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PERIODIC SOLUTIONS OF LIÉNARD EQUATION

WITH ONE OR TWO WEAK SINGULARITIES

ALEXANDER GUTIÉRREZ AND PEDRO J. TORRES

(Communicated by V. Županović)

Abstract. In this paper we study the existence and asymptotic stability of periodic solutions of
the differential equation

ẍ+ f (x)ẋ+g(x) = h(t),

where h(t) is T -periodic, f (x) is positive and g(x) is strictly monotonically increasing and has
one or two weak singularities. The method of proof relies on the construction of a positively
invariant region of the flux.

1. Introduction

In this paper we deal with the existence and stability of T -periodic solutions of a
second order differential equation of Liénard-type

ẍ+ f (x)ẋ+g(x) = h(t), (1)

where h(t) is a continuous and T -periodic function, f ,g : (l1, l2) → R are locally Lip-
schitz continuous functions.

In principle, −∞ � l1 < l2 � +∞ , but we are interested in the case where at least
one of them is finite.

The study of scalar second order equations with singularities can be traced back to
a paper by Nagumo [10] published in 1944. It is important to remark this fact because
it seems to be little known, and up to our knowledge it is not recorded in the related
literature. The available reviews [9, 12, 13] register as early references some papers by
Forbat, Huaux and Derwindué in the sixties [4, 5, 2]. Although the first application of
topological degree is due to Fauré [3], the papers [7, 6] constitute the landmarks on this
topic.

In the study of equations with singularities, the so-called strong force assumption
has played a prominent role. To explain it, let us define x as the minimum of the values
of (l1, l2) such that g(x) = 0 and let us define the potential

G(x) :=
∫ x

x
g(s)ds.
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Then, it is said that g has a strong singularity at l1 (resp. l2 ) if

lim
x→l+1

G(x) = +∞, (resp. lim
x→l−2

G(x) = +∞).

On the other hand, when such a limit is finite, we speak about a weak singularity. All
the classical papers mentioned before assume a strong force condition. In fact, in the
seminal paper of Lazer and Solimini [7] it is shown that such a condition can not be
dropped without further assumptions. On this basis, such a condition became standard
in the related works. However, in the latter years the interest on weak singularities has
increased and some conditions for existence of periodic solutions [1, 8, 11, 14, 15, 16,
17, 18] can be found. Our purpose in this paper is to recover the original method of
Nagumo developed in [10] for strong singularities and show that it is suitable to deal
also with weak singularities.

In order to formulate our main result, let us define the following functions

F(x) :=
∫ x

x
f (s)ds,

W (x) :=
F2(x)

4
+2G(x),

Z(x) :=
F2(x)

2
+2G(x).

In the following, ‖.‖∞ stands for the usual supremum norm.

THEOREM 1. Let us assume the following hypotheses.

(H1) C∗ := inf{W (l1),W (l2)} < ∞.

(H2) There exists f0 > 0 such that f (x) � f0 for every x ∈ (l1, l2) .
(H3) g(x) is a strictly increasing function that changes sign.

Fix 0 < C < C∗ and let l′1 < l′2 be the solutions of Z(x) = C. Define the function

R(x) := −1
2
|F(x)|+

√
C∗ −W(x), (2)

and fix the following positive constants

K1 := min
i=1,2

{
|g(l′i)|

f0
,

√
2g(l′i)F(l′i)

f0

}
,

K2 := min
i=1,2

{1
2
R(l′i),

1
|F(l′i)|

R2(l′i)
}
.

Then, under the assumption

‖h‖∞ <
f0
2

min{K1,K2}, (3)

there exists at least one T -periodic solution ϕ(t) of Eq. (1). Such solution verifies

l′1 � ϕ(t) � l′2 for all t. (4)
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Some comments are pertinent here. Condition (H1) is a weak force assumption.
(H2) is a dissipative condition. Finally, (H3) implies that the statement is consistent.
In fact, if g(x) and f (x) satisfy (H2)-(H3) then functions W (x), Z(x) satisfy

W ′(x), Z′(x) < 0, x ∈ (l1, x),
W ′(x), Z′(x) > 0, x ∈ (x , l2).

