +

∫ kT

0
(∇F (t,u(t)) ,v(t))dt

for all u, v ∈ W 1,p
kT . It is well known that the kT -periodic solutions of problem (1)

correspond to the critical points of the functional ϕk .
For convenience to quote we state an analog of Egorov’s theorem (see Lemma 2

in [10]), in which we replace F by −F .

LEMMA 1. (see [10]) Suppose that F satisfies (A) and E is a measurable subset
of [0,T ] . Assume that

F(t,x) →−∞ as |x| → ∞

for a.e. t ∈ E . Then for every δ > 0 there exists a subset Eδ of E with meas(E\Eδ ) <
δ such that

F(t,x) →−∞ as |x| → ∞

uniformly for all t ∈ Eδ .

LEMMA 2. Assume that F(t,x) satisfies (A), (l2), (l3), (l5) and (l7) . Then ϕk

satisfies the (P.S.) condition, that is, {un} has a convergent subsequence whenever it
satisfies ϕ ′

k(un) → 0 as n → ∞ and {ϕk(un)} is bounded.
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Proof. By (4), we have

(∫ kT

0
|u̇n(t)|pdt

) 1
p

� ‖ũn‖ � (1+ ck)
1
p

(∫ kT

0
|u̇n(t)|pdt

) 1
p

(5)

for all n . For any ε > 0, it follows from (l5) and Young’s inequality that∣∣∣∣
∫ kT

0
(∇H (t,u(t)) , ũ(t))dt

∣∣∣∣ �
∫ kT

0
f (t)|u+ ũ(t)|α |ũ(t)|dt +

∫ kT

0
g(t)|ũ(t)|dt

�
∫ kT

0
2α f (t)(|u|α + |ũ(t)|α)|ũ(t)|dt +

∫ kT

0
g(t)|ũ(t)|dt

� 2α(|u|α +‖ũ‖α∞)‖ũ‖∞
∫ kT

0
f (t)dt +‖ũ‖∞

∫ kT

0
g(t)dt

� 2αε‖ũ‖p
∞+2αε−

1
p−1 |u|qα

(∫ kT

0
f (t)dt

)q

+2α‖ũ‖α+1
∞

∫ kT

0
f (t)dt +‖ũ‖∞

∫ kT

0
g(t)dt.

Let ε = 1/(2α2pck) , by (3) we have

∣∣∣∣
∫ kT

0
(∇H(t,u(t)), ũ(t))dt

∣∣∣∣ � 1
2p

∫ kT

0
|u̇(t)|pdt +C1|u|qα +C2

(∫ kT

0
|u̇(t)|pdt

) α+1
p

+C3

(∫ kT

0
|u̇(t)|pdt

) 1
p

for all u ∈ W 1,p
kT and some positive constants C1, C2 and C3 . From (l2) and (3) we

obtain ∫ kT

0
(∇G(u(t)) , ũ(t))dt =

∫ kT

0
(∇G(u(t))−∇G(u), ũ(t))dt

� −r
∫ kT

0
|ũ(t)|2dt

� −rkT‖ũ‖2
∞

� −rkT

(
ck

∫ kT

0
|u̇(t)|pdt

) 2
p

for all u ∈W 1,p
kT . Hence one has

‖ũn‖ � |〈ϕ ′
k(un), ũn〉|

=
∣∣∣∣
∫ kT

0
|u̇n(t)|pdt +

∫ kT

0
(∇F (t,un(t)) , ũn(t))dt

∣∣∣∣
=

∣∣∣∣
∫ kT

0
|u̇n(t)|pdt +

∫ kT

0
(∇G(un(t)) , ũn(t))dt +

∫ kT

0
(∇H (t,un(t)) , ũn(t))dt

∣∣∣∣
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� 2p−1
2p

∫ kT

0
|u̇n(t)|pdt−C1|un|qα −C2

(∫ kT

0
|u̇n(t)|pdt

) α+1
p

−C3

(∫ kT

0
|u̇n(t)|pdt

) 1
p

− rkT

(
ck

∫ kT

0
|u̇n(t)|pdt

) 2
p

for large n . By (5) and the above inequality we have

C|un|
qα
p �

(∫ kT

0
|u̇n(t)|pdt

) 1
p

−C4 (6)

for some constants C > 0, C4 > 0 and all large n , which implies that

‖ũn‖∞ � C5(|un|
qα
p +1)

for all large n and some positive constant C5 by (3). Then one has

|un(t)| � |un|− |ũn(t)| � |un|−‖ũn‖∞ � |un|−C5

(
|un|

qα
p +1

)
for all large n and every t ∈ [0,kT ] .

If {|un|} is unbounded, we may assume that, going to a subsequence if necessary,

|un| → ∞ as n → ∞. (7)

Hence

|un(t)| � 1
2
|un| (8)

for all large n and every t ∈ [0,kT ] because of |un(t)| � |un|−C5

(
|un|

qα
p +1

)
.

