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Abstract. In this paper, we focus in developing a stochastic model for topology optimization.
The principal objective of such a model is to find robust structures for a given main load having a
stochastic behavior. In the first part, we present the expected compliance formulation and some
results in topology optimization. Then, in order to illustrate the interest of our approach, we
consider a preliminary 3D cantilever benchmark experiment and compare the obtained results
with the one given by a single load approach.

1. Introduction

We consider an elastic homogeneous body Ω ⊆ IRd , where d is either 2 or 3.
We impose that in Γu ⊆ ∂Ω (boundary of Ω) the displacements of the body are not
allowed and we apply some external load forces f to Ω and g to Γt ⊆ ∂Ω . A graphical
representation of Ω and the external forces is given in Figure 1.

In order to simplify the notations, we assume, without loss of generality, that g =
0. We note that the results obtained in this paper can be easily extended to the case
g �= 0. Furthermore, we consider that our body is composed by a linear material and
therefore the displacements can be computed by solving the following system of linear
partial differential equations:

⎧⎨
⎩

−div(K e(u)) = f in Ω,
u = 0 on Γu,

(K e(u)) ·n = 0 on ∂Ω\Γu,
(1)
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Figure 1: Representation of the elastic homogeneous body Ω and the considered external forces
f and g .

where f : Ω→ IRd corresponds to an external load, u : Ω→ IRd is the vector of dis-
placements, e(u) = 1

2 (∇u+∇uT ) denotes the strain tensor and K is the material elas-
ticity tensor (see [12]). Furthermore, under suitable conditions on the data (which are
assumed to be satisfied in the rest of the paper), Problem (1) has a unique weak solution
(see [8] for more details).

We consider the following function

ρ : Ω → [ρmin,ρmax]
x �→ ρ(x) , (2)

which measures the density (i.e., amount) of material at each point of Ω (see [4, 13]),
considering a maximum and minimum material density of ρmax > 0 and ρmin > 0,
respectively. The total amount of material in Ω , defined by

∫
Ωρ(x)dx , must satisfy

0 <

∫
Ω
ρ(x)dx = Vcons. (3)

We assume that K depends on the density ρ in the following way (see [4])

K = ρ(x)pK0,

where p � 1 is the penalization power which intends to increase the areas of low (close
to ρmin ) or high (close to ρmax ) density and reduce the medium (between ρmin and
ρmax ) density zones, as the material is assumed to be isotropic, K0 is a matrix of the
form

K0
i, j,k,l = 2λδi,kδ j,l + μδi, jδk,l ,

where δi, j denotes the Kronecker symbol and λ ,μ > 0 are the Lamé constants of the
material.

Following [4, 9], we define the functionals

A[ρ ](u,v) :=
∫
Ω

Ki, j,k,lei, j(u)ei, j(v)dx, (4)

l(v) :=
∫
Ω

f · vdx. (5)
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Then, the weak solution of (1) is the vector

u ∈ H = {u ∈ [H1(Ω)]d | u|Γu = 0}

(H1(Ω) is the Sobolev space of all v ∈ L2(Ω) with ∂xi v ∈ L2(Ω)) satisfying

A[ρ ](u(ρ),v) = l(v), ∀v ∈ H.

Thus, the well known minimum compliance design problem can be stated as following

min
ρ∈E

l(u(ρ)), (6)

such that: A[ρ ](u(ρ),v) = l(v), for all v ∈ H, (7)

where E is the space of functions satisfying (2) and (3) and u(ρ) denotes the (unique)
weak solution of (1).

