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Abstract. We investigate the kink solutions to the generalized nonlinear Klein-Gordon equation
in the presence of inhomogeneous forces and nonlocal operators. We have found that the num-
ber of kink internal modes can depend on the asymptotic behavior of the kink solution for large
values of |x| . A list of mechanisms that are capable to create new kink internal modes would
contain some of the following items: inhomogeneous perturbations that generate unstable equi-
librium positions for the kink, extended de-localized space-dependent perturbations, external
perturbations that do not decay exponentially, and nonlocal operators.

1. Introduction

Recently a wealth of work has been dedicated to solitons and solitary waves [7,
8, 30, 42]. A much discussed question is the existence of internal modes of solitary
waves [9, 10, 20, 31, 32, 37, 39, 40, 41]. Internal modes introduce fundamentally new
phenomena into the system dynamics as, for example, long-lived oscillations of the
solitary wave shape and resonant solitary wave interactions [9, 10, 20, 31, 32, 37, 39,
40, 41].

A very important question is: what are the mechanisms for the creation of solitary
wave internal modes?

Some attention has been devoted to the following mechanisms: discreteness, de-
formation of the potential that corresponds to the nonlinearity and higher-order disper-
sion [32].

Herein we will address new mechanisms and their interaction with other phenom-
ena and concepts: space-dependent external inhomogeneous perturbations, nonlocal
operators, and long-range interactions.
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We will investigate novel physical effects that are possible when new internal
modes of solitary waves are created, and we will show that some of the most spec-
tacular novel phenomena are produced by the internal mode instabilities.

The existence of internal modes is very relevant also to the question related to
intrinsic localized modes and discrete breathers [11, 14, 15, 32, 34, 44]. This is a very
popular theme in current scientific literature.

Some of the results presented here are related to more general problems: long-
range interactions of solitary waves (many space scales), interaction of nonlinear waves
with irregular (fractal) structures, and soliton propagation in disordered media.

We will consider propagation of solitary waves in media where the width of the
solitary wave is comparable with the characteristic length of the media. Recall the
analogy with the applications of geometrical optics - geometrical optics can be applied
only when the wave length is much less than the length of any change in the media.

2. The model equations

As a model equation, we will investigate a nonlinear Klein-Gordon equation:

φtt + γφt − N̂φ +
∂U(φ)
∂φ

= F(x,t), (1)

where U(φ) is a potential that possesses at least two minima in points φ1 and φ3 , and
a maximum in point φ2 , such that φ1 < φ2 < φ3 , and U(φ1) = U(φ3) (see figures 1 and
2).

In its simplest case, operator N̂ is the second space derivative: N̂ = ∂xx . In the
present paper we will also consider situations where N̂ is a nonlocal operator, for ex-
ample:

N̂φ =
∂
∂x

∫ ∞

−∞
Q(x,s)

∂φ
∂ s

ds . (2)

Let us recall well-known facts about the unperturbed version of Eq. 1: γ ≡ 0,
F(x,t) ≡ 0, N̂ = ∂xx :

(i) It supports kink and antikink solutions (see figures 3 and 4). (ii) The energy
density for the kink is a localized function (see Fig. 5).

The sine-Gordon and φ4 equations are particular examples of Eq. (1).
It is well-known that most studies of the long Josephson junction are based on the

local sine-Gordon equation

φtt + γφt −φxx + sinφ = 0. (3)

A mechanical analog of this model is a chain of coupled pendula in the presence of
damping and forcing, in which the term φxx represents the interaction between pendula.

In situations where the electromagnetic fields penetrate the superconducting elec-
trodes and extend into free space, and the fields outside the junction contribute signif-
icantly to the junction energy, then the local sine-Gordon equation is no longer valid.
In these situations we should use the following nonlocal sine-Gordon equation for de-
scribing the junction:
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Figure 1: General potential U(φ) in the generalized Klein-Gordon equation (1) for the existence
of kink and antikink solutions.

φtt + γφt −λ 2
j
∂
∂x

∫
Q(x,s)

∂φ
∂ s

ds+ sinφ = F(x,t). (4)

There are very important investigations [1] of Josephson junctions in thin films
where this equation is presented as the correct model (see also the references [33, 35]
where the nonlocal electrodynamics in Josephson junctions is studied).

