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THE PROBABILISTIC BROSAMLER FORMULA FOR SOME

NONLINEAR NEUMANN BOUNDARY VALUE PROBLEMS

GOVERNED BY ELLIPTIC POSSIBLY DEGENERATE OPERATORS

GREGORIO DÍAZ

To Ilde

(Communicated by J.-M. Rakotoson)

Abstract. This paper concerns with boundary value problems as{
L u+a0u = f in Ω,

< ∇u,�γ > +c0|u|m−1u = g on ∂Ω,

where L is an elliptic possibly degenerate second order operator, a0, c0 are positive function,
�γ is an oblique exterior vector and m � 1 . By means of some arguments close to the Dynamics
Programming we prove that the viscosity solution admits a representation formula that can be
considered as an extension of probabilistic Brosamler formula of linear Neumann boundary value
problems governed by uniformly elliptic operators. Although other generalizations are possible,
by simplicity we limit this contribution to the presence of nonlinear terms exclusively on the
boundary of the domain. We emphasize that any uniforme ellipticity assumption is required in
the paper.

1. Introduction

In 1976, G. A. Brosamler [6], investigating the asymptotic behavior of the sample
paths of positive recurrent diffusions, employed the probabilistic potential theory estab-
lishing a close connection with certain boundary problems. More precisely, Brosamler
proved that any classical solution of the Neumann problem{

Δu(x) = 0, x ∈ Ω,

〈Du(x),�n(x)〉 = g(x), x ∈ ∂Ω,
(1)

admits the probabilistic representation

u(x) = lim
t→∞

E

∫ t

0
g
(
Xs

)
dLs, x ∈ Ω, (2)
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where Ω is a bounded open set of R
N with ∂Ω∈C 3, g is a continuous function on ∂Ω

satisfying the compatibility condition
∫

∂Ω
g(x)dσx = 0, {Xt}t�0 is a Brownian motion

with reflection at the boundary and {Lt}t�0 is the boundary local time for {Xt}t�0 (see
bellow for details). Since then these representation is known as the Brosamler formula.
It is a kind of stationary version of the Feynmann–Kac formula.

More recently, A. Benchérif Madani and È. Pardoux, [5], have extended the Brosam-
ler formula for the Neumann boundary problem⎧⎪⎨⎪⎩

−1
2
Tr

(
A (x),D2u(x)

)
+ 〈a(x),∇u(x)〉 = f (x), x ∈ Ω,

1
2
〈A (

∇u(x)
)
,�n(x)〉 = g(x), x ∈ ∂Ω.

(3)

So, if Ω is a bounded open set of R
N with ∂Ω ∈ C 2,α , 0 < α < 1, A ∈ C 1,α(Ω) is

a matricial uniformly elliptic function, a, f ∈ C 0,α(Ω) and g ∈ C (∂Ω) satisfying the
compatibility (or centering) condition∫

Ω
f (x)p(x)dx+

∫
∂Ω

g(x)p(x)dσx = 0,

where p is the solution of the adjoint elliptic problem of (3), it is proved in [5] that any
classical solution of (3) can be probabilistically represented by the formula

u(x) = lim
t→∞

[∫ t

0
E f

(
Xs

)
dt +

∫ t

0
Eg

(
Xs

)
dLs

]
, x ∈ Ω. (4)

Here {Xt}t�0 is the diffusion process involved to the PDE of (3) with reflection at the
boundary and {Lt}t�0 is the boundary local time for {Xt}t�0 (again see bellow for
details).

Our main goal in the paper is to show that a Brosamler formula is also available
whenever the uniform ellipticity is not required on boundary value problems with non-
linear Neumann condition. It is is strongly motivated by reasoning close to Stochastic
Optimal Control theory (see [9],[14], [25]). In order to simplify, we present the ideas
on a king of one-control case, but they can be extended to more general control prob-
lems. So, we consider a W

3,∞ open bounded set Ω ⊂ R
N, N � 1, whose unit outward

normal vector is �n(x) at each x ∈ ∂Ω . Then, the outward oblique directions �γ(x) are
continuous functions on ∂Ω , given by the property

〈�n(x),�γ(x)〉 > 0, |�γ(x)| = 1, x ∈ ∂Ω.

We also consider two functions

a : R
N → R

N and σ : R
N → M (N×M;R),

satisfying {
|h(x)−h(x′)| � C|x− x′|, x,x′ ∈ R

N,

|h(x)| � C, x ∈ R
N,

(5)
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for some positive constants C , with

h = a, σ .

