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Abstract. In this paper, we study a semilinear p -Laplacian problem

−Δpu+h(x)|∇u|q = b(x)g(u), u > 0, x ∈ R
N , lim

|x|→∞
u(x) = 0,

where q ∈ (p− 1, p], b, h ∈Cα
loc(R

N) for some α ∈ (0,1), h(x) � 0, b(x) > 0,∀x ∈ R
N , and

g ∈ C1((0,∞),(0,∞)) which may be singular at 0 . Using a sub-supersolution argument and a
perturbed argument, we obtain the existence of entire solutions to the problem. No monotonicity

condition is imposed on the functions g(s) and g(s)
sp−1 .

1. Introduction

In this paper, we consider the existence of entire solutions of the following semi-
linear p -Laplacian problem{−Δpu+h(x)|∇u|q = b(x)g(u) in R

N ,

u > 0, lim|x|→∞ u(x) = 0,
(1.1)

where Δpu =div(|∇u|p−2∇u) is the p -Laplacian operator, q∈ (p−1, p],h∈Cα
loc(R

N)
for some α ∈ (0,1) is non-negative in R

N , g satisfies the following conditions:

(g1 ) g ∈C1((0,∞),(0,∞)) ,

(g2 ) lims→0+
g(s)
sp−1 = ∞ ,

(g3 ) lims→∞
g(s)
sp−1 = 0,

and b satisfies

(b1 ) b ∈Cα
loc(R

N) and b(x) > 0,∀x ∈ R
N ,

(b2 ) the p -Laplacian problem{−Δpu = b(x) in R
N ,

u > 0, lim|x|→∞ u(x) = 0,
(1.2)
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has a unique solution w ∈C1,α
loc (RN) .

In recent years, more and more attention has been paid to the existence of positive
entire solutions for semilinear elliptic problems. Results relating to these problems
can be found in [1-3, 6-8, 10, 11-14, 16, 18, 19]. For the equation considered over a
bounded smooth domain Ω instead of R

N , the corresponding problem was studied, for
instance, in [15, 20] and the references cited therein.

The following model {−Δu = b(x)g(u) in R
N ,

u > 0, lim|x|→∞ u(x) = 0,

arises from many branches of mathematics and applied mathematics.
For g(u) = u−γ with γ > 0, if b satisfies (b1) and the following condition

(b3)
∫ ∞
0 rφ(r)dr < ∞ , where φ(r) = max|x|=r b(x) ,

Lair and Shaker [13] showed that problem (1.3) has a unique solution u ∈C2,α
loc (RN) .

Later, Lair and Shaker [14] and Zhang [19] extended the above results to the more
general g which satisfies (g1) and

(g4) g is non-increasing on (0,∞) and lims→0+ g(s) = ∞.

Cǐrstea and Rǎdulescu [3] proved the above results if g satisfies (g1) and:

(g5) lims→0+
g(s)
s = ∞ ;

(g6)
g(s)
s+s0

is decreasing on (0,∞) for some s0 > 0;

(g7) g is bounded in a neighborhood of ∞.

Recently, Goncalves and Santos [11] also generalized the above results to the case
that g satisfies (g1) , (g5) and

(g8) lims→∞
g(s)
s = 0;

(g9)
g(s)
s is decreasing on (0,∞) .

Very recently, Covei [4] generalized the problem (1.3) to the following p-laplacian
equation {−Δpu = b(x)g(u) in R

N ,

u > 0, lim|x|→∞ u(x) = 0,
(1.3)

and showed that the problem (1.4) has a positive solution u ∈ C1,α(RN) if g satisfies
(g2),(g3) and

(g10)
g(s)
sp−1 is decreasing on (0,∞) ;

(g11) g ∈ Liploc((0,∞),(0,∞)) with g singular at 0;

and b satisfies (b1) and

(b4) 0 <
∫ ∞
1 r

1
p−1 φ

1
p−1 dr < ∞ if 1 < p � 2; 0 <

∫ ∞
1 r

(p−2)N+1
p−1 φ dr < ∞ if 2 � p < ∞.
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Motivated by the results [4] and [17], in this paper, we will extend the results of
[17] and continue to consider the existence of entire solutions to problem (1.1) for the
functions g(s) and g(s)

sp−1 which do not have monotonicity.
Now we state our main result.

THEOREM 1.1. Let q ∈ (p−1, p],h ∈Cα
loc(R

N) for some α ∈ (0,1) is non nega-
tive in R

N , and b satisfies (b1) and (b2) . If g satisfies (g1)-(g3) , then problem (1.1)
has at least one solution u ∈C1,α

loc (RN) .