Here, our purpose is to find the optimal distribution of material ρ when the ex-
ternal load force has a stochastic behavior. In an analogous way to previous stochastic
results for truss optimization (see [3, 7]), we assume that the external load force f is
randomly perturbed by ξ , with IE(ξ ) = 0. The stochastic topology design problem
can be stated as

min
ρ∈E

{IE[Ψ(ξ ,ρ)]}, (8)

where the functional Ψ is defined by

Ψ(ξ ,ρ) =
{∫

Ω
( f + ξ ) ·udx

∣∣ u ∈ H satisfies:

A[ρ ](u,v) =
∫
Ω
( f + ξ ) · vdx for all v in H

}
(9)

and IE(·) denotes the expected value of the corresponding random function.
In this work, we first show that (8) can be rewritten as a multiload problem and

thus solved by using optimization algorithms. Then, we illustrate the interest of this ap-
proach by considering a 3D benchmark problem and by comparing the obtained results
with those given considering Problem (6)-(7).

2. Expected compliance model

In this section, we study the stochastic topology design Problem (9) presented
in the introduction. We show that this problem can be transformed into a multiload
problem in which the loading scenarios are related to the variance of a random load
applied to the body Ω .

In the following, we consider the set {Pi}∞i=1 of functions of the Hilbert space
L2(Ω)d , corresponding to directions of perturbation of the main force f . Also, B
denotes the space of probability and IP its probability measure.
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LEMMA 1. Let ξ : Ω×B → IRd be a random load, which in terms of the direc-
tions of perturbation {Pi}∞i=1 is written as ξ = ∑∞

1 εiPi where (εi)∞i=1 ⊂ IR are random
variables with IE(εi) = 0 and IE(εiε j) = αi, j for i, j = 1, . . . ,∞. Let G be a linear
functional. Then

IE

(∫
Ω
ξ ·G(ξ )dx

)
=

+∞

∑
i=1

+∞

∑
j=1

αi, j

∫
Ω

Pi ·G(Pj) dx.

Proof. Using ξ = ∑+∞
i=1 εiPi and Fubini’s Theorem we obtain

∫
Ω

∫
IRd

ξ ·G(ξ )dIP dx =
∫
Ω

∫
IRd

+∞

∑
i=1

εiPi ·G(
+∞

∑
j=1

ε jPj)dIP dx

=
∫
Ω

∫
IRd

+∞

∑
i=1

+∞

∑
j=1

εiε jPi ·G(Pj)dIP dx

=
∫
Ω

+∞

∑
i=1

+∞

∑
j=1

(∫
IRd

εiε j dIP

)
Pi ·G(Pj) dx.

�

The following theorem states the relation between the multiload truss model and
Problem (9).

THEOREM 1. Let us consider ξ : Ω×B → IRd be a random load, which in terms
of the directions {Pi}∞i=1 is written as ξ = ∑∞

1 εiPi where (εi)∞i=1 are independent ran-
dom variables, IE(εiε j) = 0 for i �= j, with IE(εi) = 0 and Var(εi) = σ2

i . Then the
stochastic problem defined in (8) can be rewritten as the multiload problem:

min
ρ∈E

∫
Ω

f ·udx+
+∞

∑
i=1

∫
Ω
σiPi ·Ui dx, (10)

A(ρ)[u,v] =
∫
Ω

f · v dx, ∀v ∈ H, (11)

A(ρ)[Ui,v] =
∫
Ω
σiPi · v dx, ∀v ∈ H,∀ i ∈ IN, (12)

u ∈ H,Ui ∈ H ∀i ∈ IN. (13)

Proof. Let ρ ∈ E be a feasible material distribution and let us consider ξ : IRd ×
B → IR be a random load with IE(ξ ) = 0. We define the inverse functional

G( f + ξ ) = u

where u is the unique weak solution of the system (1) changing f by f + ξ . The
expected value of the compliance is given by

IE(Ψ(ξ ,ρ)) =
∫

IRd

∫
Ω
( f + ξ ) ·udxdIP.
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Using Fubini’s theorem and linearity of inverse operator G we have