Hence Z(x) and W (x) have an absolute minimum at x and W (x) = Z(x) = 0. More-
over, for all 0 < C � C∗ the equation Z(x) = C has exactly two solutions l′1, l

′
2 with

l′1 < x < l′2 . Finally, the function R(x) is positive for x ∈ (l′1, l
′
2) (see Lemma 1) and

therefore the constant K2 is in fact positive.
The paper is structured into four section. After this Introduction, Section 2 is

devoted to prove the main result. In Section 3 we show how to take advantage on the
bounds obtained in the previous section in order to get a result on asymptotic stability.
Finally, in Section 4 we provide some illustrative examples and compare our results
with those available in the related literature.

2. Proof of the main result

We begin with a preliminary lemma.

LEMMA 1. The function R(x) is positive for x ∈ (l′1, l
′
2) .

Proof. If x ∈ (l′1, l
′
2) , we have

Z(x) = W (x)+ 1
4F2(x) < C and C∗ −W(x) > C∗ −C+ 1

4F2(x) > 0.

Then √
C∗ −W(x) >

√
C∗ −C+

1
4
F2(x) >

1
2
|F(x)|. �

With this lemma, K2 > 0 and the assumptions of Theorem 1 are consistent. Now,
let us rewrite (1) as a system {

ẋ = y−F(x),
ẏ = −g(x)+h(t).

(5)

The proof of Theorem 1 will consist of establishing a positively invariant region for
system (5). To this purpose, let us define the energy functional

P(x,y) :=
(

y− F(x)
2

)2

+W(x). (6)

Obviously, the inequality P(x,y) � C∗ is equivalent to

F(x)
2

−
√

C∗ −W(x) � y � F(x)
2

+
√

C∗ −W (x). (7)
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Moreover, it is easy to realize that P(x,y) =C∗ is a simple closed curve. The goal is to
prove that the simply connected set defined by

D :=
{
(x,y) : l′1 � x � l′2,P(x,y) � C∗} , (8)

is positively invariant for system (5).
The following auxiliary result will be useful. For convenience, in the rest of the

section we will call H = ‖h‖∞ .

LEMMA 2. Under the conditions of Theorem 1, if x ∈ (l′1, l
′
2) and P(x,y) � C∗

then the following inequalities are fulfilled

|y−F(x)| � 4H
f0

, (9)

(y−F(x))2 >
2H
f0

|F(x)|. (10)

Proof. In order to prove (9), we must meet that

y >
4H
f0

+F(x) or y < −4H
f0

+F(x).

Since P(x,y) � C∗ , from (7) we have

y � F(x)
2

+
√

C∗ −W(x),

or

y � F(x)
2

−
√

C∗ −W(x).

Therefore, it is sufficient to prove

F(x)+
4H
f0

<
F(x)

2
+

√
C∗ −W (x),

F(x)− 4H
f0

>
F(x)

2
−

√
C∗ −W (x),

for all x ∈ (l′1, l
′
2) , that is,

H <
f0
4

(
−|F(x)|

2
+

√
C∗ −W(x)

)
=

f0
4

R(x). (11)

Note that from the definition of l′1, l
′
2 we have

√
C∗ −W (x) � 1

2
|F(x)| for all x ∈ (l′1, l

′
2) .

On the other hand, it is easy to verify that R′(x) > 0 for x ∈ (l′1, x) and R′(x) < 0 for
x ∈ (x , l′2) . Therefore

min
x∈[l′1,l′2]

R(x) = min
i=1,2

R(l′i).
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By using the condition (3),

H <
f0
2

K2 � f0
4

min
i=1,2

R(l′i) � f0
4

R(x),

which is just inequality (11), thus (9) is proved.
Similarly we have that H satisfies (10) if

0 < H <
f0

2|F(x)|

(
− |F(x)|

2
+

√
C∗ −W(x)

)2
=

f0
2|F(x)|R

2(x). (12)

Note that

d
dx

(
1

|F(x)|R
2(x)

)
> 0, x ∈ (l′1, x),

d
dx

(
1

|F(x)|R
2(x)

)
< 0, x ∈ (x , l′2).