The paper is organized as follows. In Section 2, we give some preliminaries that
which are going to be used later. In Section 3, we prove Theorem 1.1.

2. Preliminaries

We first consider the following problem{−Δpu+h(x)|∇u|q = b(x)g(u) in Ω,

u > 0, u|∂Ω = 0,
(2.1)

where Ω is a bounded domain with smooth boundary in R
N(N � 1).

For the convenience, we set f (x,u,∇u) = b(x)g(u)− h(x)|∇u|q . Now we intro-
duce a sub-supersolution method with the boundary restriction.

DEFINITION 2.1. A function u∈C1,α(Ω)∩C(Ω) is called a subsolution of prob-
lem (2.1) if {−Δpu � f (x,u,∇u) in Ω,

u > 0, u|∂Ω = 0.
(2.2)

DEFINITION 2.2. A function u ∈ C1,α(Ω)∩C(Ω) is called a supersolution of
problem (2.1) if {−Δpu � f (x,u,∇u) in Ω,

u > 0, u|∂Ω = 0.
(2.3)

LEMMA 2.1. ([15, Lemma 2.4]) Let f (x,u,ξ ) satisfies the following two basic
conditions:
(D1) f (x,u,ξ ) is locally Hölder continuous in Ω× (0,∞)×R

N and continuously dif-
ferentiable with respect to the variables u and ξ ;

(D2) for any Ω1 ⊂⊂Ω and any a,b∈ (0,∞)(a < b) , there exists a corresponding con-
stant C =C(Ω1,a,b) > 0 such that | f (x,u,ξ )|�C(1+ |ξ |p),∀x∈Ω1,∀u∈ [a,b],∀ξ ∈
R

N .
If problem (2.1) has a supersolution u and a subsolution u such that u � u in

Ω , then problem (2.1) has at least one solution u ∈ C1,α(Ω)∩C(Ω) in the ordered
interval [u,u] .
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LEMMA 2.2. ([4, Theorem 1.2]) Let b satisfies (b1) . If g satisfies (g1)-(g3) and
(g10) , then the following problem{−Δpu = b(x)g(u) in Ω,

u > 0, u|∂Ω = 0,
(2.4)

has a solution u ∈C(Ω)∩C1,α(Ω) .

LEMMA 2.3. If g satisfies (g1)-(g3) , then there exists a function f 1 such that

(i) f 1 ∈C1((0,∞),(0,∞)) ,

(ii) g(s)
sp−1 � f 1(s),∀s > 0 and lims→0+ f 1(s) = ∞,

(iii) f 1 is non-increasing on (0,∞) ,
(iv) lims→∞ f 1(s) = 0.

Proof. By (g1)-(g3), we can denote

f (s) = sup
t�s>0

g(t)
t p−1 . (2.5)

Observe that

f (s) � g(t)
t p−1 , ∀s > 0 and t � s,

and f is non-increasing on (0,∞) . Moreover,

lim
s→0+

f (s) = ∞ and lim
s→∞

f (s) = 0.

Now we can assume f ∈C1(0,∞). If not, we can replace it by

f 1(s) =
2
s

∫ s

s
2

f (t)dt, s > 0.

Obviously,

f (s) � f 1(s) � f (
s
2
), ∀s > 0.

And, for s > 0,

f
′
1(s) =

2
s
( f (s)− 1

2
f (

s
2
))− 2

s2

∫ s

s
2

f (t)dt

� 2
s
( f (s)− 1

2
f (

s
2
))− 2

s2

s
2

f (s) =
1
s
( f (s)− f (

s
2
)) � 0,

i.e., f 1 ∈C1((0,∞),(0,∞)). Hence Lemma 2.3 holds. �



THE p -LAPLACIAN PROBLEM WITH A GRADIENT TERM 229

LEMMA 2.4. Let q ∈ (p−1, p] , b,h ∈Cα(Ω) , h(x) � 0 , b(x) > 0 , ∀x ∈Ω. If g
satisfies (g1)-(g3) , then problem (2.1) has at least one solution u ∈C(Ω)∩C1,α(Ω) .

Proof. Let ψ1 ∈C1(Ω)∩C1,α(Ω) be the first eigenfunction corresponding to the
first eigenvalue λ1 of {−Δpu = λ |u|p−2u in Ω,

u > 0, u|∂Ω = 0.
(2.6)

Let β = q
q−p+1 . It follows from (g2 ) that there exists a positive constant δ1 ∈ (0,1)

such that

g(s)
sp−1 � λ1β p−1 + |h|∞β q|∇ψ1|q∞

minx∈Ω b(x)
, ∀s ∈ (0,δ1).