IE(Ψ(ξ ,ρ)) =
∫
Ω

∫
IRd

( f + ξ ) ·G( f + ξ )dIPdx

=
∫
Ω

∫
IRd

f ·G( f )dIP dx+
∫
Ω

∫
IRd

ξ ·G( f )dIP dx

+
∫
Ω

∫
IRd

f ·G(ξ )dIP dx+
∫
Ω

∫
IRd

ξ ·G(ξ )dIP dx

=
∫
Ω

IP(IRd) f ·G( f ) dx+
∫
Ω

IE(ξ )G( f ) dx+
∫
Ω

G∗( f ) · IE(ξ ) dx

+
∫
Ω

∫
IRd

ξ ·G(ξ )dIP dx

=
∫
Ω

f ·G( f ) dx+
∫
Ω

∫
IRd

ξ ·G(ξ )dIP dx,

where G∗ denotes the adjoint operator of G.
Using Lemma 1, and the fact that IE(εiε j) = 0 for i �= j, we obtain

∫
Ω

∫
IRd

ξ ·G(ξ )dIP dx =
∫
Ω

+∞

∑
i=1

σ2
i Pi ·G(Pi) dx.

Denoting by Ui the unique weak solution of

A(ρ)[Ui,v] =
∫
Ω
σiPi · vdx for all v ∈ H,

we finally get

IE(Ψ(ξ ,ρ)) =
∫
Ω

f ·u dx+
∫
Ω

+∞

∑
i=1

σPi ·Ui dx.

�
Theorem 1 is useful because, when its assumptions are satisfied, it gives an explicit

expression of Problem (8) easy to evaluate. In general cases, it could be difficult to
evaluate directly IE[Ψ(ξ ,ρ)] . We can consider, for instance, a Monte-Carlo algorithm
(see [10]) to approximate those values. However, this method, and thus the resolution
of (8), is numerically expensive.

In Section 3, we present a numerical experiment used to illustrate the interest of
formulation (10) .

3. Numerical example

3.1. Problem description

We consider a 3D benchmark design problem that consists in designing a can-
tilever submitted to a vertical load [4]. More precisely, we consider a rectangular do-
main Ω= [0,25]× [0,10]× [0,10] , compound by a material with a minimum and max-
imum density of ρmin = 10−3 and ρmax = 10, respectively. The face {0}× [0,10]×
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[0,10] of Ω is fixed to a support area. The total amount of material is Vcons = 1250.
A main point load f = (0,0,−1) is applied at the node (25,5,5) . We consider a ran-
dom point load ξ = ξ1V1 + ξ2V2 , with ξ1 and ξ2 random variables of law N (0,25) ,
V1 = (1,0,0) and V2 = (0,1,0) , applied at the same node than f . We consider the
typical value p = 3 [13]. A geometrical representation of this benchmark problem is
given in Figure 2.

z

10

10

25
Legend

Design Domain:

uSupport Area:

Perturbed Load Directions

x

y
1

Main Load

Ω

Γ

f

V2

V

Figure 2: Geometrical representation of the 3D cantilever design problem described in Section
3.1: design domain Ω (gray), support area Γu (dark gray), main load f and perturbed load
directions V1 and V2 (arrows).

We want to solve Problems (6)- (7) and (10)-(13) associated to the cantilever. To
do so, we consider a finite element method, similar to the one proposed in [13], with a
discretization given by Nx = 25, Ny = 10 and Nz = 10, where Nx , Ny and Nz are the
number of equispaced elements in the X, Y and Z directions, respectively. Thus,

Nel = Nx ×Ny×Nz = 2500

is the total number of elements used. Then, both optimization problems are solved by
using the Global Optimization Platform software, freely available at

http : //www.mat.ucm.es/momat/software.htm

with 100 iterations, the steepest descent method as the core algorithm and where the
initial condition generated by 5 iterations of a multi-layer secant method. The gradient
of the functional to be minimized is approximated with a first order finite difference
approach. A complete description and validation of this algorithm can be found in
[10, 11]. The obtained solutions are denoted by ρsp for Problem (6)-(7) and ρec for
Problem (10)-(13) .

