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Abstract. The objective of this paper is to study asymptotic properties of the third-order ad-
vanced differential equation [

r(t)
[
x′′(t)

]γ
]′

+q(t)xγ [τ(t)] = 0. (E)

We offer new oscillation criteria that really take onto account the advanced argument. Some
examples are also provided to illustrate the relevance of the main results.

1. Introduction

We present criteria for property (A) of the third-order advanced functional differ-
ential equations of the form[

r(t)
[
x′′(t)

]γ
]′

+q(t)xγ[τ(t)
]
= 0. (E)

In the sequel we will assume :

(H1 ) r(t),q(t),τ(t) ∈C([t0,∞)) , r(t),q(t) are positive, τ(t) � t ,

(H2 ) γ is a quotient of odd positive integers.

Whenever, it is assumed

R(t) =
∫ t

t0
r−1/γ(s)ds → ∞ as t → ∞. (1.1)

By a solution of Eq.(E) we mean a function x(t)∈C2([Tx,∞)), Tx � t0, which has
the property r(t)(x′′(t))γ ∈C1([Tx,∞)) and satisfies Eq. (E) on [Tx,∞). We consider
only those solutions x(t) of (E) which satisfy sup{|x(t)| : t � T} > 0 for all T � Tx.
We assume that (E) possesses such a solution. A solution of (E) is called oscillatory
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if it has arbitrarily large zeros on [Tx,∞) and otherwise it is called to be nonoscillatory.
Equation (E) is said to be oscillatory if all its solutions are oscillatory.

The problem of the oscillation of differential equations has been widely studied
by many authors, who have provided many techniques especially for delay differential
equations. Dong in [6] have improved and extended the Riccati transformation to obtain
new oscillatory criteria. Grace et al. in [10] and the present authors in [2]-[5] have used
the comparison technique in which studied equations have been compared with the
oscillation of certain first order differential equation.

On the other hand, there are comparatively less methods established for the ad-
vanced differential equations. Kusano in [13], [14] has suggested to reduce the inves-
tigation of advanced equation to that of the corresponding equation without deviating
argument, but in this case we do not utilize information about advanced argument.

The aim of the paper is to fill this gap in the oscillation theory. We present some
new criteria that essentially utilize the value of the advanced argument, i.e. the criteria
obtained involves advanced argument τ(t) explicitly.

REMARK 1. All functional inequalities considered in this paper are assumed to
hold eventually, that is, they are satisfied for all t large enough.

We start with the classification of the possible nonoscillatory solutions of (E) .

LEMMA 1. Let x(t) be a nonoscillatory solution of (E) . Then x(t) satisfies one
of the following conditions

(I ) x(t)x′(t) < 0, x(t)x′′(t) > 0, x(t)
[
r(t) [x′′(t)]γ

]′
< 0 ;

( II ) x(t)x′(t) > 0, x(t)x′′(t) > 0, x(t)
[
r(t) [x′′(t)]γ

]′
< 0 ;

eventually.

Proof. Let x(t) be a nonoscillatory solution of Eq.(E) , say x(t) > 0 for t � t0. It
follows from (E) that

[
r(t)[x′′(t)]γ

]′
< 0, eventually. Thus, r(t)[x′′(t)]γ is decreasing

and of fixed sign eventually.
If r(t)[x′′(t)]γ < 0, then it follows from (H1) that x′(t) < 0, which implies x(t) <

0. A contradiction and we conclude that r(t)[x′′(t)]γ > 0, eventually. Consequently,
x′(t) is of fixed sign for all t large enough. Therefore, either Case ( I ) or Case ( II )
holds. The proof is complete.

For the partial case of (E), namely for differential equation

x′′′(t)+ p(t)x(t) = 0

the set of nonoscillatory solutions is not empty, i.e., there always exists (see e.g. [9],
[11]) a nonoscillatory solution satisfying the Case (I ) of Lemma 1. This fact led to the
following definition. We say that (E) has property (A) if all its nonoscillatory solutions
satisfy only case Case ( I ) of Lemma 1.
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2. Main results

First, we state and prove the following useful lemma, which will be used later in
the proofs of our main results.