On the other hand, on a probability space (O,F ,P) we consider a M-dimensional
Brownian Motion {Bt}t�0 and the relative filtration, {Ft}t�0 ⊂F , which is involved
to {Bt}t�0 . In this probabilistic framework, we construct the Skorohod problem{

dX x
t = −a

(
X x

t

)
dt + σ

(
X x

t

)
dBt −�γ(X x

s )dLx
s , t > 0,

X x
0 = x ∈ Ω,

(6)

where the boundary local time for {X x
t }t�0 is given by

Lx
t = lim

δ→0

1
2δ

∫ t

0
1IΩδ

(
X x

s

)
ds, Ωδ = {y ∈ Ω : dist(y,∂Ω) < δ}. (7)

We send [18] or [20] for some properties of this process {Lx
t }t�0 . In [16] one proves

the existence and uniqueness of the solutions of (6). In a rough sense the solutions are
stochastic trajectories reflecting in coming the boundary ∂Ω to inside Ω . Next, for
every couple of bounded Lipschitz continuous function f : Ω → R, g : ∂Ω → R we
construct

u(x) = E

[∫ ∞

0
f
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

)
dt

+
∫ ∞

0
g
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds−

∫ t

0
c0

(
X x

s

)
dLx

s

)
dLx

t

]
, x ∈ Ω. (8)

We note that since reflections hold, the first exit time of the trajectory X x
t from Ω of

R
N verifies

τx
.= inf{t � 0 : X x

t �∈ Ω} = ∞.

In Remarks 1 and 7 one explains the terms of (8) from the Stochastic Optimal Control
theory point of view (see also [9],[14], [25]).

Classical arguments (see [12] or [20]) lead to think u as being a solution of a
partial differential equation and a kind of Neumann boundary condition

B
(
x,u,Du

)
= 0 on Ω , (9)

involving �γ, c0 and g . Indeed, it is proved that u verifies, in some sense to be precised,
the equation

L u+a0u = f in Ω , (10)

where

L u
.= −1

2
Tr

(
A ·D2u

)
+ 〈a,Du〉.

Here A
.= σσ t and σ t is the transpose matrix of σ .

Certainly, some assumptions on the data must be required in order to prove that u
satisfies (10)–(9) in a classical sense. An almost “unavoidable” hypothesis for that goal
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is the non-degeneracy of the diffusion: σ(·) must be a N×N matrix with σ(·) � θ IN ,
for some θ > 0 on Ω . Unfortunately, the condition does not hold in some important
examples of the applications and consequently the regularity the function u can not
be guaranteed. The viscosity solution notion is adequate in order to remove the non-
degeneracy hypothesis. We send the monograph by M. G. Crandall, M. G, H. Ishii
and P. L. Lions [7] to understand how semi-continuous functions can solve (10) in
that framework. We note that linearity of the operator L can be lost for this kind of
solutions. From now on, sometimes we will drop the term viscosity which is an artifact
of the origin of this theory motivated by the consistency of the notion with the method
of vanishing viscosity, mainly for first order equations. Therefore we refer to viscosity
sub-, super- and solutions as sub-, super- and solutions, respectively.

The possible non regularity interferes strongly with the condition (9). Further-
more, one may construct examples in which u is continuous on Ω but (9) does not
hold (see the ideas of [4] or [13]). This is the reason for which (9) is generalized to a
boundary condition where from the control point of view the possible behaviors of the
dynamical system and the strategy of the controller must be considered. The relaxed
Neumann boundary conditions are

min
{
L u+a0u− f ,B(x,u,Du)

}
� 0 on ∂Ω (11)

and
max

{
L u+a0u− f ,B(x,u,Du)

}
� 0 on ∂Ω (12)

in the viscosity sense. Conditions (11) and (12) arise when we pass to limit smooth
solutions of the classical Neumann boundary value problem in the vanishing viscos-
ity method (see [7] for an introduction of the so–called half–relaxed limits method).
Roughly, these relaxed conditions mean that the PDE holds up to the boundary if (9)
does not hold in the ordinary viscosity sense. In this note the boundary is

B(x,r, p) = 〈p,�γ(x)〉+ c0(x)|r|m−1r−g(x), (x,r, p) ∈ Ω×R×R
N, (m � 1), (13)

that satisfies the obliqueness

B(x,r, p+ η�n(x))−B(x,s, p) = η〈�n(x),�γ(x)〉+ c0(x)
(|r|m−1r−|s|m−1s

)
, (14)

very useful in uniqueness results, provided η > 0, c0(x) � 0. In fact, this assumption
enables to prove that relaxed Neumann boundary conditions becomes ordinary Neu-
mann boundary conditions (see the comments in Remark 6 below).

So that, our interest here is to prove that (8) provides the Brosamler formula to the
Neumann value boundary problem corresponding to{

L u+a0u = f in Ω,
〈Du,�γ〉+ c0u = g on Ω.

We note that this boundary condition coincides with (13) for m = 1. In Section 3 we
prove that (8) is, in fact, the unique continuous solution whenever

the data σ , a, a0 > 0, c0 > 0, f and g satisfy (5) in their arguments, (15)
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see Theorem 3 below. We emphasize that A
.= σσ t is the simple structural assumption

needed on the leading part of L (see Remark 3 below) and no uniformly elliptic as-
sumption is required in the paper. The proof uses an approach by means of solutions in
the whole space obtained in the Section 2. The uniqueness is based on the obliqueness
(14) (see [1]). Certainly, complementary regularity for solutions are available under
more strict conditions on the data. In particular, as it is well known, classical solutions
are obtained if we assume that L is uniformly elliptic operator (see, for instance, [11,
Theorem 6.31] or [17]).