Set δ = meas(E/2) . It follows from (l7) and Lemma 1 that there exists a subset
Eδ of E with meas(E\Eδ ) < δ such that

|x|−qαF(t,x) →−∞ as |x| → ∞

uniformly for all t ∈ Eδ , which implies that

meas(Eδ ) = meas(E)−meas(E\Eδ ) > δ > 0, (9)

and for every β > 0, there exists M � 1 such that

|x|−qαF(t,x) � −β (10)

for all |x| � M and all t ∈ Eδ . By (8) and (7), one has

|un(t)| � M (11)
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for large n and every t ∈ [0,kT ] . It follows from (l3) , (6), (8) and (9)-(11) that

ϕk(un) �
(
C|un|

qα
p +C4

)p
+

∫
[0,kT ]\Eδ

γ(t)dt−
∫
Eδ

β |un(t)|qαdt

�
(
C|un|

qα
p +C4

)p
+

∫
[0,kT ]\Eδ

γ(t)dt−2−qα |un|qαδβ

for all large n . Hence we have

limsup
n→∞

|un|−qαϕk(un) � Cp−2−qαδβ .

By the arbitrariness of β > 0, one has

limsup
n→∞

|un|−qαϕk(un) = −∞,

which contradicts the boundedness of ϕk(un) . Hence {|un|} is bounded. Furthermore,
{un} is bounded by (5) and (6). Then we can use a same argument as in [15] to show
that ϕk satisfies the (P.S.) condition. �

Now we prove our Theorem 3 first.

PROOF OF THEOREM 3. It follows from Lemma 2 that ϕk satisfies the (P.S.)
condition. Now we prove that ϕk satisfies the other conditions of the Saddle Point
Theorem (see Theorem 4.7 in [5]). Let W̃ 1,p

kT be the subspace of W 1,p
kT given by

W̃ 1,p
kT = {u ∈W 1,p

kT | u = 0}.
Set

ek(t) = k(cosk−1ωt)x0

for all t ∈ R and some x0 ∈ R
N with |x0| = 1, where ω = 2π

T . Then we have

ėk(t) = −ω(sink−1ωt)x0

for all t ∈ R . By the Saddle Point Theorem we only need to prove
(i) ϕk(u) → +∞ as ‖u‖→ ∞ in W̃ 1,p

kT ,
(ii) ϕk(x+ ek) →−∞ as |x| → ∞ in R

N .
It follows from (l3) and (10) that

ϕk(x+ ek) =
1
p

∫ kT

0
|ėk(t)|pdt +

∫ kT

0
F(t,x+ ek)dt

� 1
p
ω pkT +

∫ kT

0
F

(
t,x+ k(cosk−1ωt)x0

)
dt

� 1
p
ω pkT +

∫
[0,kT ]\Eδ

γ(t)dt−β
∫
Eδ

∣∣x+ k(cosk−1ωt)x0
∣∣qα dt
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� 1
p
ω pkT +

∫
[0,kT ]\Eδ

γ(t)dt−βMqαmeas(Eδ )

� 1
p
ω pkT +

∫
[0,kT ]\Eδ

γ(t)dt−βmeas(Eδ )

for all |x| � M + k , which implies (ii) by the arbitrariness of β .
It follows from (l5) and (3) that∣∣∣∫ kT

0
[H (t,u(t))−H(t,0)]dt

∣∣∣ =
∣∣∣∫ kT

0

∫ 1

0

(
∇H(t,su(t)),u(t)

)
dsdt

∣∣∣
�

∫ kT

0

∫ 1

0
f (t)|su(t)|α |u(t)|dsdt

+
∫ kT

0

∫ 1

0
g(t)|u(t)|dsdt

�
∫ kT

0
f (t)|u(t)|α |u(t)|dt +

∫ kT

0
g(t)|u(t)|dt

� ‖u‖α+1
∞

∫ kT

0
f (t)dt +‖u‖∞

∫ kT

0
g(t)dt

� C6

(∫ kT

0
|u̇(t)|pdt

) α+1
p +C7

(∫ kT

0
|u̇(t)|pdt

) 1
p

for all u ∈ W̃ 1,p
kT and some positive constants C6 and C7 . By (l2) and (3) we have

∫ kT

0
[G(u(t))−G(0)]dt =

∫ kT

0

∫ 1

0
(∇G(su(t))−∇G(0),u(t))dsdt

=
∫ kT

0

∫ 1

0

1
s

(∇G(su(t))−∇G(0),su(t))dsdt

�
∫ kT

0

∫ 1

0

1
s

(−rs2|u(t)|2)dsdt

= − r
2

∫ kT

0
|u(t)|2dt

� − rkT
2

(
ck

∫ kT

0
|u̇(t)|pdt

) 2
p

for all u ∈ W̃ 1,p
kT . Hence one has

ϕk(u)−
∫ kT

0
F(t,0)dt =

1
p

∫ kT

0
|u̇(t)|pdt +

∫ kT

0
[G(u(t))−G(0)]dt

+
∫ kT

0
[H (t,u(t))−H(t,0)]dt

� 1
p

∫ kT

0
|u̇(t)|pdt−C6

(∫ kT

0
|u̇(t)|pdt

)α+1
p
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−C7

(∫ kT

0
|u̇(t)|pdt

) 1
p

− rkT
2

(
ck

∫ kT

0
|u̇(t)|pdt

) 2
p

for all u∈ W̃ 1,p
kT , which implies (i) by (5). So there exists a critical point uk ∈W 1,p

kT for
ϕk such that

−∞< inf
W̃ 1,p

kT

ϕk � ϕk(uk) � sup
RN+ek

ϕk.