Therefore

min
x∈[l′1,l′2]

R2(x)
|F(x)| = min

i=1,2

R2(l′i)
|F(l′i)|

.

By using (3),

H <
f0
2

K2 � f0
2

R2(l′i)
|F(l′i)|

� f0
2

R2(x)
|F(x)| ,

which is just inequality (12). �

Now, we are ready to prove the main theorem.

PROOF OF THEOREM 1. We are going to prove that the region D defined by (8)
is positively invariant. It is sufficient to prove that

Ṗ(x,y) < 0, (x,y) /∈ D, (13)

where Ṗ is the total derivative of P .
Taking into account (6) and (5),

Ṗ = [y+(y−F(x))]ẏ+[− f (x)(y−F(x))+2g(x)]ẋ
= [2y−F(x)](h(t)−g(x))+ [2g(x)− f (x)(y−F(x))](y−F(x))

= h(t)[2y−F(x)]−g(x)[2y−F(x)]− f (x)(y−F(x))2 +2g(x)(y−F(x))

= − f (x)(y−F(x))2 +2h(t)(y−F(x))−F(x)g(x)+F(x)h(t).

(14)

We distinguish two cases (see Figure 1).

Case 1. Let be x ∈ (l1, l′1]∪ [l′2, l2) . Note F(x)g(x) and |g(x)| are nonnegative
functions with an absolute minimum in x and such that they are decreasing in (l1, l′1]
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l′2 l2l1 l′1

Case 1

Case 2

D

P (x, y) = C∗

y

x

Figure 1: The white region D is positively invariant for system (5)

and increasing in [l′1, l2) . By (3), we have that H < f0
2 K1 , and considering the definition

of K1 and the previous argument, the following inequalities hold

F(x)g(x) >
2H2

f0
, |g(x)| > 2H

for all x ∈ (l1, l′1]∪ [l′2, l2) . In consequence,

− f (x)(y−F(x))2 � − f0(y−F(x))2,

2h(t)(y−F(x)) � 2H|y−F(x)|,

and

F(x)h(t)−F(x)g(x) < |F(x)|H −F(x)g(x)

< |F(x)| |g(x)|
2

−F(x)g(x)

� −1
2
F(x)g(x) < −H2

f0
.

Putting the above inequalities into (14), it follows

Ṗ < −
(√

f0|y−F(x)|− H√
f0

)2
� 0,

for all x ∈ (l1, l′1]∪ [l′2, l2) and y ∈ R .
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Case 2. Let be x∈ (l′1, l
′
2) and P(x,y) �C∗ . By Lemma 2, the inequalities (9)-(10)

are satisfied and therefore

− f (x)(y−F(x))2 � − f0(y−F(x))2,

F(x)h(t)−F(x)g(x) � H|F(x)| < f0
2

(y−F(x))2.

Hence,

Ṗ < |y−F(x)|
(
− f0

2
|y−F(x)|+2h(t)

)
< |y−F(x)|(−2H +2h(t)) < 0,

for all x ∈ (l′1, l
′
2) and y ∈ R such that P(x,y) � C∗.

Therefore, combining Case 1 and Case 2 we get (13).
Finally using (13), equation (1) has a T -periodic solution by a basic application of

Brouwer’s fixed point theorem. Denote by (x(t;t0,x0,y0),y(t; t0,x0,y0)) the unique so-
lution of the Cauchy problem for system (5). Using the fact that D is positively invariant
if (x0,y0) ∈ D , we have that the solution x(T ) := x(T ;0,x0,y0),y(T ) := y(T ;0,x0,y0)
belongs also to D . Considering that D is compact and simply connected, the Poincaré
map has a fixed point, which of course is the initial condition of a T -periodic solution
ϕ(t) of system (5), and such solution verifies (4). �

3. Asymptotically stability of periodic solutions

In this section we combine the bounds obtained in the proof for existence with the
results in [19] in order to get a uniqueness and stability criterion.