In Section 4 one studies the implicit Brosamler formula

u(x) =E

[∫ ∞

0
f
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

)
dt

+
∫ ∞

0
g
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

−
∫ t

0
c0

(
X x

s

)∣∣u(
X x

s

)∣∣m−1
dLx

s

)
dLx

t

]
, (16)

for x ∈ Ω , of the nonlinear boundary problem{
L u+a0u = f in Ω,〈
∇u,�γ

〉
+ c0|u|m−1u = g on ∂Ω,

where m > 1. By means of a Fixed Point Theorem it is proved that (16) is a solution
(see Theorem 4 below). In fact, since the boundary condition is governed by (13)
for m > 1, (16) is the unique continuous solution. Other extensions, including non
linearities in the interior operator or on the boundary operator are available, but they
are not considered in this note.

One final word, in order to simplify the exposition, we omit here the study of
complementary regularity based on the PDE theory. For this topic we refer, for instance,
[9], [11] or [25].

2. The problem in the whole space

Given
a : R

N → R
N and σ : R

N → M (N×M;R),

functions satisfying (5), we may consider the unique, in the probability sense, solution
of the stochastic differential equation

(SDE)

{
dX x

t = −a
(
X x

t

)
dt + σ

(
X x

t

)
dBt , t > 0,

X x
0 = x ∈ R

N,

(see, for instance, [18] for details). Given any couple of continuous functions

f , a0 : R
N → R,
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one defines

u(x) = E

[∫ ∞

0
f
(
Xt

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

)
dt

]
, x ∈ R

N (17)

provided that f is bounded.

REMARK 1. In a framework close to Control Theory, the function u(x) is the
optimal value of an one-control problem where f

(
X x

t

)
denotes the payment per time

unit and

exp

(
−

∫ t

0
a0

(
X x

s

)
ds

)
an actualization term. �

In order to characterize the function u we employ a classical argument

PROPOSITION 1. (Dynamics ProgrammingPrinciple) For every t � 0 and x∈R
N

one satisfies

u(x) = E

[∫ t

0
f
(
X x

s

)
exp

(
−

∫ s

0
a0

(
X x

r

)
dr

)
ds

+u
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

)]
. (18)

REMARK 2. Property 18 is the mathematical expression of the well-known heuris-
tic principle introduced by R. Bellman. �

From assumptions we have

−∞ < u∗(x) � u(x) � u∗(x) < +∞, x ∈ R
N,

where u∗ , respectively u∗ , is the lower semi-continuous, respectively upper semi-
continuous, envelop of u . Next we argue as in [2] or [8]. For some fix and arbitrary
point x0 ∈ R

N we consider ϕ ∈ C 2(RN) such that

(u∗ −ϕ)(x0) � (u∗ −ϕ)(x), x ∈ R
N.

Replacing ϕ by
ϕ̂(x) = ϕ(x)+ (u∗−ϕ)(x0)+ |x− x0|2

if necessary, we may assume

0 = (u∗ −ϕ)(x0) > (u∗ −ϕ)(x), x ∈ R
N.

If {xε}ε ⊂ R
N satisfies

{xε}→ x0 as ε → 0,
u(xε) → u∗(x0) as ε → 0,
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we construct the auxiliar time

t2ε = |u(xε)−ϕ(xε)|,
for which

ϕ(xε) = u(xε)+o(tε).

So,

ϕ(xε) � E

[∫ tε

0
f
(
X xε

s

)
exp

(
−

∫ s

0
a0

(
X x

r

)
dr

)
ds

+ ϕ
(
X xε

tε

)
exp

(
−

∫ tε

0
a0

(
X xε

s

)
ds

)]
+o(tε) (19)

(see (18)). Regularity of ϕ enables us to apply Ito’s Rule to

Φ(t) = ϕ
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

)
and to obtain

dΦ(t) = exp

(
−

∫ t

0
a0

(
X xε

s

)
ds

){[−a0
(
X xε

t

)
ϕ

(
X xε

t

)−L ϕ
(
X xε

t

)]
dt

+ 〈σ(
X xε

t

)
dBt ,∇ϕ

(
X xε

t

)〉}
for the operator

L ϕ(y) = −1
2
Tr

(
A (y) ·D2ϕ(y)

)
+ 〈a(y),Dϕ(y)〉,

Ai j(y) =
N

∑
l=1

σil(y)σl j(y), 1 � i, j � N.

Then we get to

E

[
ϕ

(
X xε

tε

)
exp

(
−

∫ tε

0
a0

(
X xε

s

)
ds

)]
= ϕ(xε)

+E

[∫ tε

0
exp

(
−

∫ s

0
a0

(
X xε

r

)
dr

)(
−a0

(
X xε

s

)
ϕ

(
X xε

s

)−L ϕ
(
X xε

t

))
dt

]
and from (19)

o(tε) �
[
f (xε)−a0(xε)ϕ(xε)−L ϕ(xε )

]
E

[
1− exp(−a0(xε)tε )

a0(xε)

]
.

Letting ε → 0 we conclude

L ϕ(x0)+a0(x0)u∗(x0) � f (x0).

By an analogous reasoning one proves the u is also a super-solution, therefore one
concludes
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THEOREM 1. Under the assumption (5), for a, σ and a0 the function u, given in
(17), is a solution of L u+a0u = f in R

N .

