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EXISTENCE OF MILD SOLUTION FOR IMPULSIVE STOCHASTIC

DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS
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Abstract. This paper is concerned with the existence of mild solution for impulsive stochastic
differential equations with nonlocal conditions in PC -norm. Our approach is based on Kras-
noselskii fixed point theorem.

1. Introduction

Stochastic differential equation is an emerging field drawing attention from both
theoretical and applied disciplines, which has been successfully applied to problems
in mechanical, electrical, economics, physics and several fields in engineering. For
details, see [10, 16] and the references therein. Recently a large number of interesting
results of stochastic equations have been reported in [5, 8, 11, 15, 20, 22, 23]. For
example, in [22], Taniguchi et al. discussed the existence, uniqueness, and asymptotic
behavior of mild solutions to stochastic partial functional differential equations with
finite delay. Xu et al. [23] established stochastic versions of the well-known Picard
local existence-uniqueness theorem and continuation theorem given by Hale [7] for
functional differential equations.

The nonlocal Cauchy problem was first introduced by Byszewski and Laksh-
mikantham [4]. Since it is demonstrated that the nonlocal problem have better effects
in applications than the classical ones, so differential equations with nonlocal problem
have been studied extensively in the literatures. For more details on this topic we refer
to [1, 3, 9, 17, 18, 19] and references therein.

Recently, there are some results of mild solutions for stochastic differential equa-
tion with nonlocal conditions. For example, by using Leray-Schauder fixed point ap-
proach, the existence of mild solutions for semilinear stochastic delay evolution equa-
tion with nonlocal conditions was studied respectively in [3]. In [2], Balasubrama-
niam et al. discussed the existence of mild and strong solutions of semilinear neutral
functional differential evolution equations with nonlocal conditions by using fractional
power of operators and Krasnoselskii fixed point theorem.

Impulsive effects are common phenomena due to instantaneous perturbations at
certain moment, such phenomena are described by impulsive differential equation which
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have been used efficiently in modelling many practical problems that arise in the fields
of engineering, physics, and science as well. So the theory of impulsive differential
equations is also attracting much attention in recent years [13, 21]. Correspondingly,
a lot of existence of mild solution for impulsive differential equations with nonlocal
conditions have been obtained in [6, 14]. In [20], the authors studied the existence and
asymptotic stability in p th moment of mild solutions to nonlinear impulsive stochastic
differential equation.

To the best of our knowledge, there is no work reported on impulsive stochastic
differential equations with nonlocal conditions. Motivated by the above works, the
purpose of this paper is to prove the existence and uniqueness of mild solutions for
the impulsive stochastic differential equations with nonlocal conditions in PC -norm.
Our approach is based on the fixed point theorem. The rest of this paper is organized as
follows. In Section 2, impulsive stochastic differential equations are presented, together
with definition of mild solution. Finally in Section 3, the existence results on mild
solutions are derived.

2. Preliminaries

Let H be a real separable Hilbert spaces with inner product (·, ·) and norm ‖ · ‖ ,
and let K be another real separable Hilbert spaces with inner product (·, ·)K and norm
‖ · ‖K . L(K,H) denotes the space of bounded operators from K to H . Let (Ω,F ,P)
be a complete probability space equipped with a complete family of right continuous
increasing sub σ -algebras {Ft ,t � 0} satisfying Ft ⊂ F .

Let βn(t),n = 1,2, . . . be a sequence of real-valued one-dimensional standard
Brownian motions mutually independent over (Ω,F ,P) . Set

w(t) =
∞
∑

n=1

√
λnβn(t)ξn,t � 0,

where λn � 0, (n = 1,2, . . .) are nonnegative real numbers and {ξn}(n = 1,2, . . .) is a
complete orthonormal basis in K , Let Q ∈ L(K,K) be an operator defined by

Qξn = λnξn with a finite trace Tr(Q) =
∞

∑
n=1

λn < ∞.

Then, the above K -valued stochastic process ω(t) is called a Q-Wiener process.
Let ϕ ∈ L(K,H) and define

‖ϕ‖2
L0

2
= Tr(ϕQϕ∗) =

{ ∞

∑
n=1

‖
√

λnϕξn‖2
}
.

If ‖ϕ‖L0
2
< ∞ , then ϕ is called a Q-Hilbert-Schmidt operator, where L0

2(K,H) denote
the space of all Q-Hilbert-Schmidt operators ϕ : K → H .

