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Abstract. The bifurcations in a four-variable ODE model of an SIS type epidemic on an adaptive
network are studied. The model describes the propagation of the epidemic on a network where
links (or edges) of different type (i.e. SI,II and SS ) can be activated or deleted according to a
simple rule consisting of random link activation and deletion. In the case when II links cannot
be neither deleted nor created it is proved that the system can have at most three steady states
with the trivial, disease-free steady state being one of them. It is shown that a stable endemic
steady state can appear through a transcritical bifurcation, or a stable and an unstable endemic
steady state arise as a result of saddle-node bifurcation. Moreover, at the endemic steady state
a Hopf bifurcation may occur giving rise to stable oscillation. The bifurcation curves in the
parameter space are determined analytically using the parametric representation method. For
certain parameter regimes or bifurcation types, analytical results based on the ODE model show
good agreement when compared to results based on individual-based network simulations. When
agreement between the two modelling approaches holds, the ODE-based model provides a faster
and more reliable tool that can be used to explore full spectrum of model behaviour.

1. Introduction

Recently, it has become more and more important to understand the relation be-
tween the dynamics on a network and the dynamics of the network [5]. In the case of
epidemic propagation on networks it is straightforward to assume that the propagation
of the epidemic has an effect on the structure of the network. For example, suscepti-
ble individuals try to cut their links in order to minimise their exposure to infection.
This leads to a change in network structure which in turn impacts on how the epi-
demic spreads. This phenomenon can be modeled by using two main approaches: (i)
individual based stochastic simulations or micro models and (ii) macro models where
variables at the population level are given in terms of a system of ordinary differential
equations. These types of models can have several parameters and, especially in the
latter case, the behaviour of the system can be rigorously investigated via bifurcation
analysis techniques. The aim this paper is twofold. First, we revisit the formulation
of a dynamic network model which is coupled with a simple epidemic dynamics and,
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second, we use bifurcation analysis to analyse the full spectrum of model behaviour.
We use our results to highlight the importance of coupled models in understanding real
world processes.

Over the last few years several models have been proposed where both the dynam-
ics of the network and on the network are considered [5]. For example, Saramäki and
Kaski [10] proposed an SIR model where in a cycle graph long-range links are intro-
duced randomly. These links account for occasional, far away infection, i.e. an infected
node, at some rate, can infect nodes that are not immediate local neighbours. They for-
mulate a simple ODE model that is similar to pairwise models [7] and use this to derive
analytic results for disease transmission threshold and to validate simulation results.
Gross et al. [4] proposed a model where (SI) links are cut at a certain rate with suscep-
tible nodes immediately re-wiring to other susceptible nodes chosen at random from
the entire population. Again, a simple pairwise type model was used to derive an ODE
that describes the interaction of network and disease dynamics. Shaw and Schwartz
generalised this investigation to an SIRS type model [11]. Risau-Gusman and Zanette
[9] considered the case when the susceptible node from an (SI) pair re-wires to a node
chosen at random from the entire network regardless of its state, with the infected node
in an (SI) pair being able to perform the same re-wiring.

Recently, we have proposed a model in which the immediate re-wiring is not as-
sumed and all type of contacts (i.e. SS,SI and II ) can be activated or deleted at a
certain rate. The first aim of that paper was to investigate the impact of these simple
network dynamics on the structure of the network when node dynamic was absent and
when the nodes were static but labeled. Then the dynamic network was coupled with
SIS node dynamics and a pairwise and simulation model were used to investigate and
characterise the full spectrum of behaviour. In that paper, the analysis mainly focused
on the agreement between simulation and pairwise models with the detailed analytical
study of bifurcations postponed to the present paper. The proposed model has 8 param-
eters and hence a numerical bifurcation study is difficult to perform in order to reveal
the full spectrum of behaviour. Thus the main aim of this paper is the detailed analytical
study of bifurcations that occur in the system and to identify regions where the differ-
ent behaviours can be observed. To achieve this we apply the parametric representation
method which is a useful tool that can be used to find the bifurcation curves analytically
and has already been used successfully to analyse different systems [1, 8, 12].

In the paper the following pair approximation model for an SIS epidemic propa-
gating on a dynamically changing graph with N nodes is considered,

˙[I] = τ[SI]− γ[I], (1)
˙[SI] = γ

(
[II]− [SI]

)
+ τ

(
[SSI]− [ISI]− [SI]

)

−ωSI[SI]+ αSI
(
[S][I]− [SI]

)
, (2)

˙[II] = −2γ[II]+ 2τ([ISI]+ [SI])−ωII[II]+ αII
(
[I]([I]−1)− [II]

)
, (3)

˙[SS] = 2γ[SI]−2τ[SSI]−ωSS[SS]+ αSS
(
[S]([S]−1)− [SS]

)
. (4)

Here [I](t) is the expected number of infected nodes in the graph at time t and
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[SI](t) , [II](t) , [SS](t) denote the expected number of SI, II and SS edges at time t .
Similar notation is used for the triples SSI and ISI . The parameters of the epidemic
propagation are τ , the infection rate and γ the recovery rate. The parameters of the
dynamic of the graph are αSI ,αII ,αSS , the rates of activation of the corresponding
links, and ωSI ,ωII ,ωSS the rates of deletion of the corresponding links. The deletion of
links is simply assumed to be proportional to the number of existing links, for example,
the deletion of SI edges is given by the term ωSI [SI] . Similarly, the activation of links
is proportional to the number of potential links that are not yet connected, for example,
the activation of SI edges is described by the term αSI([S][I]− [SI]) .

