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Abstract. In this paper we study a variational problem derived from a computer vision applica-
tion: video camera calibration with smoothing constraint. By video camera calibration we mean
to estimate the location, orientation and lens zoom-setting of the camera for each video frame
taking into account image visible features. To simplify the problem we assume that the camera is
mounted on a tripod, in such case, for each frame captured at time t , the calibration is provided
by 3 parameters : (1) P(t) (PAN) which represents the tripod vertical axis rotation, (2) T (t)
(TILT) which represents the tripod horizontal axis rotation and (3) Z(t) (CAMERA ZOOM) the
camera lens zoom setting. The calibration function t → u(t) = (P(t),T (t),Z(t)) is obtained as
the minima of an energy function I[u] . In this paper we study the existence of minima of such
energy function as well as the solutions of the associated Euler-Lagrange equations.

1. Introduction

In this paper we deal with video camera calibration with smoothing constraint. We
focus our attention on the case of video cameras mounted on a tripod. In such case, for
each time t of the video sequence, camera calibration configuration is provided by 3
parameters : (1) P(t) (PAN) which represents the tripod vertical axis rotation, (2) T (t)
(TILT) which represents the tripod horizontal axis rotation and (3) Z(t) (CAMERA
ZOOM) the camera lens zoom setting. From these time-dependent functions we can
easily deduce (using tripod information), for each time t , the camera calibration, that
is, the camera intrinsic and extrinsic parameters which determine the position of the
camera in the 3D space and the way 3D objects are projected in the camera projection
plane (the CCD in the case of digital cameras).

Human being visual system is very sensitive to motion, and small perturbations
over time of P(t) , T (t) , and Z(t) values produce small oscillations in the camera mo-
tion disturbing the observer. To remove such perturbations is a critical issue in appli-
cations like the inclusion of artificial graphic objects in real video sequence scenarios.
To illustrate this phenomenon, in http://www.ctim.es/demo102 we show a real video
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Figure 1: One video frame of a typical application scenario. The primitives used for calibration
are the white lines and cercles detected in the image.

sequence where some graphic objects have been included. In this video we illustrate
the main practical problem we deal with, that is, standard calibration techniques which
do not take into account the expected time regularity of u(t) = (P(t),T (t),Z(t)) can
introduce a significant noise in the camera motion estimation over time.

In this paper we propose to include a smoothing constraint in the estimation of
u(t) by minimizing the following energy :

I[u] =
∫ t1

t0

(
P′(t)2 +T ′(t)2 +Z′(t)2 +αF(u(t),t)

)
dt, (1)

where [t0, t1] is the time interval, α � 0 is a weight to balance the different components
of the energy and, F(x1,x2,x3,t) � 0 is a standard calibration function which forces,
for each time t , that the projection of 3D points be close to primitives detected in the
image. In fact, when no time regularization is used, u(t) is usually estimated by mini-
mizing F(u(t), t) independently for each time t. So, by using the proposed variational
model (1), we introduce a time regularity condition in the video camera calibration
procedure.

The Euler-Lagrange equations associated to energy (1) yields to the following non-
linear system of differential equations:⎧⎪⎪⎨

⎪⎪⎩
−P′′(t)+α ∂F

∂x1
(P(t),T (t),Z(t),t) = 0 in (t0,t1),

−T ′′(t)+α ∂F
∂x2

(P(t),T (t),Z(t),t) = 0 in (t0,t1),

−Z′′(t)+α ∂F
∂x3

(P(t),T (t),Z(t),t) = 0 in (t0,t1),

with adequate boundary conditions. The paper is organized as follows: in section 2,
we briefly introduce the basic mathematical models we use for camera calibration. In
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section 3, we analyze the calibration function F(x1,x2,x3,t) . In section 4, we show the
existence of minimizers of energy functional (1) and that such minimizers are solutions
of the associated Euler-Lagrange equations. Finally, in section 5, we present some
experiments to illustrate the smoothing performance of the proposed method.