The kernel Q(x,s) depends on the experimental situations (see [33, 35]). Suppose
that Q(x,s) = Q(y) (where y = |x− s|) is a bell-shaped function. Then the “width”of
function Q(y) is a measure of the system nonlocality. Note that for Q(y) = δ (y) , we
recover the local equation with N̂ = ∂xx .

3. Inhomogeneous systems

In this section, we will investigate the behavior of kinks in the presence of inho-
mogeneous forces. Consider the following equation:

φtt + γφt −φxx +
∂U(φ)
∂φ

= F(x). (5)
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Figure 2: Potential U(φ) for the generalized sine-Gordon equation.

The zeros of F(x) represent equilibrium points for the kink motion.
Suppose x = x∗ is a zero of F(x) such that F (x∗) = 0. If (∂F/∂x)x=x∗ > 0, then

x = x∗ is a stable equilibrium position. Otherwise, the equilibrium position is unstable
(the opposite happens for the antikink).

The number of internal modes can be affected by the presence of inhomogeneous
external perturbations.

If the center of mass of the kink is near a stable equilibrium position, the kink is
inside a potential well. When the forces that act on the kink from both sides are large
enough, the kink can be so tightly compressed that any motion is difficult. Thus the
number of internal modes can be reduced when the kink is near a stable equilibrium
position.

Otherwise, when the kink is near an unstable equilibrium position, the kink can
be stretched by a pair of forces acting on opposite directions and the number of inter-
nal modes can be increased. We will illustrate these phenomena using some exactly
solvable models.

We will discuss here the following model for which the problem about the exis-
tence of internal modes can be solved exactly:

φtt + γφt −φxx − 1
2

(
φ −φ3) = F(x), (6)
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Figure 3: Kink solution.

where we have chosen U(φ) and F(x) as follow:

U(φ) =
1
8
(φ2 −1)2, (7)

F(x) = ε1 tanh(Bx)+ ε2
sinh(Bx)
cosh3(Bx)

. (8)

The force (8) possesses the convenient property that for different values of the
parameters function F(x) can have one or three zeros. These zeros can be equilibrium
positions for the center of mass of the kink.

In order to simplify the calculations we will put

ε1 =
1
2

A(A2−1) and ε2 =
1
2

A(4B2−A2).

In this case, the exact solution for a kink equilibrated at position x = 0 is very
simple: φk = A tanh(Bx) .

The question about the existence of solitonic modes [16, 17, 18, 19, 25] leads to
the eigenvalue problem

L̂ f = Γ f , (9)
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Figure 4: Antikink solution.

where

L̂ = −∂xx +
[
3
2

A2− 1
2
−

(
3
2

)
A2/cosh2 (Bx)

]
, (10)

and
Γ= −(

λ 2 + γλ
)
. (11)

The spectrum has a discrete and a continuum parts. The eigenvalues that corre-
spond to the discrete spectrum are

Γn = B2(Λ+2Λn−n2)−1/2, (12)

where

Λ(Λ+1) =
3A2

2B2 and n � [Λ],

( [Λ] is the integer part of Λ). The integer part of Λ gives the number of solitonic
modes: this includes the translational mode Γ0 , and the internal shape modes Γi ( i �
1).

If A = 1, then

F(x) =
1
2
(4B2−1)sinh(Bx)/cosh3(Bx) (13)
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Figure 5: Energy density for the kink solution.

is a simple function with only one zero at point x = 0 as shown in figures 6 and 7.
For 4B2 > 1, the equilibrium position x = 0 is stable. Otherwise (4B2 < 1) , the

equilibrium position is unstable.
As B→ 0, the number of solitonic modes increases as the integer part of Λ , where

Λ =

√
1+6/B2−1

2
, (14)

and the number of internal shape modes is given by [Λ]−1.
For example, for B2 < 3/25, the number of internal modes is already two or larger.

Recall, for comparison, that the unperturbed φ4 equation has only one internal mode.
In general, the existence of zeros of F(x) , x∗ such that (∂F/∂x)x=x∗ < 0 can lead

to the appearance of many internal shape modes for the kink.
However, inhomogeneous external forces can also decrease the number of soli-

tonic modes.
Again, function (8) is good for the illustration. But now we will consider the case

where (∂F/∂x)x=x∗ > 0. The condition for this is 4B2 > 1.
As B is increased, the kink can be very tightly compressed inside the potential

well created by F(x) . The asymptotic behavior is exponential (see Fig. 8).
For B2 > 2/5 the number of solitonic modes is reduced to zero.
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Figure 6: Perturbation F(x) given by Eq. (8) when 4B2 > 1.