The following simple closures are used for the triples,

[SSI] =
n−1

n
[SS][SI]

[S]
, [ISI] =

n−1
n

[IS][SI]
[S]

,

where n is the average degree of the nodes. This type of closure is widely used for
homogeneous random graphs [6, 7] with no clustering (i.e. neighbours of a node are
not or very unlikely to be neighbours of each other) and also for unclustered random
graphs with close to Poisson degree distribution [14]. In this case, the closure relations
including the clustering coefficient do not seem to perform better when compared to the
simpler closure. This is simply explained by the fact that for large parameter regions
the dynamic graph becomes densely connected. This correlates with high clustering,
but with its effect being significantly weakened by the high link density. Hence, even
when clustering is high, the mean-field limit gives a good approximation like in the
case of a fully connected graph. Namely, for a complete graph the clustering coeffi-
cient is equal to 1, and despite of this, the above closure relations without clustering
coefficient perform very well. Due to the dynamic nature of the network, the aver-
age degree of the nodes, where degree is simply the number of links or edges a node
has, is a variable itself and changes with time as n(t) = (2[SI](t)+[II](t)+[SS](t))/N .
Hence, the analysis above performed for a fixed n serves only as an indicator of pos-
sible system behaviours but can give good results if n is a slow variable where for
example the network dynamics is much slower compared to the epidemic or if n does
not vary considerably. We also note that n only enters via the (n− 1)/n term which
for realistic networks that are well connected is close to one. In [15] we showed that
for wide parameter regions the simulation model justifies the use of the above closure
and explained why for some parameters the agreement breaks down. We briefly revisit
this aspect in the Discussion section and we present further evidence of good agreement
between the ODE model and simulation.

In order to make the notations simpler the following new variables will be used,

x = [I], y = [SI], z = [II], u = [SS].

Using these notations and the above closure relations our system (1)-(4) takes the form

ẋ = τy− γx, (5)

ẏ = γ(z− y)+ τ
n−1

n
y(u− y)
N− x

− τy−ωSIy+ αSI
(
(N− x)x− y

)
, (6)
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ż = −2γz+ 2τ
(n−1

n
y2

N− x
+ y

)
−ωIIz+ αII

(
x(x−1)− z

)
, (7)

u̇ = 2γy−2τ
n−1

n
uy

N− x
−ωSSu+ αSS((N − x)(N− x−1)−u). (8)

We note that the new variables are not rescaled because of two reasons. On one
hand, the theoretical results are easier to compare to simulations when the same pa-
rameters are used, this is why τ and γ are not scaled. On the other hand, the often
used normalization by introducing [I]/N as a new variable requires scaling of order
N2 for the pairs, which is useful in the case of a static graph, however, in the case of a
dynamically changing graph the number of pairs can be also of order N .

The aim of the paper is to determine the number of stationary states and their local
bifurcations analytically. It will be shown that a relatively rich bifurcation behaviour
can be identified with respect to other epidemic adaptive network models. There are
three types of bifurcations. First, a transcritical bifurcation where the disease-free
steady state loses stability giving rise to a stable endemic equilibrium. Second, a saddle-
node bifurcation which gives rise to the co-existence of two stable equilibria (one being
disease-free and the other endemic) with an unstable equilibrium, and finally, a Hopf
bifurcation, where the stable endemic equilibrium looses its stability and gives rise to a
stable limit cycle.

The paper is structured as follows. In Section 2 we show how the algebraic system
determining the steady states can be reduced to a single equation, then the saddle-
node bifurcation curve is calculated by using the parametric representation method [12],
and the exact number of steady states for different domains of the parameter space
is determined. In Section 3 the transcritical bifurcation of the trivial steady state is
determined analytically, and a semi-analytic way of finding the Hopf bifurcation curve
in a plane of two parameters is shown.

2. Number of steady states

The steady states are determined by the system of four equations obtained from
(5)-(8) by putting zeros to the left hand sides. This four variable system can easily be
reduced to a single (higher degree) equation for the variable x . This reduction will be
shown in the first Subsection. Then in the next two Subsections the number of solutions
of this reduced equation will be studied.