REMARK 3. Since

σikσ jkξiξ j � −σ2
ikξ 2

i + σ2
jkξ 2

j

2
⇒

N

∑
i, j=1; i< j

σikσ jkξiξ j � −
N

∑
i=1

σ2
ikξ 2

i ,

the covariance matrix, Ai j =
M

∑
k=1

σikσ jk , is elliptic possibly degenerate, i.e.

〈A ξ ,ξ 〉 � 0, ξ ∈ R
N.

Moreover, from σ �≡ 0 it verifies
TrA > 0,

we say then that A (·) is elliptic quasi non–degenerate. On the other hand, given A
the property of to find some σ : R

N → M (N×M;R) Lipschitz continuous functions
solving

A = σσ t

fails, in general, for any Lipschitz continuous positive semi–definite symmetric matri-
cial function A . However, we may consider the technicality: A ∈ W2,∞ implies that√

A is uniformly Lipschitz continuous (see [10] for some results of the factorization of
non–negative definite matrices). �

Complementary regularity on the solution u whenever L is uniformly elliptic
can be obtained (see [15]), but, as it was pointed out in Introduction, by simplicity
we omit here the study of regularity based on the PDE theory. However, we provide
two illustrative results derived directly from the construction of (17). First, we use the
notation u f in studying the dependence on the data of the function u , given in (17). So,
we have

PROPOSITION 2. Assumed the condition

a0(x) � λ > 0, x ∈ R
N, (20)

one has

u f (x) � ‖ f‖∞

λ
, x ∈ R

N.

Proof. By definition one has

u f (x) � ‖ f‖∞

∫ ∞

0
exp(−λ t)dt � ‖ f‖∞

λ
, x ∈ R

N.�
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Therefore, it follows

u f (x)−u f̂ (x) � ‖ f − f̂‖∞

∫ ∞

0
exp(−λ t)dt � ‖ f − f̂‖∞

λ
,

whence

‖u f −u f̂‖∞ � ‖ f − f̂‖∞

λ
, x ∈ R

N (21)

holds. The second one is

THEOREM 2. Assume

|Da(x)−Da(x̂)|+ |Dσ(x)−Dσ(x̂)| � C|x− x̂|, x, x̂ ∈ R
N, (22)

for some positive constant C . If f is semi-concave (respectively semi-convex) the func-
tion u, given in (17), is also semi-concave (respectively semi-convex).

Proof. We recall that a function ψ : R
N →R is semi-concave if x �→ ψ(x)−K|x|2

is concave for some positive constant K . Consequently, by straightforward computa-
tions ψ is semi-concave if and only if

μψ(x)+(1−μ)ψ(y)−ψ(μx+(1−μ)y)� Kμ(1−μ)|x−y|2, x,y∈R
N, 0 < μ < 1.

On the other hand, ψ : R
N →R is semi-convex if −ψ is semi-concave. We only study

the semi-concave case. In order to simplify we will assume a0(·) ≡ λ . Let x1,x2 ∈ R
N

and 0 < μ < 1 and we denote xμ = μx2 +(1− μ)x1 . Then

μu(x2)+ (1− μ)u(x1)−u(xμ) = E

[∫ ∞

0
μ f

(
X x2

t

)
exp(−λ t)dt

+
∫ ∞

0
(1− μ) f

(
X x1

t

)
exp(−λ t)dt

−
∫ ∞

0
f
(
X

xμ
t

)
exp(−λ t)dt

]
.

Denoting
X μ

t
.= μX x2

t +(1− μ)X x1
t

one has from assumptions

μu(x2)+ (1− μ)u(x1)−u(xμ) � Kμ(1− μ)E
[∫ ∞

0

∣∣X x1
t −X x2

t

∣∣2 exp(−λ t)dt

]

+E

[∫ ∞

0
f
(
X μ

t

)− f
(
X

xμ
t

)
exp(−λ t)dt

]

� K
λ

μ(1− μ)
∣∣x1− x2

∣∣2
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+KE

[∫ ∞

0

∣∣X μ
t −X

xμ
t

∣∣exp(−λ t)dt

]
(23)

(here K is a generic positive constant). On the other hand, it follows∣∣μa(x2)+ (1− μ)a(x1)−a(xμ)
∣∣ =

∣∣μ(
a(x2)−a(xμ)

)
+(1− μ)

(
a(x1)−a(xμ)

)∣∣
� μ(1− μ)

∣∣〈∫ 1

0

(
Da

(
xμ + θ (1− μ)(x2− x1)

)
−Da

(
xμ + θ μ(x1− x2)

))
dθ ,x2− x1〉

∣∣
� Kμ(1− μ)|x1− x2|2.

Analogously, one proves∣∣μσ(x2)+ (1− μ)σ(x1)−σ(xμ)
∣∣ � Kμ(1− μ)|x1− x2|2.