2. Geometry and calibration of cameras mounted on a tripod

A tripod is defined by two unitary rotation axes e0 =
(
e0

x , e
0
y , e

0
z

)T
and e1 =(

e1
x, e

1
y, e

1
z

)T
and a center of rotation X0 ∈ R

3 . Pan parameter P(t) determines the

tripod rotation angle with respect to e0 . We denote by R
(
e0,P(t)

)
the associated

rotation matrix. In a similar way we define R
(
e1,T (t)

)
. The general rotation matrix

generated by tripod motion is a composition of the above rotation matrix. Given a 3D
point X the point transformation induced by the tripod motion can be expressed as:

X
(
P(t),T (t)

)
= X0 +R

(
e0,P(t)

)
R
(
e1,T (t)

)(
X −X0

)
. (2)

We use the basic pinhole model to modelize the way the 3D scene is projected in
the 2D image projection plane. Such projection is expressed in projective coordinates
as a 4×3 projection matrix P(u(t)) defined by

P(u(t)) ≡ A
(
Z(t)

)
R0

[
Id,−c0](

R(P(t),T (t)) t
(
P(t),T (t)

)
0 1

)
, (3)

where:
R
(
P(t),T (t)

) ≡ R
(
e0,P(t)

)
R
(
e1,T (t)

)
, (4)

t (P(t),T (t)) = X0 −R
(
P(t),T (t)

)
X0, (5)

A
(
Z(t)

)
=

⎛
⎝Z(t) 0 xc

0 r ·Z(t) yc

0 0 1

⎞
⎠ , (6)

R0 =

⎛
⎝ r0

00 r0
01 r0

02
r0
10 r0

11 r0
12

r0
20 r0

21 r0
22

⎞
⎠ , (7)

[
Id,−c0] =

⎛
⎝1 0 0 −c0

x

0 1 0 −c0
y

0 0 1 −c0
z

⎞
⎠ . (8)

R0 and c0 correspond to the initial tripod rotation and translation. For more details
about the pinhole model see, for instance, [3], [4].
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3. The calibration function F(u(t),t)

To calibrate a camera frame is to obtain the associated u(t) = (P(t),T (t),Z(t))
parameters which determine the projection matrix P(u(t)). To estimate u(t) we use
the ”observable” information we can obtain in the image. For instance in the image
of fig. 1, we can see some parts of the white lines and circles of the soccer court. In
general, we note by Ω(t) ⊂ R

2 the finite collection of visible curves in the image we
use to calibrate frame t. We assume that we know the actual 3D location of Ω(t) in
the real scene. That is, for any curve s̃(.) ∈Ω(t) , we know its actual 3D location S̃(.).
Then, the calibration function F(u(t),t) is defined as

F(u(t),t) ≡ ∑
s̃∈Ω(t)

∮
s̃
distance(P(u(t))S̃(.), s̃(q))2dq, (9)

where distance(C,x) is the usual euclidean distance between a point x and a curve
C . We observe that for any u(t), F(u(t),t) � 0 and, the smaller F(u(t),t) , the better
is the matching between the 3D scene and its 2D image projection. The usual way
to calibrate a camera (that is to obtain u(t)) is by minimizing the calibration function
F(u(t), t). We also observe that F(u(t),t) is non convex, strongly nonlinear and, in
general, we can not expect uniqueness of the minima because it is strongly dependent on
the geometry of observable curves Ω(t) (in fact, in some cases Ω(t) could be empty).

4. Variational formulation of video calibration problem

We observe that when we minimize the calibration function F(u(t),t) with respect
to u(t) no assumption is made concerning the regularity in time t of u(t) . To add such
regularity condition to the calibration model we propose to minimize the functional

I[w] =
∫ t1

t0
L(Dw(t),w(t),t)dt, (10)

where [t0, t1] is the time interval,

L(p,z,t) = ‖p‖2 +αF(z,t) (11)

is a weight to balance the different components of the energy and α � 0.
Next we will show the existence of minimizer of I[.]. Let be

A =
{
w ∈W 1,2((t0,t1);R3) such that

w(t0) = (P0,T0,Z0) and w(t1) = (P1,T1,Z1)
}
.

THEOREM 1. (existence of minimizer) There exists u ∈ A solving

I[u] = min
w∈A

I[w].
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Proof. To show the existence of minimizer we use the following classical result
that, for instance, is presented in [2].

THEOREM A (see Evans [2, Theorem 5, p.453]) Assume that L satisfies the coer-
civity inequality

L(p,z,x) � α ‖p‖q −β (12)

for constants α > 0, β � 0 and q > 1 and is convex in the variable p. Suppose also
the admissible set A is nonempty. Then there exists u ∈ A solving

I[u] = min
w∈A

I[w].