2.1. Reduction to a single equation

Let us consider system (5)-(8) with zeros in the left hand sides. From the first
equation y can be expressed in terms of x , then from the third equation z can be ex-
pressed in terms of x , and finally, from the fourth equation u can be expressed in terms
of x as follows:

y =
γ
τ
x, z = x fz(x), u = (N− x) fu(x), (9)
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where

fz(x) =
2γ

(
n−1
n

γx
τ(N−x) + 1

)
+ αII(x−1)

2γ + ωII + αII
,

fu(x) =
2γ2x/τ + αSS(N− x)(N− x−1)

2γ n−1
n x+(ωSS + αSS)(N− x)

. (10)

Substituting these expressions of y,z and u into the second equation we get the
following equation for x

γx
(

fz(x)− γ
τ

)
+ γx

n−1
n

(
fu(x)− γx

τ(N − x)

)
− γx−ωSI

γ
τ
x

+ αSI

(
(N− x)x− γ

τ
x
)

= 0. (11)

One can see that x = 0 is a solution, hence there is a trivial (disease-free) equilibrium
corresponding to

x = 0, y = 0, z = 0, u = u∗ =
N(N−1)αSS

ωSS + αSS
. (12)

Besides this trivial solution there can be endemic equilibria the x coordinate of which
are given by (11), that is a fourth degree equation after multiplying by the product of
the denominators. One can observe that in the case αII = ωII = 0 the terms containing
N − x in the denominator cancel, and hence the equation only needs to be multiplied
with the (linear) denominator of fu(x) . Therefore the resulting equation will be of third
degree, and analytically, this is more tractable. This assumption is also supported from
the biological point of view, since neither the activation nor the deletion of [II] are
likely to happen in a real situation. Our analytical calculations are carried out under the
assumption of αII = ωII = 0, and we will show numerical evidence that, for non-zero
values of these parameters the qualitative behaviour of the bifurcation curves do not
change.

In the case αII = 0 = ωII the function fz(x) takes a much simpler form:

fz(x) =
n−1

n
γx

τ(N− x)
+ 1.

Then (11) simplifies to

−γ2x+ γx
n−1

n
τ fu(x)−ωSIγx+ αSI(τ(N− x)x− γx) = 0, (13)

which is a third degree equation once it is multiplied by the denominator of fu(x) and
by τ .

Summarising the above, we have shown the following concerning the equilibria.

PROPOSITION 1. In the case αII = 0 = ωII system (5)-(8) has at most three steady
states. One of them is the trivial steady state given by (12). The point (x,y,z,u) is a
non-trivial steady state if and only if x is a non-zero solution of (13) and y,z,u are
given by (9).
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2.2. The discriminant (saddle-node or fold bifurcation) curve

Now our aim is to determine the exact number of solutions of equation (13) for all
possible parameter values. Since the two most important parameters τ and ωSI (that
are also used in [4]) are involved linearly in the equation the parametric representation
method (PRM) [12] can be used to investigate the number of solutions of the third
degree equation (13). In order to use this method, equation (13), after dividing by x ,
can be written in the form

f0(x)+ τ f1(x)+ ωSI f2(x) = 0, (14)

where

f0(x) = −γ
(
2αSIγqx+(γ + αSI)ρSS(N− x)

)
, (15)

f1(x) = (N− x)
(
αSSγq(N− x−1)+ αSI(2γqx+ ρSS(N− x))

)
, (16)

f2(x) = −γ
(
2γqx+ ρSS(N− x)

)
, (17)

q = n−1
n and ρSS = ωSS + αSS . Our first aim is to divide the (τ,ωSI) parameter plane

according to the number of steady states, i.e. the number of solutions of (14). The
discriminant curve, that is also called saddle-node or fold bifurcation curve divides the
parameter plane according to the number of solutions. We will refer to this curve shortly
as D-curve, it will be defined in the next Subsection.

2.2.1. Determination of the D-curve

According to the Implicit Function Theorem the number of solutions of (14) can
change when the derivative of the left hand side is also zero, that is

f ′0(x)+ τ f ′1(x)+ ωSI f ′2(x) = 0. (18)

Equations (14) and (18) determine the singularity set or the so-called discriminant curve
in the (τ,ωSI) parameter plane as follows

S = {(τ,ωSI) ∈ R
2 : ∃x ∈ R, such that (14), (18) hold}.