By using on the stochastic differential equation (SDE) the Burkholder-Davis-Gundy
inequality (see [18, Theorem 3.28]) we obtain

E

[
sup
[s,t]

∣∣X μ
t −X

xμ
t

∣∣]
� KE

[
sup

r∈[s,t]

∣∣∣∣∫ r

s

(
μa(X x2

τ )+ (1− μ)a
(
X x1

)−a
(
X μ)

dτ
∣∣∣∣2 ]

+KE

[
sup

r∈[s,t]

∣∣∣∣∫ r

s

(
a
(
X μ)−a

(
X

xμ
τ

))
dτ

∣∣∣∣2
]

� KE

[
sup

r∈[s,t]

∣∣∣∣∫ r

s

(
μσ(X x2

τ )+ (1− μ)σ
(
X x1

τ
)−σ

(
X

μ
τ

))
dBτ

∣∣∣∣2
]

+KE

[
sup

r∈[s,t]

∣∣∣∣∫ r

s

(
σ

(
X μ

τ
)−σ

(
X

xμ
τ

))
dBτ

∣∣∣∣2
]

� Kμ2(1− μ)2
E

[∫ r

s

∣∣X x2
τ −X x1

τ
∣∣4dτ

]
+KE

[∫ r

s

∣∣X μ
τ −X

xμ
τ

∣∣2dτ
]

� Kμ2(1− μ)2
∣∣x1 − x2

∣∣4 +2K
∫ r

s
E

[∣∣X μ
τ −X

xμ
τ

∣∣2]dτ,

therefore by Gronwall inequality one has

E
[
sup
[s,t]

∣∣X μ
t −X

xμ
t

∣∣] � Kμ(1− μ)
∣∣x1− x2

∣∣2. (24)

Finally, (23) and (24) conclude the result. �

REMARK 4. It is clear that the semi-concavity (respectively semi-convexity) im-
plies

∂ 2u
∂ χ2 � (respectively � ) K in D ′(RN) for all χ , |χ |2 = 1.

The above proof follows argument of [25, Proposition 4.4.5]. �



THE PROBABILISTIC BROSAMLER FORMULA 169

3. The linear problem

There are many way to study the behavior of the reflection near the boundary (see,
for instance, [12], [18], [19], [21] or [23] ). Here we will employ the domain penalty
method (see [3] or [16] for sharp details). So, assuming (15), for every δ > 0 to be
sending 0, we consider the equation in the whole space⎧⎨⎩dX δ ,x

t =−a(X δ ,x
t )dt + σ(X δ ,x

t )dBt − 1
δ

ϕ(X δ ,x
t )�γ(X δ ,x

t )dt, t > 0,

X δ ,x
0 =x ∈ R

N,

where ϕ is a W
3 extension of the function dist4(·,Ω) to R

N , verifying

〈∇ϕ(x),�γ(x)〉 > 0, x ∈ R
N,

for Lipschitz extensions of the data a0, f , c0, g y �γ to the whole space R
N satisfying

(5). In [3, Section 3] one proves the convergence in law of {X δ ,x
t }t�0 to the unique

solution {X x
t }t�0 of{

dX x
t = −a(X x

t )dt + σ(X x
t )dBt −�γ(X x

t )dLx
t , t > 0,

X x
0 = x ∈ Ω.

The proof uses the property

limsup
(y,y′)→(x,x′);δ→0

Ey,y′
[∣∣X δ ,y

t −X y′
t

∣∣] = |x− x′|, x,x′ ∈ Ω, (25)

therefore a better convergence holds.

REMARK 5. Really, in [3] the reflection term of the stochastic differential equa-
tion is denoted by other way. �

Next, we consider an extension ψ ∈ C 1(RN) of the function dist(z,Ω) for which⎧⎪⎪⎨⎪⎪⎩
ϕ(z)

δ
=

dist4(z,Ω)
δ

,

ψ(z)
δ

=
dist(z,Ω)

δ
,

for dist(z,Ω) � δ .

Then we construct the functions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fδ (z) = f (z)+
1
δ

ψ(z)g(z),

aδ (z) = a0(z)+
1
δ

ψ(z)c0(z),

aδ (z) = a(z)+
1
δ

ϕ(z)�γ(z),

z ∈ R
N,
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that verify ⎧⎨⎩
fδ (z) = f (z)
aδ (z) = a0(z)
aδ (z) = a(z),

z ∈ Ω,

independent on δ . Finally, we introduce

uδ (x) = E

[∫ ∞

0
fδ

(
X δ ,x

t

)
exp

(
−

∫ t

0
aδ

(
X δ ,x

s

)
ds

)
dt

]
, x ∈ R

N, (26)

for which

uδ (x) = E

[∫ t

0
fδ

(
X δ ,x

s

)
exp

(
−

∫ s

0
aδ (X δ ,x

r )dr

)
ds

+uδ(X δ ,x
t )exp

(
−

∫ t

0
aδ (X δ ,x

s )dt
)]

, (27)

holds for t > 0 and x ∈ R
N , as in Proposition 1 below. So that, the interior reasoning

of Theorem 1 leads to

PROPOSITION 3. Under assumptions on the data, for every δ > 0 , the function
uδ , given by (26), is a solution of

−1
2
Tr

(
A ·D2uδ

)
+ 〈aδ ,∇uδ 〉+aδuδ = fδ in R

N .

Certainly, uδ is bounded on Ω , uniformly in δ . Therefore we may construct the
functions

u(x) = liminf
yδ→x, yδ∈RN; δ→0

uδ (yδ ),

u(x) = limsup
yδ→x, yδ∈RN; δ→0

uδ (yδ ), x ∈ Ω, (28)

moreover u is lower semi–continuous and u is upper semi–continuous and obvious
inequality

u(x) � u(x), x ∈ Ω,

holds. Next, we prove that, in fact, they coincide in a continuous weak solution provid-
ing the Brosamler formula

THEOREM 3. Under assumption (15), the function u given in (8) is the unique
continuous solution of the problem{

L u+a0u = f in Ω,
〈∇u,�γ〉+ c0u = g on ∂Ω.