We denote Lp(Ω,H) the collection of all strongly-measurable, p -integrable H -
valued variables with norm

‖x(·)‖Lp =
(
E‖x(·;ω)‖p

H

) 1
p
,
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where E is defined by E(h) =
∫

Ω h(ω)dP . Let C = C (J,Lp(Ω,H)) be the Banach
space of all continuous maps from J into Lp(Ω,H) satisfying sup

t∈J
E‖x(t)‖p < ∞. Let

PC(J,Lp(Ω,H)) =
{

ψ : J → Lp(Ω,H) |ψ ∈ C ((tk, tk+1],H), k = 0,1, . . . ,q,

ψ(t+k ),ψ(t−k ) exist and ψ(t−k ) = ψ(tk)
}

with the norm
‖ψ‖PC = sup

t∈J
(‖ψ(t)‖p

Lp)
1
p .

Then (PC(J,Lp(Ω,H)),‖ · ‖PC) is a Banach space.
In this paper, we consider the existence of mild solution for the following impul-

sive stochastic differential equations in a Hilbert space

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx(t) = [Ax(t)+F(t,x(t),x(a1(t)), . . . ,x(av(t)))]dt

+G(t,x(t),x(b1(t)), . . . ,x(bm(t)))dω(t), t ∈ J = [0,T ], t �= tk,

	x(tk) = Ik(x(tk)), k = 1,2, . . . ,q,

x(0) = x0 +g(x),

(1)

where x0 ∈ H , ai,b j : J → J, i = 1,2, . . . ,v, j = 1,2, . . . ,m are continuous, A is the
infinitesimal generator of an analytic semigroup of bounded linear operators S(t),t � 0,

x(t+k ) = lim
h→0+

x(tk +h) and x(tk) = lim
h→0−

x(tk +h).

The tk � 0 are impulsive moments satisfying

tk < tk+1 and lim
k→+∞

tk = +∞.

The 	x(tk) = x(t+k )− x(tk) represents the jump in the state x at tk .
We assume that ‖S(t)‖� M for t ∈ T and 0 ∈ ρ(A) , where ρ(A) is the resolvent

set of A . Let us recall the mild solution for nonlocal Cauchy problem (1) as follows.

DEFINITION 2.1. A stochastic process x(t) ∈ PC(J,Lp(Ω,H)) is called a mild
solution for nonlocal Cauchy problem (1), if:

(i) x(t) is adapted to Ft ;

(ii) x(t) ∈ H has a càdlàg path on t ∈ [0,T ] almost surely;

(iii) for arbitrary t ∈ [0,T ] ,

x(t) = S(t)[x0 +g(x)]+
∫ t

0
S(t− s)F(s,x(s),x(a1(s)), . . . ,x(av(s)))ds

+
∫ t

0
S(t− s)G(s,x(s),x(b1(s)), . . . ,x(bm(s)))dω(s)

+ ∑
0<tk<t

S(t− tk)Ik(x(tk)). (2)
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LEMMA 2.1. (see [5]) For any r � 1 and for arbitrary L0
2(K,H)-valued pre-

dictable process Φ(·)

sup
s∈[0,t]

E
∥∥∥

∫ s

0
Φ(u)dω(u)

∥∥∥2r
� Cr

(∫ t

0

(
E‖Φ(s)‖2r

L0
2

) 1
r
ds

)r
, t � 0, (3)

where Cr = (r(2r−1))r .

Furthermore, one imposes the following important assumptions to obtain the exis-
tence of nonlocal Cauchy problem (1):

(H1) F : J×Hv+1 → H is a continuous function, and there exist LF ,LF > 0 such that
for 0 � s1,s2 � T,xi,yi ∈ H, i = 0,1, . . . ,v

‖F(s1,x0,x1, . . . ,xv)−F(s2,y0,y1, . . . ,yv)‖p � LF

(
‖s1− s2‖p + max

i=0,1,...,v
‖xi− yi‖p

)

and for (t,x0,x1, . . . ,xv) ∈ J×Hv+1

‖F(t,x0,x1, . . . ,xv)‖ � LF

(
max

i=0,1,...,v
‖xi‖p +1

)
;

(H2) the function G : J×Hm+1 → L(K,H) satisfies the following conditions:

(i) for each t ∈ J , G(t, ·) : Hm+1 → L(K,H) is continuous and for (x0,x1 . . . ,xm) ∈
Hm+1 , G(·,x0,x1, . . . ,xm) : J → L(K,H) is Ft -measurable;