This set, along which the number of solutions can change, is usually determined by
eliminating x from system (14), (18). This way an expression can be derived relating
τ to ωSI . This expression used to be quite complicated, hence it is not easy to plot the
singularity set numerically or determine its properties analytically. The essence of the
parametric representation method is to exploit the fact that system (14), (18) contains
the parameters τ and ωSI linearly, hence these can be expressed in terms of x . Thus
the singularity set can be given as a curve parametrised by x , this curve will be referred
to as D-curve or discriminant curve. The point of the D-curve corresponding to x will
be denoted by D(x) = (D1(x),D2(x)) , where D1(x) yields τ and D2(x) yields ωSI .
Thus solving the linear system (14), (18) for τ and ωSI we get

D1(x) =
f ′0(x) f2(x)− f0(x) f ′2(x)
f1(x) f ′2(x)− f ′1(x) f2(x)

, D2(x) =
f0(x) f ′1(x)− f ′0(x) f1(x)
f1(x) f ′2(x)− f ′1(x) f2(x)

. (19)
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It is straightforward to express these functions in terms of the original parameters since
f0, f2 are linear and f1 is quadratic function of x . After some algebra we get

f ′0(x) f2(x)− f0(x) f ′2(x) = −2Nγ4qρSS, (20)

f1(x) f ′2(x)− f ′1(x) f2(x) = −2Nγ2q((N−1)qγαSS +NαSIρSS)

+(γq(αSS −2αSI)+ αSIρSS)(2γ2qx2 − γρSS(N− x)2), (21)

f0(x) f ′1(x)− f ′0(x) f1(x) = 2Nγ2αSIq((N−1)qγαSS +NαSIρSS)

−(γq(αSS −2αSI)+ αSIρSS)(2γ2αSIqx2 − γ(γ + αSI)ρSS(N− x)2). (22)

Thus for given values of the parameters N,n,αSI ,αSS,ωSS the D-curve can be easily
plotted as a parametric curve in the (τ,ωSI) parameter plane, the parameter x runs in
the interval [0,N] . The typical shape of the curve is shown in Figure 1.

2.2.2. Main results of the PRM concerning the D-curve

Now we explain how can the number of steady states be determined by using the
parametric representation method. The first advantage of the PRM, that was exploited
in the previous Subsection, is that the singularity set can easily be determined. The
second one is the so-called tangential property [12, 13] that says the following.

LEMMA 1. (Tangential property) For a given parameter pair (τ,ωSI) the number
of solutions of equation (14) is equal to the number of tangents that can be drawn to
the D-curve from the given (τ,ωSI) parameter pair. The values of the solutions can be
read as the value x of the tangent point on the D-curve.

Moreover, the so-called convexity property helps to count the number of tangents
easily [12, 13].

LEMMA 2. (Convexity property) The D-curve consists of convex arcs, meaning
that every arc lies on one side of its tangents. These arcs join at cusp points of the
D-curve. There is a cusp point at x0 , if the function f ′′0 (x)+ f ′′1 (x)D1(x)+ f ′′2 (x)D2(x)
changes sign at x = x0 .

The use of the convexity property is based on the fact that to each convex arc
there can be drawn at most two tangents. The exact number of tangents depends on the
position of the point as it is shown in Figure 2.

Thus in order to use the PRM to determine the exact number of steady states we
need the following characteristic properties of the D-curve, that help to determine the
exact number of tangents from different points: the cusp points, the tangents at the
endpoints and the position of the curve. These characteristic properties will be studied
in the next Subsection.
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2.2.3. Characterisation of the D-curve

In our case the functions f0, f2 are linear and f1 is quadratic, hence it can be
shown that the D-curve has no cusp point, which yields that it consists of a single
convex arc (as it also can be seen in Figure 1).

Let us now investigate the tangent lines belonging to the endpoints x = 0 and
x = N . According to the tangential property, the equation of these lines are f0(0)+
τ f1(0)+ ωSI f2(0) = 0 and f0(N)+ τ f1(N)+ ωSI f2(N) = 0. The second line is easier
to plot, since f1(N) = 0, hence its normal vector is vertical. This line contains the
point D(N) , which is below the ωSI = 0 coordinate axis, hence this line, as being
horizontal, does not enter the positive quadrant of the (τ,ωSI) parameter plane. Let us
consider now the other tangent line f0(0)+τ f1(0)+ωSI f2(0) = 0. It is easy to see that
f2(0) < 0 < f1(0) , hence this line enters the positive quadrant. Substituting x = 0 into
(15)-(17) we get for the equation of this line

γ(γ + αSI)ρSS − τ((N−1)αSSγq+NαSIρSS)+ ωSIγρSS = 0. (23)

Thus the D-curve and its tangents at the endpoints can divide the positive quadrant
of the (τ,ωSI) parameter plane into three regions as it is shown in Figure 3.

The convexity of the D-curve and the position of its tangents at the endpoints
do not depend on the value of the parameters in the system. Hence for all values of
the parameters we can have the above regions according to the number of tangents.
The only thing that the parameter values can change is the position of the endpoint
D(0) . This may be pushed down below the ωSI = 0 coordinate axis, and then region 3
disappears. Let us now investigate the position of the D-curve in detail. It is determined
by the signs of the numerators and denominators in (19). The numerator in D1 is
negative. The signs of the other two expressions are given in the following Proposition.