LEMMA 2. Assume x(t) > 0 , x′(t) > 0 , x′′(t) > 0 , eventually. Then for arbitrary
k0 ∈ (0,1)

x[τ(t)] � k0
τ(t)
t

x(t), (2.1)

eventually.

Proof. It follows from the monotonicity of x′(t) that

x[τ(t)]− x(t) =
∫ τ(t)

t
x′(s)ds � x′(t)(τ(t)− t).

That is,
x[τ(t)]
x(t)

� 1+
x′(t)
x(t)

(τ(t)− t). (2.2)

On the other hand, since x(t) → ∞ as t → ∞ , then for any k0 ∈ (0,1) there exists a t1
large enough, such that

k0x(t) � x(t)− x(t1) =
∫ t

t1
x′(s)ds � x′(t)(t − t1) � x′(t)t,

or equivalently
x′(t)
x(t)

� k0

t
. (2.3)

Using (2.3) in (2.2), we obtain

x[τ(t)]
x(t)

� 1+
k0

t
(τ(t)− t) � k0

τ(t)
t

.

The proof is complete.

Now, we are prepared to offer our main results. For our further references we set

Q(t) =
∫ ∞

t
q(s)

(τ(s)
s

)γ
ds.

THEOREM 1. If

liminf
t→∞

1
Q(t)

∫ ∞

t
R(s)Q1+1/γ(s)ds >

1

(γ +1)1+1/γ , (2.4)

then (E) has property (A) .
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Proof. Assume the contrary, let x(t) be an eventually positive solution of (E) sat-
isfying Case (II) from Lemma 1. By (2.4), it is easy to see that there exists some
k ∈ (0,1) such that

liminf
t→∞

k1+1/γ

Q(t)

∫ ∞

t
R(s)Q1+1/γ(s)ds >

1

(γ +1)1+1/γ . (2.5)

We put k0 = k1/γ , then Lemma 2 implies

[
r(t)

[
x′′(t)

]γ
]′

+ kq(t)
τγ(t)
tγ xγ (t) � 0.

We define

w(t) =
r(t)[x′′(t)]γ

xγ(t)
> 0. (2.6)

Differentiating w(t) , one gets

w′(t) =
[r(t)[x′′(t)]γ ]′

xγ (t)
− γ

r(t)[x′′(t)]γ

xγ (t)
x′(t)
x(t)

� −kq(t)τγ(t)
tγ − γw(t)

x′(t)
x(t)

. (2.7)

On the other hand, using the monotonicity of r(t)[x′′(t)]γ , we have

x′(t) �
∫ t

t1
[r(s)[x′′(s)]γ ]1/γr−1/γ(s)ds

� [r(t)[x′′(t)]γ ]1/γ
∫ t

t1
r−1/γ(s)ds

� r1/γ(t)x′′(t)kR(t),

(2.8)

eventually, let say t � t2 . Setting the last inequality into (2.7), we obtain

w′(t) � −k
[
q(t)

(τ(t)
t

)γ
+ γw1+1/γ(t)R(t)

]
.

Integrating the last inequality from t (� t2) to ∞ , we get

w(t) � k
[
Q(t)+

∫ ∞

t
γw1+1/γ(s)R(s)

]
ds (2.9)

or
w(t)
kQ(t)

� 1+
γk1+1/γ

Q(t)

∫ ∞

t
R(s)Q1+1/γ(s)

(
w(s)
kQ(s)

)1+1/γ
ds.

Since w(t) > kQ(t) , then

inf
t�t1

w(t)
kQ(t)

= λ � 1.