Thus, the number of internal modes can be affected by the presence of external
inhomogeneous perturbations. However, how the space-dependent perturbations influ-
ence the internal modes is not a trivial question. It depends on the properties of function
F(x) , and not only the number of internal modes depends on the properties of the ex-
ternal perturbations.

Once there is a zero of F(x) such that F (x∗) = 0, and (∂F/∂x)x=x∗ < 0, there
exist forces acting on the kink that (under certain conditions) can make the kink unstable
leading to a breakup.

Still considering our example (Eq. 6), for

B2 <
11−√

117
8

, (15)

the first internal mode becomes unstable.
The functions F(x) considered in this section are deterministic. However, many of

the obtained results can be very useful for analyzing disordered systems. The concept
of stability of the equilibria created by zeros of function F(x) is very important. If the
distance between the zeros is sufficiently large, then the stability condition is given by
the inequality (∂F(x)/∂x)x=x∗ > 0 as discussed above. If the zeros are very close, the
middle zero will have the stability of the two neighbor zeros.
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Figure 7: Perturbation F(x) given by Eq. (8) when 4B2 < 1.

It is sufficient to have zeros of F(x) that correspond to unstable equilibrium posi-
tions with the properties discussed in this section in order to have the possibility of the
activation of new internal modes.

Moreover, unstable equilibrium positions with certain properties can lead to kink
breakup and the creation of kink-antikink-kink threesome.

4. Solitons with long-range interactions

In this section we will consider the equation:

φtt −φxx = −∂U(φ)
∂φ

, (16)

where the potential U(φ) behaves as

U(φ) ∼ (φ −φi)2n, (17)

in a vicinity of the minima of the potential, φi . Here n is a natural number.
We will investigate the long-range interaction between solitons and how this phe-

nomenon is related to the anharmonicity of the potential. In this system, power-law
behaviors are possible.
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Figure 8: Asymptotic exponential behavior of the kink solution for different values of B . This is
a simple log plot.

As we have mentioned before (see Sec. 2), we consider a potential U(φ) that
possesses at least two minima at points φ1 and φ3 , such that U(φ1) = U(φ3) .

Suppose that in the vicinity of the minima φi , the potential behaves as

U(φ) ∼ (φ −φi)2n.

For n = 1, the asymptotic behavior of the kink solutions is exponential and the
interaction force Fint(d) between a kink and an antikink decays exponentially within a
distance d between the centers of mass of the solitary waves: Fint ∼ exp(−Cx) (here
C is a constant).

The sine-Gordon and φ4 equations belong to this subset of models.
Nevertheless, when n > 1, the behavior of the kink solution is:

φ −φi ∼ xk for x → ∞ and k = 1/(1−n) , i = 1,3.

And the interaction force decays as Fint(d) ∼ d2n/(1−n) . Note that this is a power-law
behavior.

In these systems, fractal behavior can be observed at all scales.
Grønbech-Jensen and Samuelsen Ref. [21] studied the nonlocal interaction in

a coupled Josephson junction, and found that these models can describe a “world”
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where there is spontaneous formation of topological objects with long-range interac-
tions, which can create complex structures showing fractal behavior.

Let us discuss noise-induced phenomena in systems where soliton interaction is
long-range. We will consider pattern formation in the stochastic equation:

φtt + γφt −φxx +
∂U(φ)
∂φ

= η(x,t), (18)

where η(x, t) is a white noise source with the following properties:〈
η(x, t)

〉
= 0 and

〈
η(x,t)η(x′,t ′)

〉
= 2Dδ (t − t ′)δ (x− x′).

The noise contains all the scales.
Here the potential U(φ) satisfies the conditions for the existence of long range

interactions discussed above.
This model presents noise-induced pattern formation.
When n = 1 and noise is small the soliton-antisoliton pairs are not being created

yet and the roughening exponent ξ is zero. After the creation of the solitons we observe
a crossover from a non-KPZ behavior (ξ ∼ 0.7− 0.8) to a KPZ behavior (ξ ∼ 0.5)
[28]. However, for large scales there is a plateau with ξ = 0.