(29)
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Proof. First of all we note that from limit operations (see [7]) the functions u(x)
and u(x) are sub- and super-solutions, respectively, of

L u+a00 = f in Ω .

On the other hand, given (p,Z ) ∈ J 2,+
Ω u(x0), x0 ∈ ∂Ω , and δ > 0 there exists xδ ∈

R
N and (

pδ ,Zδ
) ∈ J 2,+

Ω uδ (xδ ),

such that {(
xδ ,uδ (xδ ), pδ ,Zδ

)}
δ → (x0,u(x0), p,Z ) as δ → 0

(see [7, Lemma 6.1 and Proposition 4.3]). Moreover, with no loss of generality, we may
assume

xδ = x0 + δ
1
4�n(x0).

Then
∇dist(x0,Ω) =�n(x0),

and
dist(x,Ω) = 〈�n(x0),x− x0〉+o(|x− x0|)

imply

ϕ(x)
δ

=

(〈�n(x0),x− x0〉
)4

δ
+

o(|x− x0|)
δ

for δ small enough.

Hence

lim
δ→0

ϕ(x0 + δ
1
4�n(x0))

δ
= |�n(x0)|8 = 1

shows
lim
δ→0

aδ (xδ ) = a(x0)+�γ(x0).

Analogously, reasoning with
xδ = x0 + δ�n(x0),

it follows, from

ψ(x)
δ

=
〈�n(x0),x− x0〉

δ
+

o(|x− x0|)
δ

for δ small enough,

the properties ⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim
δ→0

ψ(x0 + δ�n(x0))
δ

= |�n(x0)|2 = 1,

lim
δ→0

fδ (xδ ) = f (x0)+g(x0),

lim
δ→0

aδ (xδ ) = a0(x0)+ c0(x0).

So that,

−1
2
Tr

(
A ·D2uδ

)
+ 〈aδ ,∇uδ 〉+aδuδ � fδ in R

N ,
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leads to[
− 1

2
Tr

(
A ·D2u

)
+ 〈a,∇u〉+a0u− f

]
+

[
〈∇u,�γ〉+ c0u−g

]
� 0 on Ω ,

in the viscosity sense, because

liminf
δ→0

(
− 1

2
Tr

(
A (xδ ) ·Zδ

)
+ 〈aδ(xδ ), pδ 〉+aδ(xδ )uδ (xδ )− fδ (xδ )

)
=

[
− 1

2
Tr

(
A (x0) ·Z

)
+ 〈a(x0), p〉+a0(x0)u(x0)− f (x0)

]
+

[
〈p,�γ(x0)〉+ c0(x)u(x0)−g(x0)

]
.

So, it proves that u is a relaxed sub-solution of (29). A similar reasoning enables us to
obtain[

− 1
2
Tr

(
A ·D2u

)
+ 〈a,∇u〉+a0u− f

]
+

[
〈∇u,�γ,〉+ c0u−g

]
� 0 on Ω

that, now, proves that u is a relaxed super-solution of (29). Moreover, since the bound-
ary operator

B(x,r, p) = 〈p,�γ(x)〉+ c0(x)r−g(x)

satisfies the obliqueness (14) for m = 1, one concludes

u(x) � u(x), x ∈ Ω,

(see [1, Theorem 2.2]), thus, u(x) = u(x) = u(x), x ∈ Ω , is a continuous solution of
(29). In fact, it is the unique solution of (29) (see [1, Theorem 2.2]). Finally, the
convergence in law of {X δ ,x

t }t�0 to the unique solution {X x
t }t�0 and the regularity

of the data implies that the function u is given by the formula (8). �

REMARK 6. In order to understand the relaxed Neumann boundary conditions
(see (11) and (12)) a main question arises. How the equation holds on the boundary?
Some authors have studied the question. See, for instance, [1] or [7]. Essentially, if
u−ϕ attains a local maximum at some x0 ∈ ∂Ω , as we consider for the viscosity sub-
solutions, the same holds for u−ϕ −ψ

(
dist(·,∂Ω)

)
whenever ψ is a smooth function

and ψ(0) = 0. Then the regularity of the boundary ∂Ω and suitable obliqueness enable
to construct a sharp test function for which

min{L u+a0u− f ,B(x,u,Du)} � 0 on ∂Ω

becomes
B(x,u,Du) � 0 on ∂Ω .