Thus
w(t)
kQ(t)

� 1+
γ(kλ )1+1/γ

Q(t)

∫ ∞

t
R(s)Q1+1/γ(s)ds. (2.10)



OSCILLATION OF ADVANCED DIFFERENTIAL EQUATIONS 415

From (2.5), we see that there exists some positive η , such that

k1+1/γ

Q(t)

∫ ∞

t
R(s)Q1+1/γ(s)ds > η > (γ +1)−

γ+1
γ . (2.11)

Combining (2.10) together with (2.11), we have

w(t)
kQ(t)

� 1+ γλ 1+1/γ η .

Therefore
λ � 1+ γλ 1+1/γη > 1+ γλ 1+1/γ(γ +1)−

γ+1
γ

or equivalently

0 >
1

γ +1
+

γ
γ +1

(
λ

γ +1

)1+1/γ
− λ

γ +1
.

This contradicts the fact, that the function

f (α) =
1

γ +1
+

γ
γ +1

α1+1/γ −α

is positive for all α > 0.

Now we present some useful corollaries.

COROLLARY 1. If ∫ ∞

t0
q(s)

(τ(s)
s

)γ
ds = ∞, (2.12)

then (E) has property (A) .

Proof. The proof follows immediately from (2.9).

COROLLARY 2. If ∫ ∞

t0
R(s)Q(s)1+1/γ ds = ∞, (2.13)

then (E) has property (A) .

Proof. It follows from (2.9) and w(t) > kQ(t) that

w(t1) � k
[
Q(t1)+ k1+1/γ

∫ ∞

t1
γQ1+1/γ(s)R(s)

]
ds

which contradicts our assumption.

THEOREM 2. Assume that (E) has property (A) . If, moreover,∫ ∞

t0

∫ ∞

v
r−1/γ(u)

[∫ ∞

u
q(s)ds

]1/γ
dudv = ∞, (2.14)

then every nonoscillatory solution x(t) of (E) tends to zero as t → ∞ .
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Proof. Property (A) of (E) implies that an eventually positive solution x(t) of (E)
satisfies Case (I) of Lemma 1. Then there exists a finite lim

t→∞
x(t) = � . We claim that

� = 0. Assume that � > 0.
Integrating (E) from t to ∞ and using x[τ(t)] > � , we obtain

r(t)(x′′(t))γ �
∫ ∞

t
q(s)xγ [τ(s)])ds � �γ

∫ ∞

t
q(s)ds,

which implies

x′′(t) � �

r1/γ(t)

[∫ ∞

t
q(s)ds

]1/γ
.

Integrating the last inequality from t to ∞ , we get

−x′(t) � �

∫ ∞

t

1

r1/γ (u)

[∫ ∞

u
q(s)ds

]1/γ
du.

Now integrating from t1 to ∞ , we arrive at

x(t1) � �

∫ ∞

t1

∫ ∞

v

1

r1/γ(u)

[∫ ∞

u
q(s)ds

]1/γ
dudv.

A contradiction with (2.14) and so we have verified that lim
t→∞

x(t) = 0.

EXAMPLE 1. Consider the third order nonlinear differential equation

(
t
(
x′′(t)

)3
)′

+
β
t6

x3 (λ t) = 0, β > 0, λ � 1, t � 1. (E2)

Here q(t) = β/t6 and τ(t) = λ t , so that

Q(t) =
∫ ∞

t
q(s)

(τ(s)
s

)3
ds =

λ 3β
5t5

and (2.4) reduces to

λ β 1/3 >
2
3

(5
4

)4/3
,

which, by Theorem 1 guarantees property (A) for (E2 ). On the other hand,

∫ ∞

t0

∫ ∞

v
r−1/3(u)

[∫ ∞

u
q(s)ds

]1/3
dudv =

β
51/3

∫ ∞

t0

1
v

dv = ∞,

i.e. (2.14) holds, so every nonoscillatory solution x(t) of (E2) tends to zero as t → ∞ .

EXAMPLE 2. Consider the third order differential equation

(
t
(
x′′(t)

)3
)′

+
β
t9

x3 (
t2

)
= 0, β > 0, t � 1. (E3)
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Now q(t) = β/t9 and τ(t) = t2 , consequently

Q(t) =
∫ ∞

t
q(s)

(τ(s)
s

)3
ds =

β
5t5

and (2.4) takes the form

β >
(2

3

)3(5
4

)4
,

which, in view of Theorem 1 insures property (A) of (E3 ).