For instance, the sine-Gordon does not eliminate the disorder at large scales.
For n > 1, the activated solitons possess long-range interactions.
For n >> 1 self-affinity extends to all scales.
Unlike the case n = 1, the surface in case n = 40 presents only two self-affine

regimes: the anomalous ξ ∼ (0.818) and the KPZ-like (ξ ∼ 0.5) . The system displays
fractal dynamics at all scales.

Wavelet analysis has shown the existence of coherent structures at all scales [23].
The observed patterns are evidence of fractal order.

Thus, the model (18) experiences a transition to an ordered state associated with
the activation of a soliton-antisoliton gas. There is a crossover from an anomalous non-
KPZ behavior to a KPZ behavior. However, unlike the sine-Gordon equation, for n > 1,
the self-affinity extends to all scales.

Note that it is the KPZ-like behavior the one that extends to infinity. This is be-
cause the KPZ regime is related to the absence of a mass term in the evolution equation.
And this is the case for n > 1.

On the other hand, the anomalous regime is due to the existence of soliton solu-
tions. The KPZ equation is not a soliton-bearing system. These considerations explain
the existence of two regimes in the Klein-Gordon equation that supports long-range
interacting solitons.

We have found that there are other power-law behaviors.
Let us analyze the return of the pendula to the equilibrium position in Eq. (16) due

to the motion of a kink. When the potential is

U(φ) =
1
2

[ (1− cosφ)
2

]2
(see Fig. 9),
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the kink solution is (see Fig. 10):

φ = 2arctan
[x− x0− vt√

1− v2

]
+π . (19)

The asymptotic behavior is a power-law (see Fig. 11).
Consider the point φ(z0,t) .

∂φ(z0,t)
∂ t

∼− 1
t2

. (20)

So φ(z0, t) ∼ 1/t .

-π 0 π 2π 3π
φ

0

UMAX

U(φ)

Figure 9: Potential U (φ) = [(1−cosφ)/2]2 /2 in Eq. (16). The kink-antikink interaction is long
range for n > 1.

In this system there is neither a characteristic time, nor a characteristic length, so
the processes are relevant at all scales.

Suppose now that we have an overdamped regime:

γφt −φxx +
∂U
∂φ

= 0, (21)

where

U(φ) =
1
2

[1− cosφ
2

]2
,
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Figure 10: Kink solution for the potential U (φ) = [(1−cosφ)/2]2 /2 depicted in Fig. 9. The
tail is a power law.

the relaxation of a single pendulum (without the presence of a kink) will follow the law:

φ(z0,t) ∼ t−1/2. (22)

The number of internal modes is proportional to the characteristic interaction
length of the soliton.

For the sine-Gordon solitons, the number of internal modes is zero and the equa-
tion is completely integrable.

For the φ4 equation, the number of internal modes is equal to one. The equation
is considered quasi-integrable.

These solitons can be stretched by external inhomogeneous forces so the effective
interaction length and the number of internal modes are increased.

It is possible to establish a heuristic relationship between the nonintegrability of
the equation and the number of the internal modes (or the characteristic interaction
length).

5. Soliton internal modes in unperturbed Klein-Gordon equations. Exactly
solvable model

The number of excited internal modes is related to the behavior of the solution as
φ(x,t) approaches the vacuum values.
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Figure 11: Asymptotic power law behavior of the kink solution. This is a log-log plot.

We will consider the following model

φtt −φxx = −∂U(φ)
∂φ

, (23)

where

U (φ) = 2

[
Δφ

ΛB
(Λ

2 , Λ2
)]2 {

Iinv
[
Λ
2

,
Λ
2

,
φ −φ1

Δφ

]
Iinv

[
Λ
2

,
Λ
2

,
φ3 −φ
Δφ

]}Λ
, (24)

B(a,b) is the β function, and Iinv(a,b,y) is the inverse function of the incomplete β
function, y = Iz(a,b) , with respect to the argument z . The potential U(φ) possesses
the same properties as the potential shown in Fig. 1. Here φ1 and φ3 are the minima of
U (φ) and φ2 is a maximum of U (φ) such that φ1 < φ2 < φ3 . Likewise, Δφ = φ3−φ1 ,
and Λ is a parameter that defines a family of models.