Let u = c1ψ
β
1 with c1 ∈ (0,min{1, δ1

|ψ1|β∞
}). Since cq−p+1

1 < 1, we have

−Δpu+h(x)|∇u|q = β p−1λ1(c1ψ
β
1 )p−1

− (p−1)β (β −1)cp−1
1 |βψβ−1

1 |p−2ψβ−2
1 |∇ψ1|p

+h(x)β qcq
1ψ

q(β−1)
1 |∇ψ1|q

� min
x∈Ω

b(x)g(c1ψ
β
1 ) � b(x)g(c1ψ

β
1 ) = b(x)g(u), x ∈Ω.

So u = c1ψ
β
1 is a subsolution to problem (2.1).

To construct a supersolution, by Lemma 2.2, we obtain that the following problem{−Δpu = b(x)up−1( f 1(u)+ 1
u ) in Ω,

u > 0, u|∂Ω = 0,
(2.7)

has a solution u ∈C(Ω)∩C1,α(Ω) , which is a supersolution to problem (2.1).
Using the same maximum principle argument as the following proof of (3.2) in

Section 3, we can get that u(x) � u(x),x ∈Ω. It follows from Lemma 2.1 that problem
(2.1) has at least one solution u ∈C(Ω)∩C1,α(Ω) in the ordered interval [u,u]. �

LEMMA 2.5. Let b satisfies (b1) and (b2) . If g satisfies (g1)-(g3) and f 1 is in
Lemma 2.3, then there exists a function v ∈C1

loc(R
N) satisfying

{−Δpv � b(x)vp−1( f 1(v)+ 1
v ) in R

N ,

v > 0, lim|x|→∞ v(x) = 0.
(2.8)

Proof. By (g1)-(g3), we define

Γ(t) =
∫ t

0

( s

s f 1(s)+1

) 1
p−1

ds, t � 0.
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It follows from L’Hôspital’s rule that

lim
t→∞

Γ(t)
t

= lim
t→∞

( t

t f 1(t)+1

) 1
p−1

= lim
t→∞

( 1

f 1(t)+ t−1

) 1
p−1

= ∞.

Let w be the solution of problem (1.2) and c0 = maxRN w(x). Therefore, there
exists a positive constant c2 (large enough) such that

c0c2 � Γ(c2) =
∫ c2

0

( s

s f 1(s)+1

) 1
p−1

ds. (2.9)

Now we define a function v by

w(x) =
1
c2

∫ v(x)

0

( s

s f 1(s)+1

) 1
p−1

ds, ∀x ∈ R
N . (2.10)

Hence combining (2.9) with (2.10), we have 0 < v(x) � c2. Obviously, we obtain
vp−1(x) � cp−1

2 . It follows from lim|x|→∞w(x) = 0 that lim|x|→∞ v(x) = 0.
Moreover, by Lemma 2.3, we obtain

cp−1
2 b(x) = −cp−1

2 Δpw

=
−Δpv

f 1(v(x))+ (v(x))−1
− d

dv

( 1

f 1(v(x))+ (v(x))−1

)
|∇v(x)|p

� −Δpv

f 1(v(x))+ (v(x))−1
, x ∈ R

N ,

i.e.,

−Δpv � cp−1
2 b(x)

(
f 1(v(x))+ (v(x))−1)

� b(x)vp−1(x)( f 1(v(x))+ (v(x))−1), x ∈ R
N .

This completes the proof. �

3. Proof of Theorem 1.1

Now consider the perturbed problem{−Δpuk +h(x)|∇uk|q = b(x)g(uk) in B(0,k),

uk > 0, uk|∂B(0,k) = 0,
(3.1)

where B(0,k) = {x ∈ R
N : |x| < k},k = 1,2,3, ...

It follows from Lemma 2.4 that problem (3.1) has one solution uk ∈C(B(0,k))∩
C1,α(B(0,k)).

Set uk(x) = 0 ∀ |x| > k . Let v be as in Lemma 2.5, we assert that

uk(x) � v(x), x ∈ R
N ,k = 1,2,3, ... . (3.2)

To show (3.2) we need Diaz-Saà’s inequality (in [5]).
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LEMMA 3.1. For i = 1,2 let wi ∈ L∞(Ω) such that:

{
wi > 0 a.e. in Ω and w1 = w2 on ∂Ω,

wi ∈W 1,p(Ω) and Δpw
1
p
i ∈ L∞(Ω).