In an analogous way, for super-solutions one may construct a sharp test function for
which

max{L u+a0u− f ,B(x,u,Du)} � 0 on ∂Ω
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becomes
B(x,u,Du) � 0 on ∂Ω

i.e. the relaxed Neumann boundary condition becomes

B(x,u,Du) = 0 on ∂Ω ,

in the ordinary viscosity sense. We send [1] for details. We also note that if the bound-
ary operator governs Dirichlet boundary conditions

B(x,r, p) = r−g(x) on ∂Ω ,

the relative relaxed Dirichlet boundary condition becomes the ordinaryDirichlet bound-
ary condition under a simple and well known assumption: the boundary ∂Ω must con-
sist of regular boundary points, as it was proved, for instance, in [2], [8], [10] or [24].
�

REMARK 7. In the Brosamler formula (8) we can understand that the boundary
payment becomes less active with time guided by the cumulative rate

exp

(
−

∫ t

0
a0

(
X x

s

)
ds−

∫ t

0
c0

(
X x

s

)
dLx

s

)
per unit time, according to there were reflections produced on the boundary until the
process “died near to the boundary”, after of a possibly infinite number of reflections.
�

Here, we end with an application of Theorem 3 to be used in certain estimate of
the next section.

PROPOSITION 4. Let Hλ
∂Ω be the relaxed solution of the boundary value problem{
L Hλ

∂Ω + λHλ
∂Ω = 0 in Ω,

〈∇Hλ
∂Ω,�γ〉 = 1 on ∂Ω.

(30)

Then, we have the representation

Hλ
∂Ω(x) = E

[∫ ∞

0
exp(−λ t)dLx

t

]
> 0, x ∈ Ω. (31)

REMARK 8. Whenever L is uniformly elliptic, existence, uniqueness and regu-
larity of function Hλ

∂Ω also follows from [15, Theorem I.1] and the positivity can be
obtained by using Hopf’s Principle (see [11]). We note that in any case

λ �→ Hλ
∂Ω(·)
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is a decreasing and convex map. We also note that the borderline case

H0
∂Ω(x) = E

[
lim
t→∞

Lx
t

]
> 0, x ∈ Ω,

is a solution of {
L Hλ

∂Ω = 0 in Ω,
〈∇Hλ

∂Ω,�γ〉 = 1 on ∂Ω. �

Complementary regularity derived directly from the Brosamler formula can be
obtained as in Section 2.

4. The nonlinear boundary problem

In this section we will assume the condition (15) as well as c0(x) > 0, for which
we will use the notation

a0(x) � λ > 0, x ∈ Ω, and c0(x) � ρ > 0, x ∈ ∂Ω. (32)

In what follows we are going to study the dependence on cumulative actualization

exp

(
−

∫ t

0
a0

(
X x

s

)
ds−

∫ t

0
c0

(
X x

s

)∣∣v(X x
s

)∣∣m−1
dLx

s

)
for m > 1 and v ∈ C (Ω) . More precisely, let us consider the application

T v(x) = E

[∫ ∞

0
f
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

)
dt

+
∫ ∞

0
g
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

−
∫ t

0
c0

(
X x

s

)∣∣v(X x
s

)∣∣m−1
dLx

s

)
dLx

t

]
, (33)

for x ∈ Ω . Again Theorem 3 implies that T v is the unique solution of the boundary
value problem {

LT v+a0T v = f in Ω
〈∇T v,�γ〉+ c0|v|m−1T v = g on ∂Ω.

Our aim is clear: show the existence of a fixed point u

T u(x) = u(x), x ∈ Ω.

Straightforward computations on the definition of (33) lead to

|T v(x)| � sup
Ω

| f |
∫ +∞

0
exp(−λ t)dt + sup

∂Ω
|g|Ex

[∫ ∞

0
exp(−λ t)dLx

t

]
, x ∈ Ω,
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whence (31) derives the estimate

|T v(x)| � 1
λ

sup
Ω

| f |+ sup
∂Ω

|g|Hλ
∂Ω(x), x ∈ Ω, (34)

where the function Hλ
∂Ω was introduced in Proposition 4. That estimate gives the in-

clusion
T

(
C (Ω)

) ⊆ BR(0) ⊂ C (Ω),

for

R
.=

1
λ

sup
Ω

| f |+ sup
∂Ω

|g|sup
Ω

|Hλ
∂Ω|.

The existence of a point fixed is now obtained through continuity of application
T .

THEOREM 4. Let us assume the conditions (15) and (32). Then, for m > 1 the
mapping (33) is uniformly continuous. As consequence, there exists a function u ∈
C (Ω) , such that ⎧⎨⎩‖u‖C (Ω) � 1

λ
sup

Ω
| f |+ sup

∂Ω
|g|sup

Ω
|Hλ

∂Ω|,
T u = u in C (Ω),

given by the implicit Brosamler formula (16). Moreover, u is the unique solution of the
boundary value problem {

L u+a0u =f in Ω,
〈∇u,�γ〉+ c0|u|m−1u =g on ∂Ω.

Proof. Let v, v̂ ∈ C (Ω) be two arbitrary functions. Then, for each x ∈ Ω the
inequality

(T v−T v̂)(x) � ρ sup
∂Ω

|g|E
[∫ ∞

0
exp(−λ t)