The following kink solution can be obtained

φk (x) = φ1 +Δφ I

{
Λ
2

,
Λ
2

,
1+ tanh [x/Λ]

2

}
, (25)

where I(a,b,z) ≡ Iz(a,b) is the incomplete β function (see Fig. 12).
The stability problem leads to the following eigenvalue problem

− fxx +
(
∂ 2U
∂φ2

)
φ=φk(x)

f (x) = −λ 2 f (x) . (26)
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Figure 12: Kink-soliton solution for Klein-Gordon equation (23) with U(φ) as in Eq. (24).

This spectral problem can be solved exactly.
The equation can be rewritten in the form:

−d2 f (x)
dx2 +

{
1− Λ+1

Λcosh2 [x/Λ]

}
f (x) = −λ 2 f (x) . (27)

As before, the number of discrete solitonic modes is given by the integer part of
Λ . The number of internal modes is [Λ]−1.

As Λ increases, the approaching of the vacuum values by the kink solution is
slower.

Thus the way the kink solution approaches the asymptotic values is related to the
number of internal modes.

From this we can infer that if the kink solution behaves asymptotically as a power-
law, the number of internal modes should be very large.

6. Internal modes when the kink possesses a power-law behavior due to
inhomogeneous perturbations

Consider the following inhomogeneous sine-Gordon equation

φtt + γφt −φxx + sinφ = F(x), (28)
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where

F(x) =
2(x− x3)
(1+ x2)2 .

This is an inhomogeneous external perturbation that creates an equilibrium posi-
tion for the kink. However, unlike the perturbations considered in section 2, here F(x)
decays algebraically for large |x| .

The exact solution for the static kink whose center of mass is equilibrated on the
point x = 0 is

φk(x) = 2arctan(x)+π . (29)

The eigenvalue problem discussed in section 2 in connection with the existence of
kink internal modes is now

L̂ f = Γ f , (30)

where
L̂ = −∂xx +V(x), (31)

and
V (x) = 1−2/(1+ x2). (32)

Note that this is a Schrödinger like equation with the potential V (x) as in Eq. (32).
This potential well supports an infinite number of bound states [12, 22, 38, 45].

Thus, we can state that the kink in the perturbed sine-Gordon equation (28) can
possess an arbitrarily large number of internal modes!

7. Nonlocal Klein-Gordon equation

Recently we have witnessed a growing interest in fractional and nonlocal partial
differential equations [2, 3, 4, 5, 6, 13, 24, 26, 29, 36, 43, 46, 47, 48].

In this section we will consider nonlocal equations as the following:

φtt + γφt − ∂
∂x

∫ ∞

−∞
Q(x,y)

∂φ
∂y

dy = −∂U(φ)
∂φ

. (33)

We will show that the solutions possess power-law tails, the character of the kink-
antikink interaction is long-ranged.

Define the nonlocal sine-Gordon equation:

φtt − ∂
∂x

∫ ∞

−∞
Q(x,y)

∂φ
∂y

dy + sinφ = 0. (34)

The stationary solutions satisfy the equation

∂
∂x

∫ ∞

−∞
Q(x,y)

∂φ
∂y

dy = sinφ , (35)

Q(x,y) = Q(x− y). (36)
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Figure 13: Log-log plot of the asymptotic behavior of the stabilized solution in the non-local
Klein-Gordon equation with Q(x,y) = a

[
1+b2(x−y)2

]−1 .

Using results from Ref. [27], we arrive at the conclusion that the asymptotic be-
havior of the solution is governed by the function Q(x− y) at large values of | x | .

In the limit x →−∞ , φ ≈ 2π∂Q(x)/∂x .

Accordingly, in the limit x → ∞,φ ≈ 2π(1− ∂Q(x)/∂x) .
When Q(|x− y|) decays algebraically, the kink solutions will possess a power-

law asymptotic behavior. As we have observed, this phenomenon can lead to long-
range interactions and to the generation of internal degrees of freedom. Here we can
see possible connections between nonlocality, internal degrees of freedom, power-law
behavior and long-range interactions.

In many papers [1, 35] on Josephson junctions in thin films, Q(y) decays as 1/yα

(as shown in Fig. 13).

There is even the kernel Q(y) ∼ lny [1, 35].

In all these cases, φ(x) possesses a power-law behavior for x →±∞
We can write down an exact solution for the nonlocal sine-Gordon equation when

Q(|x− y|) = (2/π)ln(|x− y|) : The kink solution is φ (x) = 2arctan(x/2)+π . Com-
pare this function with solutions given by equations (19) and (29).