PROPOSITION 2. 1. The functions f1 f ′2 − f ′1 f2 and f0 f ′1 − f ′0 f1 are monotone in
the interval [0,N] .
2. For any values of the parameters we have f1(0) f ′2(0)− f ′1(0) f2(0) < 0 and

f1(N) f ′2(N)− f ′1(N) f2(N) = 2γ3q2N(αSS −2NαSI)

= − 1
αSI

( f0(N) f ′1(N)− f ′0(N) f1(N)).

3. Inequality f0(0) f ′1(0)− f ′0(0) f1(0) < 0 holds if and only if the following condition
is satisfied

2q2αSIαSS(1− 1
N

)+ (qαSS +
αSI

γ
ρSS)(1 +

αSI

γ
)ρSS < 2qαSIρSS. (24)

Proof. 1. We have ( f1 f ′2 − f ′1 f2)′ = f1 f ′′2 − f ′′1 f2 = − f ′′1 f2 since f ′′2 = 0 ( f2 is
linear). The function f1 is quadratic, hence the derivative ( f1 f ′2 − f ′1 f2)′ is a linear
function, the sign of which is determined by the sign of f2 . It is easy to see that f2
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does not change sign in the interval [0,N] , therefore the derivative ( f1 f ′2 − f ′1 f2)′ also
has constant sign in this interval. The proof of the monotonicity of f0 f ′1 − f ′0 f1 is
similar.

The statements in 2 and 3 can be proved by straightforward calculations using
(21)-(22). �

According to the Proposition both the numerator and denominator in D1(0) are
negative, hence D1(x) > 0 when x is small. For the function D2 we have D2(N) =
−αSI , that is D2(x) < 0 when x is close to N . The D-curve enters the positive quadrant
if and only if the numerator of D2(0) is negative, that is when (24) holds. Otherwise,
the D-curve is completely below the ωSI = 0 coordinate axis, which means that region 3
does not exist. Summarising, we can say that the position of the D-curve is determined
by condition (24).

2.2.4. Determination of the number of steady states using the D-curve

Let us consider now the D-curve as it is shown in Figure 3. From the points in
region 1 there cannot be drawn tangents to the given arc (belonging to x ∈ [0,N]) of
the D-curve. Hence, if the pair (τ,ωSI) is in this region then equation (14) has no
solution in [0,N] . Therefore equation (13) has only the trivial solution x = 0, i.e. there
is only the trivial disease-free steady state. From the points in region 2 there can be
drawn one tangent to the given arc (belonging to x ∈ [0,N]) of the D-curve (see Figure
2). Hence, if the pair (τ,ωSI) is in this region then equation (14) has one solution
in [0,N] . Therefore equation (13) has the trivial solution x = 0 and another solution
x ∈ (0,N] , i.e. there are two steady states. From the points in region 3 there can be
drawn two tangents to the given arc (belonging to x ∈ [0,N]) of the D-curve (see Figure
2). Hence, if the pair (τ,ωSI) is in this region then equation (14) has two solutions in
[0,N] . Therefore equation (13) has the trivial solution x = 0 and two other solutions
in (0,N] , i.e. there are three steady states. As it was mentioned earlier, region 3 can
disappear if condition (24) does not hold. Hence our results concerning the number of
steady states can be summarised as follows.

THEOREM 1. Let us assume αII = 0 = ωII and consider the line given in (23)
and the D-curve, given by (19). According to the position of the D-curve there are the
following two cases.

• If the inequality (24) does not hold, then the D-curve is outside the positive quadrant
and the line given in (23) divides the (τ,ωSI) parameter plane into two regions. If the
parameter pair (τ,ωSI) is in the left region, then there is only the trivial steady state
given in (12). If the parameter pair (τ,ωSI) is in the right region then there are two
steady states (one of them is the trivial steady state).

• If the inequality (24) holds, then the D-curve and the line given in (23) divide the
(τ,ωSI) parameter plane into three regions. If the parameter pair (τ,ωSI) is in the
right region then there are two steady states (one of them is the trivial steady state). If
the parameter pair (τ,ωSI) is in the left region above the D-curve, then there is only
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the trivial steady state given in (12). If the parameter pair (τ,ωSI) is in the left region
below the D-curve, then there are three steady states (one of them is the trivial steady
state).

In the case when αII and ωII are non-zero then the D-curve can be given similarly,
however, formulas become more complicated hence the analytic characterisation is not
available. Our numerical investigations show that there are the above two cases also
for non-zero values of αII and ωII . In Figure 4 the second case is shown, when the
D-curve and its tangent at the end point divide the parameter plane into three regions
according to the number of steady states.