(ii) for any l > 0, there exists a function ρl ∈ L1(J) such that

sup
‖x0‖p,...,‖xm‖p�l

E‖G(t,x0,x1, . . . ,xm)‖p
L0

2
� ρl(t)

and

liminf
l→+∞

1
l

[∫ T

0
ρl(s)

2
p ds

] p
2 = η < ∞;

(H3) the function G : J×Hn+1 → L(K,H) satisfies (H2)(i) , and there exists LG > 0
such that for 0 � s1,s2 � T, xi,yi ∈ H, i = 0,1, . . . ,m ,

‖G(s1,x0,x1, . . . ,xm)−G(s2,y0,y1, . . . ,ym)‖p
L0

2

� LG

(
‖s1− s2‖p + max

i=0,1,...,m
‖xi− yi‖p

)
;

(H4) g : H → L0
2(Ω,H) is completely continuous and there exists a nondecreasing

function N : R+ → R+ such that for all x ∈ H ,

‖g(x)‖p � N(‖x‖p) and liminf
l→+∞

N(l)
l

= δ < ∞;

(H5) g : H → L0
2(Ω,H) , and there exists Lg � 0 such that for any x,y ∈ H

‖g(x)−g(y)‖p � Lg‖x− y‖p;
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(H6) Ik : H → H,k = 1, . . . ,q , and there exists hk � 0 such that for any x,y ∈ H

‖Ik(x)− Ik(y)‖p � hk‖x− y‖p and ‖Ik(x)‖p � hk‖x‖p.

Our main results are based on the following Krasnoselskii fixed point theorem
[12].

LEMMA 2.2. Let B be a closed convex and nonempty subset of a Banach space
X . Let L and N be be two operators such that
(i) Lx+Ny ∈ B whenever x,y ∈ B;
(ii) L is a contraction mapping;
(iii) N is compact and continuous.
Then there exists z ∈ B such that z = Lz+Nz.

3. Main results

In this section, we present and prove our main results.

THEOREM 3.1. Assume that (H1),(H2),(H4) and (H6) hold and x(0) ∈ L0
2 , then

the nonlocal problem (1) has a mild solution provided that

4p−1Mp
(

δ +LFT p +Cpη +
q

∑
k=1

hk

)
< 1 (4)

and

2p−1Mp
(
LFT p +

q

∑
i=1

hk

)
< 1. (5)

Proof. Define the map Φ : PC(J,Lp(J,H)) → PC(J,Lp(J,H)) by

(Φx)(t) = S(t)[x0 +g(x)]+
∫ t

0
S(t− s)F(s,x(s),x(a1(s)), . . . ,x(av(s)))ds

+
∫ t

0
S(t− s)G(s,x(s),x(b1(s)), . . . ,x(bm(s)))dω(s)

+ ∑
0<tk<t

S(t− tk)Ik(x(tk))

=
4

∑
i=1

Θi(t) for a. e. t ∈ J. (6)

To prove the existence of mild solution of (1), it is enough to show that the operator Φ
has fixed point in PC(J,Lp(J,H)) . Let Bl = {x∈PC(J,Lp(J,H)) : ‖x(t)‖p

PC � l, t ∈ J} .
Then we finish the proof in the following steps.
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Step 1 . We show that ΦBl ⊂ Bl . If it is not true, then there exists xl ∈ Bl and
tl ∈ J such that ‖(Φxl)(tl)‖p > l . However, from (6), we have

E‖(Φxl)(tl)‖p � 4p−1
4

∑
i=1

E‖Θi(tl)‖p. (7)

From (H1) , by H ö lder inequality, we have

E‖Θ2(tl)‖p � E sup
t∈J

∥∥∥
∫ t

0
S(t− s)F(s,x(s),x(a1(s)), . . . ,x(av(s)))ds

∥∥∥p

= E sup
t∈J

∥∥∥
∫ t

0
S(t− s)F(s,x(s),x(a1(s)), . . . ,x(av(s)))ds

∥∥∥p

� T p−1E sup
t∈J

∫ t

0
‖S(t− s)F(s,x(s),x(a1(s)), . . . ,x(av(s)))‖pds

� LFMpT p(l +1). (8)

By Lemma 2.1 and (H2) , we obtain

E‖Θ3(tl)‖p =
∥∥∥

∫ tl

0
S(tl − s)G(s,x(s),x(b1(s)), . . . ,x(bm(s)))dω(s)

∥∥∥p

� CpM
p
[∫ tl

0
(E‖G(s,x(s),x(b1(s)), . . . ,x(bm(s)))‖p

L0
2
)