Now we will analyze the evolution of some initial conditions in the framework of
both the local and nonlocal Klein-Gordon equations (33).
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-1

0

1

2

-1

0

1

φ

-10 -5 0 5
-2

-1

0

1

-5 0 5
x

-5 0 5 10

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14: Evolution of an initially deformed kink profile in the “normal” local Klein-Gordon
equation.

Consider the following Cauchy problem:

φ(x,0) = tanh
( x
2

)
+ Asin(kx) and φt(x,0) = 0.

This is a deformed kink profile.
As Eq. (33) is a dissipative system, eventually the evolution will lead to the asymp-

totically stable solution: the basic kink that corresponds to the exact stationary solution.
Fig. 14 shows this process for the local Klein-Gordon equation. The stabilized

kink possesses the expected asymptotic exponential behavior for |x| → ∞ .
On the other hand, the evolution governed by the nonlocal equation (33) with

Q(x,y) = a
[
1+ b2(x− y)2]−1

leads to a stabilized kink with power-law asymptotic behavior (see figures 13 and 15).
Another interesting Cauchy problem is the following:

φ(x,0) = tanh
[x + d

2

]
− tanh

[x−d
2

]
+1 and φt(x,0) = 0.
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Figure 15: Evolution of an initially deformed kink profile in non-local Klein-Gordon equation
with Q(x,y) = a

[
1+b2(x−y)2

]−1 .

These initial conditions try to mimic a kink-antikink pair where the kink and the an-
tikink are separated by a distance d .

We will put γ = 0 in order to better observe the shape variations.
The comparison between the evolution of the kink -antikink pair in the local and

nonlocal Klein-Gordon equations (when d = 2) is shown in figures 16 and 17 respec-
tively.

In Fig. 16 (local equation) we can observe the formation of a breather-like struc-
ture that slowly decays due to a weak radiation.

Fig. 17 shows that (in the nonlocal case) the interaction is very inelastic, there are
many activated internal modes, there exists strong radiation and large waves are created
which take away most of the energy to the two extremes of the system.

The dynamics shown in Fig. 18 corresponds to the local equation when the dis-
tance between the kink and the antikink is 2d = 10. Practically, we cannot observe
shape changes. The kink-antikink interaction is short-ranged. When d is larger than
some critical value, the kink and the antikink do not feel each other. The internal modes
are not activated.

In the nonlocal case (Fig. 19), the kink-antikink interaction is long-ranged and
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Figure 16: Evolution of an initially close kink-antikink pair profile in the “normal” local Klein-
Gordon equation.

many internal modes are activated.
Even when the distance between the kink and the antikink is “large”, they will feel

the attraction anyway. Eventually, the dynamics will produce the phenomena shown in
Fig. 17.

8. Competition of mechanisms

The effects can be amplified (enhanced) or cancelled.
As we have seen, there are different mechanisms that can create kink internal

modes. On the other hand, there are mechanisms that can suppress the internal modes.
If the internal mode creating and suppressing mechanisms coexist simultaneously

in the system, they can compete.
Mathematically, we can write the following equation

φtt + γφt −φxx +
∂U(φ)
∂φ

= Tc[φ ,x]+ Ts[φ ,x], (37)

where Tc[φ ,x] stands for functional terms that describe internal-mode-creating mecha-



NONLINEAR KLEIN-GORDON EQUATIONS 547

-1

0

1

2

-1

0

1

φ

-80 -40 0 40 80
-2

-1

0

1

-80 -40 0 40 80
x

-80 -40 0 40 80

(a) (b) (c)

(d) (e) (f)

(i)(h)(g)

Figure 17: Evolution of an initially close kink-antikink pair profile in non-local Klein-Gordon
equation with Q(x,y) = a

[
1+b2(x−y)2

]−1 .

nisms. While Ts[φ ,x] represents functional terms that describe internal-mode-suppressing
mechanisms.

In general, we can name several phenomena that generate new internal modes.

a) Inhomogeneous perturbations containing unstable equilibrium positions for the
kink.

b) Inhomogeneous perturbations that remain “large” for values of x that are far
away from the kink center of mass.

c) Extended de-localized perturbations

d) Perturbations that do not decay exponentially

e) Nonlocal operators

Note that some of the sets of perturbations can contain or intersect with the other
sets.
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Figure 18: Evolution of an initially not so close kink-antikink pair profile in the “normal” local
Klein-Gordon equation. The kink-antikink interaction is short-ranged. They almost do not “feel”
each other. Only after a long time, they start to move feeling the attraction.