Then, ∫
Ω

(−Δpw
1
p
1

w
p−1
p

1

− −Δpw
1
p
2

w
p−1
p

2

)
(w1 −w2)dx � 0,

provided wi
wj

∈ L∞(Ω) for i �= j , where i, j = 1,2.

Verification of (3.2) . Consider the open subset of R
N , namely

Bk,v = {x ∈ R
N |uk(x) > v(x)} ⊂⊂ B(0,k).

Setting w1 := (uk)p and w1 := vp we get,

0 �
∫

Bk,v

(−Δpw
1
p
1

w
p−1
p

1

− −Δpw
1
p
2

w
p−1
p

2

)
(w1 −w2)dx

=
∫

Bk,v

(−Δpuk

up−1
k

− −Δpv

vp−1

)
(up

k − vp)dx

�
∫

Bk,v

(
b(x)g(uk)−h(x)|∇uk|q

up−1
k

− b(x)vp−1( f 1(v)+ 1
v )

vp−1

)
(up

k − vp)dx

=
∫

Bk,v

(b(x)
(

g(uk)

up−1
k

− ( f 1(v)+
1
v
))− h(x)|∇uk|q

up−1
k

)
(up

k − vp)dx

�
∫

Bk,v

b(x)
(

g(uk)

up−1
k

− ( f 1(v)+
1
v
)
)

(up
k − vp)dx < 0,

which is impossible. So Bk,v = /0 and (3.2) holds.
Now, we need to estimate {uk} . For any bounded C1,α - smooth domain Ω′ ⊂R

N ,
take Ω1 and Ω2 with C1,α - smooth boundaries, and K1 large enough, such that

Ω′ ⊂⊂Ω1 ⊂⊂Ω2 ⊂⊂ B(0,k), k � K1.

Note that
uk(x) � u(x) > 0, ∀x ∈ B(0,K1), (3.3)

when B(0,K1) is the substitution for Ω in the proof of Lemma 2.4.
Let

ρk(x) = b(x)g(uk)−h(x)|∇uk|q, x ∈ B(0,K1).
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Since −Δpuk(x) = ρk(x),x ∈ B(0,K1), by the interior estimate theorem of Ladyzen-
skaja and Ural’tseva [12, Theorem 3.1, p.266], we get a positive constant C1 indepen-
dent of k such that

max
x∈Ω2

|∇uk(x)| � C1 max
x∈B(0,K1)

uk(x) � C1 max
x∈B(0,K1)

v(x), ∀x ∈ B(0,K1), (3.4)

i.e., |∇uk(x)| is uniformly bounded on Ω2 . It follows that {ρk}∞K1
is uniformly bounded

on Ω2 and hence ρk ∈ Lp1(Ω2) for any p1 > 1. Since

−Δpuk(x) = ρk(x), x ∈Ω2,

we see by [9, Theorem 9.11] that there exists a positive constant C2 independent of k
such that

‖uk‖W 1,p1(Ω1)
� C2(‖ρk‖Lp1 (Ω2) +‖uk‖Lp1 (Ω2)), ∀k � K1. (3.5)

Taking p1 > N such that α < 1− N
p1

and applying Sobolev’s embedding inequal-

ity, we see that {‖uk‖C1,α (Ω1)
}∞K1

is uniformly bounded. Therefore ρk ∈ Cα(Ω1) and
{‖ρk‖Cα (Ω1)

}∞K1
is uniformly bounded. It follows from Schauder’s interior estimate

theorem (see [19, Chapter 1, p.2]) that there exists a positive constant C3 independent
of k such that

‖uk‖C1,α (Ω′) � C3(‖ρk‖Cα (Ω1) +‖uk‖C(Ω1)), ∀k � K1, (3.6)

i.e., {‖uk‖C1,α (Ω′)}∞K1
is uniformly bounded. Using Ascoli-Arzela’s theorem and the

diagonal sequential process, we get that {uk}∞K1
has a subsequence that converges uni-

formly in the C1(Ω′) norm to a function u ∈C1(Ω′) and u satisfies

−Δpu+h(x)|∇u|q = b(x)g(u), x ∈Ω′.

By (3.3), we obtain that

u > 0, ∀x ∈Ω′.

Applying Schauder’s regularity theorem we have that u ∈C1,α(Ω′). Since Ω′ is arbi-
trary, we also have that u ∈ C1,α

loc (RN) . It follows from (3.2) that lim|x|→∞ u(x) = 0.
Hence Theorem 1.1 is proved. �
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