In order to have a qualitative comparison of ρsp and ρec , we analyze their robust-
ness when they are submitted to random loads and their density distribution. For this
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purpose, we first compute the compliance value without considering any perturbed load.
Then, for each solution ρ ∈ {ρsp,ρec} , we consider the random variable Φρ =Ψ(ξ ,ρ) .
We approximate the density function of Φρ , denoted by γΦρ , by using a Monte-Carlo
approach [10] that generates M ∈ IN possible scenarios (i.e., values of ξ ). Then, we
calculate some statistical values of γΦρ : its mean, maximum and 1%-Coherent-Value
at Risk (C-VaR1 ) values.

The ν%-Coherent-Value at Risk (C-VaR) is a risk measure defined as:

C-VaRν(χ) =
1
ν

∫ ν

0
inf

{
z ∈ IR s.t.

∫ z

0
100ρχ(x)dx > (100− y)

}
dy,

where ν is a percentile, χ ∈ L∞(Ω,A , IP) and ρχ is the density function of χ . C-
VaRν corresponds to the average value of the worst ν % case scenarios of χ (i.e., the
ν % highest values of χ ). A presentation and an application of C-VaR can be found in
[10]. In our case, we have χ = Φρ .

3.2. Results

Some results found with the numerical experiments presented in Section 3.1 are
reported in Table 1. The density distribution of ρ sp and ρec are presented in Figures 3
and 4, respectively.

Solution Compl EC C-VaR1 Max
ρsp 1683 44798 321612 415021
ρec 3906 11129 61487 103936

Percent variation + 132 -75 -81 -75

Table 1: Results obtained when considering ρsp and ρec : Compliance value (Compl),
expected compliance (EC), coherent value at risk (C-VaR1 ) of Φρ and maximum value
(Max) of Φρ . The last line corresponds to the percent variation (%) between the results
given by ρsp and ρec .

As we can see on Table 1, the solution ρsp has a non perturbed compliance value
of 1683. The compliance value of ρec is 3906 (more than twice higher). However,
when considering perturbed loads, the expected compliance, the C-VaR1 and the max-
imum values of Φρec are more than four times lower than those of Φρsp . This result is
expected as the distribution ρsp is adapted to resist to the main load but is less stable to
perturbations of f . In counterpart, ρec allows to obtain reduced perturbed compliance
values. This can also be deduced by observing the shape of both solutions (see Figures
3-4): the density distribution ρsp is concentrated in the X-Z plane including f , produc-
ing a good resistance to the main load, whereas ρec exhibits four pillars resilient to the
perturbed loads included in the X-Y plane orthogonal to f .
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Figure 3: Shape and density distribution of ρsp : (Top-Left) Perspective view with representation
of the support area (gray plane), (Top-Right) Lateral view (i.e., X-Z plane), (Bottom-Left) Top
view (i.e., X-Y plane) and (Bottom-Right) Face view (i.e., Y-Z plane). The gray scale color map
representing the density is also presented.

Figure 4: Shape and density distribution of ρec : (Top-Left) Perspective view with representation
of the support area (gray plane), (Top-Right) Lateral view (i.e., X-Z plane), (Bottom-Left) Top
view (i.e., X-Y plane) and (Bottom-Right) Face view (i.e., Y-Z plane). The gray scale color map
representing the density is also presented.
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From this preliminary result, as in the truss optimization case studied in [7], we
can deduce that considering formulation (10) for topology optimization can help to
generate structures robust to perturbations of the main load.

4. Conclusions

We have adapted an expected compliance formulation, coming from truss design
(see [3, 7]), to topology optimization. We have exhibited, in a particular case, an ex-
plicit expression easy to evaluate. This method has been tested numerically on a 3D
benchmark test case. This approach allows to generate structures that are more stable
to perturbations of the main load than considering a classical non perturbed load ap-
proach. In a future work, the results given in this paper will be extended by performing
more numerical experiments. Then, as in the truss case, we will include the variance of
the compliance in our model to create improved structures.
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