A simple example of de-localized inhomogeneous perturbation is the following:

Tc(x) = ε1 tanh(β1x). (38)

The number of internal modes is proportional to ε1/3
1

Nevertheless there are perturbations that can reduce the number of internal modes.
For instance, these can be localized perturbations that create a stable equilibrium

for the kink.
We will take the following simple example:

Ts(x) = ε2
sinh(β2x)
cosh3(β2x)

. (39)

For large values of β2 , the number of internal modes decays as 1/β2 .
Suppose that both these perturbations are present in Eq. (37).
As in section 2, in order to simplify the computations, we will redefine the param-



NONLINEAR KLEIN-GORDON EQUATIONS 549

-1

0

1

2

-1

0

1

φ

-80 -40 0 40 80
-2

-1

0

1

-80 -40 0 40 80
x

-80 -40 0 40 80

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 19: Evolution of an initially not so close kink-antikink pair profile in non-local Klein-
Gordon equation with Q(x,y) = a

[
1+b2(x−y)2

]−1 .

eters using two new parameters:

ε1 =
1
2

A(A2−1), (40)

β1 = B, (41)

ε2 =
1
2

A(4B2−A2), (42)

β2 = B. (43)

The calculations yield:

Λ(Λ+1) =
3A2

2B2 , (44)

where the total number of internal modes is the integer part of Λ .
For a fixed value of B , the larger the value of A , the larger the number of internal

modes.
However, even for a fixed large value of A , there is always a critical value Bc such

that for B > Bc there are no internal modes at all.
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That is, if

B2 >
3
4

A2, (45)

then
Λ < 1, (46)

which means that there exists no internal modes.
Note that for large values of B , the perturbation Ts(x) given by Eq. (39) is very

localized.

9. Conclusions

We have investigated (both theoretically and numerically) different mechanisms
that are capable to create new soliton internal modes.

A list of such mechanisms would contain some of the following items: inhomoge-
neous perturbations that generate unstable equilibrium positions for the kink, extended
de-localized space-dependent perturbations, external perturbations that do not decay
exponentially, and nonlocal operators.

We have found that the number of soliton internal modes can depend on the asymp-
totic behavior of the kink solution for large values of |x| .

For instance, if the bistable potential U(φ) (that appears in the generalized Klein-
Gordon equation (1)) is deformed in such a way that the asymptotic behavior of the kink
solution φk(x) is changed, then this deformation can lead to an increased number of
internal modes. A key issue to be studied is how slowly the function φk(x) approaches
the minima of potential U(φ) for large values of |x| .

The kink can be considered as an extended object with a defined width. If the
deformation of the potential produces a “stretching” of the kink (i.e. increased width),
then this deformation can generate new internal modes.

This “stretching” of the kink can be produced also by inhomogeneous external
space-dependent perturbations F(x) or by the presence of nonlocal operators.

In fact, if F(x) possesses zeros x∗ (F (x∗) = 0) such that they represent unstable
equilibrium positions for the kink, then new internal modes can be excited. Moreover,
under certain conditions, the first internal mode of the kink can be unstable leading to
the “destruction” of the soliton.

However, this “destruction” is followed by the generation of a kink-antikink pair
and an additional kink in such a way that the topological charge is conserved: the initial
kink is replaced by an antikink that remains trapped in the equilibrium position and two
kinks that move away.

Nevertheless, we should remark that even when F(x) creates only one stable equi-
librium position for the kink, several internal modes can exist if F(x) is not localized.
For instance, when F(x) tends to finite values when x −→±∞ .

Furthermore, even if the space-dependent external perturbation creates only one
stable equilibrium position for the kink and F(x) tends to zero for large values of |x| ,
still many internal modes can exist if F(x) behaves as a power-law.



NONLINEAR KLEIN-GORDON EQUATIONS 551

The range of the interaction “force” between a kink and an antikink depends also
on the asymptotic behavior of the soliton solutions for large values of |x| .

Likewise, the kink solutions possess a power-law asymptotic behavior when the
nucleus Q(x− s) in the nonlocal operator that appears in Eq.(1) satisfies some condi-
tions.

All these phenomena lead to interesting connections between nonlocality, internal
degrees of freedom, long-range interactions and power-law behaviors.
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