THEOREM 2. Under the condition of Theorem 1, assume moreover that g has a
continuous derivative in its domain. Let us call

m = min
x∈[l′1,l

′
2]

f (x), M = max
x∈[l′1,l′2]

f (x)

and fix the constants

β = (M−m)/2, γ = (M +m)/2, α = (π/T )2 + γ2/4.

If the following condition holds

0 < max
x∈[l′1,l′2]

g′(x) � α−β (γ+α1/2), (15)

then the periodic solution found in Theorem 1 is unique and asymptotically stable.

Proof. The uniqueness follows by using the argument of the proof of [19, Propo-
sition 4.3]. Concerning the asymptotic stability, the solution found in Theorem 1 has
index 1 because it comes for Brouwer’s fixed point theorem, then we can apply [19,
Proposition 1.2] (see also [19, Remark 1]). �
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4. Examples and comparison with related results

It is important to remark that the equation with weak singularities and nonlinear
friction term has been scarcely explored until now. A recent reference is [18]. In order
to compare the respective results, let us take the model equation

ẍ+ f (x)ẋ+ xμ − 1

xδ
= acos(wt) , (16)

where a,μ ,δ ,w > 0. This corresponds to eq. (1) with

g(x) = xμ − 1

xδ
and h(t) = acos(wt) .

Of course T = 2π
w . If (H2) holds, [18, Theorem 1.1] establishes the existence of a

positive T -periodic solution under the condition

f0 >

√
T ‖h‖2

g−1(−a)
=

π
√

2a
g−1(−a)w

. (17)

If compared with this condition, our main assumption (3) has the advantage that it
does not depend on the frequency w . Therefore both assumptions are independent
and it is easy to construct examples verifying (3) but not (17), just taking w small
enough. For instance, fix f (x) = 1,μ = 1,δ = 1

2 , if we take C = 1 in Theorem 1, l′1, l
′
2

can be computed numerically giving l′1 = 0.340298, l′2 = 1.73068. As a consequence,
K1 = 0.970549, K2 = 0.589254. Then, condition (3) reads

a � 1
2

min{K1,K2} = 0.294627.

Under such condition, (16) has a T -periodic solution for all w . If a = 1
4 , a numerical

computation shows that (17) does not hold if w < 0.189215. As a further example, if
we take:

μ = 2,δ = 1
2 , f (x) ≡ 4, l′1 = 1

2 , and C = Z(l′1) ,

then l′2 = 1.49107, K1 = 0.698446, K2 = 0.291053, condition (3) reads

a � 2min{K1,K2} = 0.582107

and condition (15) reads

max
x∈[l′1,l

′
2]

g′(x) = 3.25676 < 4+
w2

4
,

for any frequency w > 0. Therefore, if we choose a = 1
2 we have the Theorems 1 and 2

guarantee the existence of a unique T -periodic solution which is asymptotically stable
for all w , but a numerical computation shows that (17) does not hold if w < 0.698132.
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Other interesting reference is [11]. In this paper, the authors study the equation
with linear friction term ( f (x) ≡ c constant) by a combination of the method of upper
and lower solutions and the ideas from [19]. In particular, for the equation

ẍ+ cẋ− 1

xδ
= −1+acos(wt) , (18)

with a,c > 0, Theorem 1.2 (see also Example 3.1) gives the existence of a unique
T -periodic solution which is asymptotically stable under the condition

1+a �
( 1

4δ
(w2 + c2)

)δ/(δ+1)
. (19)

Again, the condition depends explicitly on the frequency w , hence it is essentially inde-
pendent from condition (3), being not difficult to derive explicit examples to illustrate
this fact. We omit further details.
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