In our case, we observe that L(p,z,t) is convex with respect to p. On the other
hand, since F(z, t) � 0 and α � 0, L(p,z,t) satisfies the coercivity inequality

L(p,z,t) � ‖p‖2

and therefore the condition (12) is satisfied with q = 2 and β = 0. On the other hand
obviously A is not empty (A contains simple linear functions). So then, statement of
the Theorem 1 follows by straight application of the above result. �

Next, we study if the minima of I[.] are solutions of the associated Euler-Lagrange
system. Using the classical theory we need to show some growth conditions on L(p,z,t).
First we observe that, in practice, the projection image is given by a rectangle [0,a]×
[0,b] and then the observed curves Ω(t) are included in such rectangles. In practice, we
are interested in estimating the distance function ”distance(P(z)S̃(.), s̃(q))”when the
curve intercepts the image rectangle [0,a]× [0,b].Therefore, without loss of generality,
we can change the distance(.) function in (9) by

distanceM(x,y) =

{
distance(x,y) if distance(x,y) � M,

M if distance(x,y) > M,

where M =
√

a2 +b2. We define the modified calibration function as

FM(z,t) ≡
∮
Ω(t)

distanceM(P(z)S̃(.), s̃(q))2dq

and we can state the following result.

THEOREM 2. (solution of Euler-Lagrange system) If Ω(t) is composed by a fi-
nite number of curves which length uniformly bounded in [t0,t1], then the calibration
function u(t) = (P(t),T (t),Z(t)) satisfies

IM[u] = min
A

IM[w]

and it is a weak solution of the system⎧⎪⎪⎨
⎪⎪⎩
−P′′(t)+α ∂FM

∂x1
(u(t),t) = 0 in (t0, t1),

−T ′′(t)+α ∂FM
∂x2

(u(t),t) = 0 in (t0, t1),

−Z′′(t)+α ∂FM
∂x3

(u(t),t) = 0 in (t0, t1),

(13)
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where

IM[w] =
∫ t1

t0
LM(Dw(t),w(t),t)dt,

and
LM(p,z,t) = ‖p‖2 +αFM(z, t). (14)

Proof. To show the result we use the following classical result that, for instance, is
presented in [2].

THEOREM B (see Evans [2, Theorem 7, p.454] ) Assume L verifies the growth
conditions ⎧⎪⎪⎨

⎪⎪⎩
‖L(p,z,x)‖ � C

(‖p‖q +‖z‖q +1
)
,

‖DpL(p,z,x)‖ � C
(‖p‖q−1 +‖z‖q−1 +1

)
,

‖DzL(p,z,x)‖ � C
(‖p‖q−1 +‖z‖q−1 +1

) (15)

for constants C > 0 and q > 1 and u ∈ A satisfies

I[u] = min
A

I[w].

Then u is a weak solution of (13).

In our case, we apply the above theorem to LM defined in (14). First we observe
that, since the length of curves of Ω(t) are uniformly bounded in [t0,t1], and the func-
tion distanceM(., .) is bounded then the function FM(z,t) is bounded in [t0,t1] . On the
other hand the two first components of vector z are angles so FM(z,t) is periodic with
respect to zx and zy and it has bounded derivatives with respect to z. So we can deduce
that there exists C > 0 such that⎧⎪⎪⎨

⎪⎪⎩
‖LM(p,z,t)‖ � C

(‖p‖2 +1
)
,

‖DpLM(p,z,t)‖ � C‖p‖,
‖DzLM(p,z,t)‖ � C,

and therefore the statement of the theorem 2 follows by straight application of the above
result. �

5. Experiments

To illustrate the performance of the proposed variational model we compare the
results obtained for a real video sequence using the minimization of the calibration
function F(u(t), t) independently for each time t and the results obtained with the
proposed variational model. In figures 2-7 we show the plots of the obtained P(t),
T (t) and Z(t) using both methods as well as their difference.

To observe by visual inspection the quality of the variational method, in

http://www.ctim.es/demo102
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Figure 2: P(t) obtained minimizing F(u(t),t) independently for each time t and P(t) obtained
minimizing I[u]

Figure 3: Plot of the difference between the estimation of P(t) using both methods
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Figure 4: T (t) obtained minimizing F(u(t),t) independently for each time t and P(t) obtained
minimizing T [u]

Figure 5: Plot of the difference between the estimation of T (t) using both methods
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Figure 6: Z(t) obtained minimizing F(u(t),t) independently for each time t and Z(t) obtained
minimizing I[u]

Figure 7: Plot of the difference between the estimation of Z(t) using both methods
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we present the video sequence we use in the experiments where some artificial objects
have been included in the sequence using the obtained calibration information (once
the camera is calibrated we can easily include artificial objects in the scene using com-
puter graphic techniques). We can observe the quality of the calibration by looking at
the small graphic object oscillation we can detect visually in the video. It can be ap-
preciated that, as the calibration improves, the observed graphic object oscillations are
considerably attenuated or removed. We note that the obtained results are very promis-
ing and by using the proposed variational technique we strongly reduce such disturbing
oscillations affecting the included graphic objects.
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