The previous two examples reveal that our criterion for property (A) essentially
utilize the greatness of the advanced argument. In the second example the advanced
argument is considerably greater than in the first one and this fact permits to essentially
reduce the function q(t) .

Let {An(t)}∞
n=0 be a sequence of continuous functions defined as follows.

A0(t) = kQ(t), k ∈ (0,1)

and

An+1(t) = A0(t)+ γk
∫ ∞

t
A1+1/γ

n (s)R(s)ds, n = 0,1, . . . (2.15)

Then we have the following result.

THEOREM 3. Assume that there exists some An(t) such that

∫ ∞

t0
q(t)

(τ(t)
t

)γ
(

e
kγ

t∫
t0

A
1/γ
n (s)R(s)ds)

dt = ∞, (2.16)

for some k ∈ (0,1) . Then (E) has property (A) .

Proof. Assume that x(t) is an eventually positive solution of (E) satisfying Case
(II) from Lemma 1. It follows from the proof of Theorem 1 that (2.9) holds for every
k ∈ (0,1) .

By (2.9) and definition of A0(t) it is clear that w(t) � A0(t) . On the other hand,

A1(t) = A0(t)+ γk
∫ ∞

t
A1+1/γ

0 (s)R(s)ds

� A0(t)+ γk
∫ ∞

t
w1+1/γ(s)R(s)ds � w(t).

By induction, it is easy to see that the sequence {An(t)}∞
n=0 is nondecreasing and

w(t) � An(t) . Thus the sequence {An(t)}∞
n=0 converges to A(t) . By Lebesgue mono-

tone convergence theorem and letting n → ∞ in (2.15), we get

A(t) = A0(t)+ γk
∫ ∞

t
A1+1/γ(s)R(s)ds,
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which in view of A(t) � An(t) implies

A′(t) = −kq(t)
(τ(t)

t

)γ − γkA1+1/γ(t)R(t)

� −kq(t)
(τ(t)

t

)γ − γkA(t)A1/γ
n (t)R(t),

eventually, let us say t � t1 . Therefore,

[
A(t)

(
e
kγ

t∫
t1

A1/γ
n (s)R(s)ds)]′

� −kq(t)
(τ(t)

t

)γ
(

e
kγ

t∫
t1

A1/γ
n (s)R(s)ds )

.

An integration from t1 to t , yields

0 � A(t)
(

e
kγ

t∫
t1

A
1/γ
n (s)R(s)ds

)

� A(t1)− k
∫ t

t1
q(u)

(τ(u)
u

)γ
(

e
kγ

u∫
t1

A
1/γ
n (s)R(s)ds

)
du →−∞

as t → ∞ . A contradiction. The proof is complete.

THEOREM 4. Assume that there exists some An(t) such that

limsup
t→∞

[∫ t

t1

(
R(s)−R(t1)

)
ds

]γ
An(t) > 1, (2.17)

for some k ∈ (0,1) . Then (E) has property (A) .

Proof. Assume that x(t) is an eventually positive solution of (E) satisfying Case
(II) from Lemma 1. It follows from (2.8) that

x(t) � [r(t)[x′′(t)]γ ]1/γ
∫ t

t1

∫ u

t1
r−1/γ(s)dsdu. (2.18)

On the other hand, combining (2.6) together with (2.18), we get

1
w(t)

=
1

r(t)

( x(t)
x′′(t)

)γ
�

[∫ t

t1

(
R(s)−R(t1)

)
ds

]γ
,

or equivalently

1 �
[∫ t

t1

(
R(s)−R(t1)

)
ds

]γ
w(t) �

[∫ t

t1

(
R(s)−R(t1)

)
ds

]γ
An(t),

which letting limsup on the both sides contradicts to (2.17).
Since the sequence {An(t)}∞

n=0 is increasing, the greater n in (2.16) and (2.17),
the better criteria we obtain. Letting n = 0 and n = 1 in Theorem 4, we have
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COROLLARY 3. Assume that

limsup
t→∞

[∫ t

t1

(
R(s)−R(t1)

)
ds

]γ ∫ ∞

t
q(s)

(
τ(s)
s

)γ
ds > 1. (2.19)

Then (E) has property (A) .