3. Bifurcations

In this Section the local bifurcations of the steady states are investigated in the case
αII = 0 = ωII . Hence we will need the linearisation at the equilibria. The Jacobian takes
the form

J =

⎛
⎜⎜⎝

−γ τ 0 0
Jyx Jyy γ Jyu

Jzx Jzy −2γ 0
Jux Juy 0 Juu

⎞
⎟⎟⎠ , (25)

where

Jyx = τqy
u− y

(N− x)2 + αSI(N−2x),

Jyy = −γ + τq
u−2y
N− x

− τ −ωSI −αSI , Jyu =
τqy

N− x
,

Jzx = 2τq
y2

(N− x)2 , Jzy = 4τq
y

N− x
+ 2τ,

Jux = −2
τquy

(N− x)2 + αSS(1−2N+ 2x),

Juy = 2γ −2
τqu

N− x
, Juu = −2

τqy
N− x

−ρSS.

For a given steady state the eigenvalues of matrix J have to be investigated. When
x = 0, that is for the disease-free steady state, the spectrum of J can be investigated an-
alytically. This will be done in Subsection 3.1, where it will be shown that the disease-
free steady state can undergo only a transcritical bifurcation. For the endemic steady
states the spectrum of the Jacobian can only be investigated numerically. This will be
studied in in Subsection 3.2, where it will be shown that Hopf-bifurcation may occur
and the Hopf-bifurcation curve will be determined numerically.

3.1. Transcritical bifurcation

Let us substitute now the coordinates of the disease-free steady state (given by
(12)) into the Jacobian matrix J . Then the only non-zero entry in the last coloumn will
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be the lower most one −ρSS . Hence this is a negative eigenvalue of the matrix and
remaining three eigenvalues are the same as those of the upper-left 3×3 matrix given
as

A =

⎛
⎝

−γ τ 0
NαSI Ayy γ

0 2τ −2γ

⎞
⎠ , (26)

where

Ayy = −γ + τq
(N−1)αSS

ρSS
− τ −ωSI −αSI .

The characteristic polynomial of this matrix is

λ 3 −λ 2TrA+ λ (A11 +A22 +A33)−detA,

where Aii is the sub-determinant corresponding to the element aii . The coefficients can
be expressed in terms of the parameters as

TrA = −4γ + τq
(N−1)αSS

ρSS
− τ −ωSI −αSI,

A11 +A22 +A33 = −3γ(τq
(N−1)αSS

ρSS
−ωSI −αSI)− τNαSI + τγ + 5γ2,

detA = 2γ2(−γ + τq
(N−1)αSS

ρSS
−ωSI −αSI)+ 2τγNαSI .

According to the Routh-Hurwitz criterion all the roots of the characteristic poly-
nomial have negative real part, i.e. the steady state is asymptotically stable, if and only
if the following three conditions hold

−TrA > 0, −(A11 +A22 +A33)TrA > −detA, −detA > 0.

Now we will prove that these three conditions are equivalent to the last one,
detA < 0, when τ > 0. In order to do so we write the above three Routh-Hurwitz
conditions in terms of the parameters:

c1 + ωSI −a1τ > 0, (27)

3(c1 + ωSI −a1τ)(c2 + ωSI −a2τ) > 2γ(c3 + ωSI −a3τ), (28)

c3 + ωSI −a3τ > 0, (29)

where

a1 = r−1, a2 = r+
NαSI − γ

3γ
, a3 = r+

NαSI

γ
, r = q

(N−1)αSS

ρSS
,

c1 = αSI + 4γ, c2 = αSI +
5
3

γ, c3 = αSI + γ.

PROPOSITION 3. If τ > 0 , then condition (29) implies conditions (27) and (28).
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Proof. The proof is based on the following simple inequalities:

a1 < a2 < a3, c3 < c2 < c1.

Using these inequalities we simply get

c1 + ωSI −a1τ > c3 + ωSI −a3τ > 0,

that is (29) implies (27).
Using that c1 = c3 + 3γ we get

c1 + ωSI −a1τ > c1 − c3 + c3 + ωSI −a3τ > 3γ.

Moreover, we have c2 + ωSI −a2τ > c3 + ωSI −a3τ > 0. Hence

3(c1 + ωSI −a1τ)(c2 + ωSI −a2τ) > 9γ(c3 + ωSI −a3τ)
> 2γ(c3 + ωSI −a3τ),

that is (29) implies (28). �

Thus we have proved the following Theorem.

THEOREM 2. The disease-free steady state, given by (12), is asymptotically stable
if and only if (29) is satisfied, that is when

ωSI > τ
(
q(N−1)

αSS

ρSS
+N

αSI

γ

)
− γ −αSI

holds.

It is important to note that the border line of the stability, given in this Theorem,
is the same as the tangent line of the D-curve at the point D(0) given in (23). Hence in
the domain on the left hand side of this line the trivial steady state is stable and there
is no endemic steady state (in fact, this steady state has negative coordinates), while in
the right hand side of this line the trivial steady state is unstable and there is (at least
one) endemic steady state. This proves the following statement.

COROLLARY 1. In the (τ,ωSI) parameter plane transcritical bifurcation occurs
along the line given by (23).