For fixed x ∈ R
N , set

Ak = {t ∈ [0,kT ]
∣∣∣∣x+ k(cosk−1ωt)x0

∣∣ � M}.
Then we have

meas(Ak) � kδ
2

(12)

for all large k , where δ is the same as the one in Lemma 2. In fact, if meas(Ak) > kδ
2 ,

there exists t1 ∈ Ak such that

1
8
kδ � t1 � 1

2
kT − 1

8
kδ (13)

or

1
2
kT +

1
8
kδ � t1 � kT − 1

8
kδ . (14)

Moreover, there exists t2 ∈ Ak such that

|t2 − t1| � 1
8
kδ (15)

and

|t2 − (kT − t1)| � 1
8
kδ . (16)

It follows from (16) that ∣∣∣∣12 (k−1t1 + k−1t2)− 1
2
T

∣∣∣∣ � 1
16

δ . (17)

By (13) and (14), one has

1
16

δ � 1
2
(k−1t1 + k−1t2) � T − 1

16
δ . (18)

From (17) and (18) we obtain∣∣∣sin(1
2
(k−1t1 + k−1t2)ω

)∣∣∣ � sin
( 1

16
ωδ

)
.



82 KUN LIAO AND CHUN-LEI TANG

Furthermore, by (15) we have∣∣cos(k−1ωt1)− cos(k−1ωt2)
∣∣

= 2
∣∣∣sin(1

2
(k−1t1 + k−1t2)ω

)∣∣∣ ∣∣∣sin(1
2
(k−1t1− k−1t2)ω

)∣∣∣
� 2sin2

( 1
16

ωδ
)
.

But due to t1, t2 ∈ Ak , one has∣∣cos(k−1ωt1)− cos(k−1ωt2)
∣∣

=
1
k

∣∣∣x+ k(cosk−1ωt1)x0−
(
x+ k(cosk−1ωt2)x0

)∣∣∣
� 2M

k
,

which is a contradiction for large k . Hence (12) holds. Let

Ek =
k−1⋃
j=0

( jT +Eδ ).

Then it follows from (12) that

meas(Ek\Ak) � 1
2
kδ

for large k . By (10) and (l3) we have

k−1ϕk(x+ ek) � 1
p
ω pT + k−1

∫ kT

0
F

(
t,x+ k(cosk−1ωt)x0

)
dt

� 1
p
ω pT + k−1

∫
[0,kT ]\(Ek\Ak)

γ(t)dt− k−1βmeas(Ek\Ak)

� 1
p
ω pT +

∫ T

0
|γ(t)|dt− 1

2
δβ

for every x ∈ R
N and all large k . Hence one has

sup
x∈RN

k−1ϕk(x+ ek) � 1
p
ω pT +

∫ T

0
|γ(t)|dt− 1

2
δβ

for all large k , which implies that

limsup
k→∞

sup
x∈RN

k−1ϕk(x+ ek) � 1
p
ω pT +

∫ T

0
|γ(t)|dt− 1

2
δβ .

By the arbitrariness of β , we obtain

limsup
k→∞

sup
x∈RN

k−1ϕk(x+ ek) = −∞,
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which follows that

limsup
k→∞

k−1ϕk(uk) = −∞. (19)

Now we prove that ‖uk‖∞ → ∞ as k → ∞. If not, going to a subsequence if necessary,
we may assume that ‖uk‖∞ � C8 for all k ∈ N and some positive constant C8 . Hence
we have

k−1ϕk(uk) � k−1
∫ kT

0
F(t,uk(t))dt � −k−1 max

0�s�C8
a(s)

∫ kT

0
b(t)dt

= − max
0�s�C8

a(s)
∫ T

0
b(t)dt.

It follows that liminf
k→∞

k−1ϕk(uk) >−∞, which contradicts (19). Therefore we complete

our proof. �

Then we prove our Theorems 1 and 2.

PROOF OF THEOREMS 1 AND 2. Theorem 1 follows from Theorem 3 by letting
α = 0. Theorem 3 implies Theorem 2 because (l3) follows from (l6) and (A) . In
fact, by (l6) there exists M > 0 such that

|x|−qαF(t,x) � 0

for all |x| � M and a.e. t ∈ [0,T ] , which implies that F(t,x) � 0 for all |x| � M and
a.e. t ∈ [0,T ] . It follows from (A) that

F(t,x) � max
0�s�M

a(s)b(t)

for all |x| � M and a.e. t ∈ [0,T ] . Now (l3) holds with

γ(t) = max
0�s�M

a(s)b(t).

Hence Theorem 2 follows from Theorem 3. �
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