(∫ t

0

∣∣∣∣∣∣v(X x
s

)∣∣m−1

− ∣∣v̂(X x
s

)∣∣m−1
∣∣∣∣dLx

s

)
dLx

t

]
holds. Moreover, from definition

Lx
t = lim

δ→0

1
2δ

∫ t

0
1IΩδ

(
X x

s

)
ds,

given 0 < ε < 1 there exists δε , small enough, such that∫ t

0
dLx

s = Lx
t � ε +

1
2δε

∫ t

0
1IΩε

(
X x

s

)
ds � 1+

t
2δε

,
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whence

(T v−T v̂)(x) �
(

ρ sup
∂Ω

|g|E
[∫ ∞

0
exp(−λ t)dLx

t

+
1

2δε

∫ ∞

0
t exp(−λ t)dLx

t

])
Hm(v, v̂), (35)

where

Hm(v, v̂) .=

{
Cm‖v− v̂‖m−1, if 1 < m � 2,

Cm(‖v‖m−1 +‖v̂‖m−1)
m−2
m−1 ‖v− v̂‖, if 2 � m,

(36)

where δε and Cm are two positive constants independent on v and v̂ (see (38) in the
Appendix below). From the convexity

λ �→ Hλ
∂Ω(·)

(see the Remark 8) we obtain the inequality

H0
∂Ω(x)−Hλ

∂Ω(x) � −λ
∂

∂λ
Hλ

∂Ω(x) = λE

[∫ ∞

0
t exp(−λ t)dLx

t

]
> 0, x ∈ Ω.

Finally, previous arguments lead to

(T v−T v̂)(x) � ρ sup
∂Ω

|g|sup
Ω

(
Hλ

∂Ω +
1

2λ δε
|H0

∂Ω −Hλ
∂Ω|

)
Hm(v, v̂), x ∈ Ω,

that proves the uniform continuity of the mapping

T : C (Ω) → C (Ω)

(see the definition of Hm in (36)). So that, from

T
(
BR(0)

) ⊆ BR(0), BR(0) ⊂ C (Ω),

with

R =
1
λ

sup
Ω

| f |+ sup
∂Ω

|g|sup
Ω

|Hλ
∂Ω|

we obtain, through an extension of the Brouwer Fixed Point Theorem (see [11, Theorem
11.1]), the existence of a fixed point

u ∈ BR(0), T u = u.

Definition of mapping T enables us to obtain the representation formula (16) and to
prove that u is a solution of the boundary value problem. On the other hand, since the
boundary condition

B(x,r, p) = 〈p,�γ(x)〉+ c0(x)|r|m−1r−g(x), (x,r, p) ∈ Ω×R×R
N,

satisfies the obliqueness (14), the function u is the unique continuous solution. �
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REMARK 9. Theorem 4 also holds for the problem{
L u+a0u =f in Ω,

〈∇u,�γ〉+ c0Ψ(u)u =g on ∂Ω,

assumed that for each M > 0

r �→ Ψ(r), |r| � M,

is a positive uniform continuous function. Here the relative Brosamler formula is given
by

u(x) = E

[∫ ∞

0
f
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

)
dt

+
∫ ∞

0
g
(
X x

t

)
exp

(
−

∫ t

0
a0

(
X x

s

)
ds

−
∫ t

0
c0

(
X x

s

)
Ψ

(
u
(
X x

s

))
dLx

s

)
dLx

t

]
,

for x ∈ Ω . Moreover, if rΨ(r) is nondecreasing the boundary operator satisfies the
obliqueness

B(x,r, p+ η�n(x))−B(x,s, p) = η〈�n(x),�γ(x)〉+ c0(x)
(
Ψ(r)r−Ψ(s)s

)
.

Therefore the function u is, in fact, the unique solution of the boundary problem. �

5. Appendix. On a technical inequality

In [22] one proves the inequality

〈|θ |p−2θ −|θ̂ |p−2θ̂ ,θ − θ̂
〉

�

⎧⎪⎪⎨⎪⎪⎩
Cp|θ − θ̂ |p, if 2 � p,

Cp
|θ − θ̂ |2(|θ |+ |θ̂ |)2−p , if 1 � p < 2, |θ |+ |θ̂ | �= 0,

(37)
where Cp is positive constant depending on p. For the choice

θ = |ξ |m−1, θ̂ = |ξ̂ |m−1 and (p−1)(m−1)= 1,

inequality (37) becomes

〈|ξ |− |ξ̂ |, |ξ |m−1−|ξ̂ |m−1〉 �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cm

∣∣|ξ |m−1−|ξ̂ |m−1
∣∣ m

m−1 , if m � 2,

Cm

∣∣|ξ |m−1−|ξ̂ |m−1
∣∣2(|ξ |m−1 + |ξ̂ |m−1

)m−2
m−1

, if 2 < m, |ξ |+ |ξ̂ | �= 0.
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For the case m � 2 one has∣∣|ξ |m−1−|ξ̂ |m−1
∣∣ � C−1

m

(〈|ξ |− |ξ̂ |, |ξ |m−1−|ξ̂ |m−1〉)m−1
m

� C−1
m

(
(|ξ |− |ξ̂ |)m−1

mεm + ε
m

m−1
m−1

m

∣∣|ξ |m−1−|ξ̂ |m−1
∣∣),

by using Cauchy inequality. Then for ε small enough we derives

∣∣|ξ |m−1−|ξ̂ |m−1
∣∣ �

⎧⎨⎩Cm
∣∣ξ − ξ̂

∣∣m−1
, if m � 2,

Cm
(|ξ |m−1 + |ξ̂ |m−1

)m−2
m−1

∣∣ξ − ξ̂
∣∣, if 2 < m,

(38)

(the case 2 < m follows by straightforward computations).
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