3.2. Hopf bifurcation

In this Subsection our aim is to investigate the Hopf-bifurcation curve in the
(τ,ωSI) parameter plane. A (τ,ωSI) parameter pair is said to be on this curve, if there
exists a steady state at which the Jacobian (25) has a pair of pure imaginary eigenval-
ues. We note that this is only a necessary condition of the Hopf-bifurcation, however,
the calculation of the Liapunov-number after center manifold reduction would be too
complicated analytically, hence instead we will simply solve the differential equations
numerically to decide whether the Hopf-bifurcation is subcritical or supercritical.
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In order to give a condition for the existence of pure imaginary eigenvalues let us
introduce the characteristic polynomial of (25) in the form

λ 4 −b3λ 3 +b2λ 2 −b1λ +b0.

We note that b3 = TrJ , b0 = detJ and b1,b2 can be given as the sum of some subde-
terminants of J , the concrete form of which is not important at this moment. In [3] a
general formula is given for an n×n matrix to have purely imaginary eigenvalues. In
the case of 4× 4 matrices the necessary and sufficient condition for the existence of
pure imaginary eigenvalues is

b0b
2
3 = b1(b2b3 −b1) and signb1 = signb3, (30)

see [8]. Thus the Hopf-bifurcation set can be defined as

H = {(τ,ωSI) ∈ R
2 : ∃x ∈ R such that (14), (30) hold}.

This set can also be given as a curve in the (τ,ωSI) parameter plane, however, equation
(30) is not linear in the parameters τ and ωSI , hence system (14), (30) cannot be easily
solved for τ and ωSI . Nevertheless, we want to express H as a curve parametrised
by x in the (τ,ωSI) parameter plane. We have seen in the previous Section that once
the x coordinate of the steady state is given, then the other coordinates are determined
by (9). Moreover, according to the Tangential property (Lemma 1), if the x coordinate
of the steady state is given, then the parameter pair (τ,ωSI) lies on the tangent line
of the D-curve drawn at the point D(x) , see the insert in Figure 5. Therefore we will
determine the points of H in the following way. For a given x we introduce a distance
parameter d along the tangent line of the D-curve at D(x) , the equation of which is
(14). From this equation we determine the τ and ωSI value along the tangent, which
determines a point being in distance d from the tangent point D(x) . The value of y,z
and u are given by (9). Hence in the Jacobian J everything is expressed in terms of
x and d . Hence for a given x the coefficients bi of the characteristic polynomial are
functions of d . Thus in order to find the Hopf bifurcation points along the tangent line,
we have to solve the first equation in (30) for d . Our numerical experiments show that
there are two x values: x1 and x2 , such that for x ∈ (x1,x2) there two values of d ,
denoted by dH1(x) and dH2(x) , that are solutions of the first equation in (30). These
are shown in Figure 5. If x is outside this interval, then the first equation in (30) does
not have a solution for d . The dH1(x) and dH2(x) values determine the value of τ and
ωSI along the tangent, denoted by τH1(x) , τH2(x) and ωH1

SI (x) , ωH2
SI (x) . Hence for a

given value of x ∈ (x1,x2) we can determine two points of the set H : (τH1 (x),ωH1
SI (x))

and (τH2 (x),ωH2
SI (x)) . Thus the set H can be given as a union of two curves that are

parametrised by x ∈ (x1,x2) . In Figure 6 the set H is shown for different values αSS .
We can see that as the value of αSS decreases the interval (x1,x2) shrinks and below a
critical value of αSS it disappears, hence then H is the empty set.