COROLLARY 4. Assume that for some k ∈ (0,1) ,

limsup
t→∞

[∫ t

t1

(
R(s)−R(t1)

)
ds

]γ[
Q(t)+ γk

∫ ∞

t
Q1+1/γ(s)R(s)

]
ds > 1.

Then (E) has property (A) .

EXAMPLE 3. Consider the third order nonlinear differential equation(
t2

(
x′′(t)

)3
)′

+
β
t5

x3 (λ t) = 0, β > 0, λ � 1, t � 1. (E3)

A simple calculation leads to

Q(t) =
∫ ∞

t
q(s)

(τ(s)
s

)3
ds =

λ 3β
4t4

.

Then by criteria presented in Corollaries 3 and 4, property (A) of (E3) is guaranteed
provided that

93

44 β λ 3 > 1

or
93

44 β λ 3 +
94

416/3
β 4/3λ 4 > 1,

respectively. Of course, the second criterion is better since it is obtained for n = 1 in
(2.17), while the first one for n = 0. On the other hand,

∫ ∞

t0

∫ ∞

v
r−1/3(u)

[∫ ∞

u
q(s)ds

]1/3
dudv =

β 1/3

41/3

∫ ∞

t0

1
v

dv = ∞,

i.e., (2.14) holds, so every nonoscillatory solution x(t) of (E3) tends to zero as t → ∞ .

3. Extension

All our results here hold immediately true also for the following third order ad-
vanced differential equations[

r(t)
∣∣x′′(t)∣∣γ−1

x′′(t)
]′

+q(t) |x(τ(t))|γ−1 x(τ(t)) = 0, (Ẽ)

for which the hypothesis (H1 ) is assumed to hold and instead of (H2 ) we assume only
that γ > 0.

We illustrate all our results in the following example.
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EXAMPLE 4. Consider the third order differential equation

(
ta

∣∣x′′(t)∣∣γ−1
x′′(t)

)′
+

β
tb

|x(tc)|γ−1 x(tc) = 0, t � 1, (E4)

where b > 0, β > 0, γ > a > 0, and c � 1.
Here

Q(t) = β
sγc−γ−b+1

γc− γ −b+1

∣∣∣∣
∞

t

and we have the following criteria:

PROPOSITION 1. If γc−γ−b+1� 0 , then (E4) has property (A) by Corollary 1.

PROPOSITION 2. If γc−γ−b+1< 0 and γc−γ−b+1−b/γ+1/γ−a/γ +2�
0 , then (E4) has property (A) by Corollary 2.

PROPOSITION 3. If γc−γ−b+1 < 0 , γc−γ −b+1−b/γ+1/γ−a/γ +2 < 0 ,
and c−b/γ +1/γ −a/γ +1 > 0 , then (E4) has property (A) by Theorem 1.

PROPOSITION 4. If γc−γ−b+1 < 0 , γc−γ −b+1−b/γ+1/γ−a/γ +2 < 0 ,
c−b/γ +1/γ −a/γ +1 = 0 , and

γβ 1/γ

(γ −a)(b+ γ − γc−1)1+1/γ >
1

(γ +1)1+1/γ ,

then (E4) has property (A) by Theorem 1.

REMARK 2. Note that Proposition 4 of Example 4 includes also the results of
Example 2.

RE F ER EN C ES

[1] R. P. AGARWAL, S. L. SHIEN, C. C. YEH, Oscillation criteria for second order retarded differential
equations, Math. Comput. Modelling, 26, 4 (1997), 1–11.
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