Solving the ODE system (5)-(8) numerically one can see that if the parameter pair
(τ,ωSI) is inside the Hopf bifurcation curve then there is a stable limit cycle, see Figure
9D. If the parameter pair (τ,ωSI) is outside the Hopf bifurcation curve then there is
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no limit cycle. Thus along the Hopf bifurcation curve supercritical Hopf bifurcation
occurs at the endemic steady state. We note that at the disease-free steady state there
is no Hopf bifurcation, namely according to Proposition 3 the second condition of the
Routh-Hurwitz criterion cannot be violated and it is known that the condition of the
Hopf bifurcation is equivalent to the last but one Routh-Hurwitz condition [3, 2].
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Figure 1. The D-curve and its tangents at the endpoints for N = 100,n = 5,αSI = 0.3,αSS = 0.1,αII = 0,ωSS = 0.3,ωII =
0,γ = 1 . The blue endpoint belongs to x = 0 and the red one belongs to x = N .
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Figure 2. The number of tangents that can be drawn from different points to the given convex arc.
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Figure 3. The D-curve and its tangent at the endpoint belonging to x = 0 divide the parameter plane into three domains
according to the number of tangents. The numbers in the regions denote the number of steady states of system (5)-(8). The
value of the parameters are N = 100,n = 5,αSI = 0.05,αSS = 0.01,αII = 0,ωSS = 0.2,ωII = 0,γ = 1 .
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Figure 4. The D-curve in the case when αII �= 0 �= ωII . The D-curve and its tangent at the endpoint belonging to x = 0
divide the parameter plane into three domains according to the number of tangents. The numbers in the regions denote the
number of steady states of system (5)-(8). The value of the parameters are N = 100,n = 5,αSI = 0.3,αSS = 0.001,αII =
0.0001,ωSS = 0.3,ωII = 0.09,γ = 1 .
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Figure 5. The method for finding the points of the Hopf bifurcation curve. Let us start from a point D(x) of the D-curve,
that is the dotted red line in the insert. The insert is the enlargement of the bottom part of the Figure containing the D-curve
(shown in red) and a part of the tangent line (black). Draw a tangent to the D-curve at the point D(x) and introduce a
distant measure d . The tangent line can intersect the Hopf bifurcation curve (closed curve shown in green and blue) at
two points, the distant of which from D(x) are denoted by dH1 (x) and dH2 (x) . The intersection point with the blue part
of the Hopf curve is dH1 (x) , and the intersection point with the green part is dH2 (x) . The values of the parameters are
N = 100,n = 5,αSI = 0.007,αII = 0,ωSS = 0.007,ωII = 0,γ = 1 .

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60

α
SS

=0.05

α
SS

=0.02

α
SS

=0.01

α
SS

=0.0075

τ

ω
SI

Figure 6. The set H for different values of αSS . The values of the remaining parameters are N = 100,n = 5,αSI =
0.007,αII = 0,ωSS = 0.007,ωII = 0,γ = 1 . The blue curves correspond to (τH1 (x),ωH1

SI (x)) , the green ones correspond to

(τH2 (x),ωH2
SI (x)) . The small curves belong to αSS = 0.007,0.0065,0.006,0.0059 .
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Figure 7. The comparison of simulation results (circles) and the steady state value of I obtained from the ODE (continuous
line) for different values of τ . The values of the other parameters are N = 100,n = 3,αSI = αSS = αII = 0.04,ωSI = ωSS =
ωII = 0.5,γ = 1 .
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Figure 8. The three bifurcation curves for N = 100,n = 10,αSI = 0.005,αSS = 0.004,αII = 0,ωSS = 0.005,ωII = 0,γ = 1 .
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Figure 9. The (I,SI) projection of the phase portraits belonging to (τ ,ωSI) parameter pairs in the four different regions
of the bifurcation diagram shown in Figure 8. The values of the other parameters are N = 100,n = 10,αSI = 0.005,αSS =
0.004,αII = 0,ωSS = 0.005,ωII = 0,γ = 1 .

4. Discussion

We investigated the propagation of an SIS type epidemic on a network where edges
of different type (i.e. SI, II and SS ) can be activated or deleted according to a simple
rule. This and similar phenomena can be modeled either via direct individual-based
stochastic simulations or some type of ODE-based model that aims to approximate the
evolution of average behaviour seen in simulations. The question of the agreement
between the two different approaches is important and, for the model proposed here,
we studied it in a previous paper [15]. Here we only illustrate the good agreement for
the transcritical bifurcation, where the expected number of infected nodes is plotted as
a function of τ , see Figure 6. The figure shows that the transcritical bifurcation, from
both simulation and the ODE model, is observed at approximately τ = 0.17, where the
disease-free steady state looses its stability and an endemic steady state arises. In this
paper our aim was to investigate the bifurcations of the ODE model in detail, and in



EPIDEMIC MODEL ON A DYNAMIC NETWORK 295

the case when the II links cannot be neither deleted nor created, we proved that the
system can have at most three steady states one of them being the trivial, disease-free
steady state. Three different kinds of bifurcation may occur. First, we have shown
that the transcritical bifurcation of the trivial steady state leads to an endemic (non-
trivial) steady state. We have also shown that saddle-node bifurcation takes place for
a certain combination of parameter values, and the parametric representation method
was used to give explicit analytic formulas yielding the saddle-node bifurcation curve
in the plane of two important parameters, namely τ , the infection rate and ωSI the rate
of deletion of infecting, SI edges. Using this bifurcation curve, the exact number of
steady states were determined in Theorem 1. Finally, we have derived formulas for
the Hopf bifurcation curve in the above mentioned (τ,ωSI) parameter plane, and have
determined a parameter region where a stable periodic orbit exists. The full bifurcation
picture is shown in Figure 8, and the phase portraits corresponding to the four regions
in the bifurcation diagram are shown in Figure 9. Provided that the agreement between
simulation and ODE models hold, the ODE-model provides a fast and reliable method
that can quickly shed light on possible model behaviours. This is especially important
when dealing with models with a large number of parameters where simulations alone
are time consuming and it is difficult to explore possible model outcomes fully.

R E F E R E N C E S
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