2
p ds

] p
2

� CpM
p
[∫ T

0
ρl(s)

2
p ds

] p
2
. (9)

Using (H6) , we obtain

E‖Θ4(tl)‖p = E
∥∥∥ ∑

0<tk<t

S(t− tk)Ik(x(tk))
∥∥∥p

� Mpl
q

∑
k=1

hk. (10)

Since inequality

‖x+ y‖p � (1+ ξ )p−1(‖x‖p +
‖y‖p

ξ p−1 ) (11)

holds for ∀ξ > 0, p � 1,x,y ∈ H , it follows from (H5) that

E‖Θ1(tl)‖p = E‖S(tl)[x0 +g(x)]‖p

� (1+ ξ )p−1Mp
[‖x0‖p

ξ p−1 +‖g(x)‖p
]

� (1+ ξ )p−1Mp
[‖x0‖p

ξ p−1 +N(l)
]
. (12)

Then from (7), (10), and (12), we have for ∀ξ > 0,

l � ‖(Φxl)(tl)‖p
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� 4p−1
{

(1+ ξ )p−1Mp
[‖x0‖p

ξ p−1 +N(l)
]

+LFMpT p(l +1)+CpM
p
[∫ T

0
ρl(s)

2
p ds

] p
2 +Mpl

q

∑
k=1

hk

}
. (13)

Dividing both sides by l and taking the lower limits as l → +∞ , in view of arbitrary
property of ξ > 0, we have

4p−1
(
Mpδ +LFMpT p(l +1)+CpM

pη +Mp
q

∑
k=1

hk

)
� 1,

which contradicts the expression (4). Thus, for some l , ΦBl ⊂ Bl .

Step 2. We decompose Φ = Φ1 + Φ2 as

(Φ1x)(t) =
∫ t
0 S(t− s)F(s,x(s),x(a1(s)), . . . ,x(av(s)))ds+ ∑

0<tk<t
S(t− tk)Ik(x(tk))

and

(Φ2x)(t) = S(t)[x0 +g(x)]+
∫ t
0 S(t− s)G(s,x(s),x(b1(s)), . . . ,x(bm(s)))dω(s),

where the operator Φ1,Φ2 are defined on Bl . We shall show that Φ1 is contraction
operator while Φ2 is a compact operator. We firstly prove that Φ1 satisfies a contraction
condition. In fact, for each t ∈ J,x,y ∈ Bl , we have

E‖(Φ1x)(t)− (Φ1y)(t)‖p

� 2p−1
{

sup
t∈J

E
∥∥∥

∫ t

0
S(t− s)[F(s,x(s),x(a1(s)), . . . ,x(av(s)))

−F(s,y(s),y(a1(s)), . . . ,y(av(s)))]ds
∥∥∥p

+ sup
t∈J

E
∥∥∥ ∑

0<tk<t

S(t− tk)[Ik(x(tk))− Ik(y(tk))]
∥∥∥p

� 2p−1Mp
(
LFT p +

q

∑
i=1

hk

)
sup
t∈J

E‖x(t)− y(t)‖p. (14)

Next, we prove that Φ2 is compact. Let {xn} ⊂ Bl with xn → x in Bl , then for each
s ∈ J,xn → x , we have

G(s,xn(s),xn(b1(s)), . . . ,xn(bm(s)))

−G(s,x(s),x(b1(s)), . . . ,x(bm(s))) → 0, n → ∞, (15)

and
g(xn) → g(x), n → ∞. (16)

Since
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E‖G(s,xn(s),xn(b1(s)), . . . ,xn(bm(s)))

−G(s,x(s),x(b1(s)), . . . ,x(bm(s)))‖p
L0

2
� 2p−1ρl(s) (17)

and
E‖g(xn)−g(x)‖p � 2p−1N(l), (18)

by the dominated convergence theorem, we have

E‖Φ2xn−Φ2x‖p → 0, (19)

as n → ∞ , that is, Φ2 is continuous. Next, we prove that Φ2 is an equicontinuous in
Bl . Let x ∈ Bl, t1 � 0 and |ε| be sufficiently small, then by Lemma 2.1, we have

E‖(Φ2x)(t1 + ε)− (Φ2x)(t1)‖p

� 2p−1
{
‖S(t1 + ε)−S(t1)‖p‖x0 +g(x)‖p

+Cp

[∫ t1

0

(
E‖(S(t1 + ε − s)

−S(t1− s))G(s,x(s),x(b1(s)), . . . ,x(s),x(bm(s)))‖p
) 2

p
ds

] p
2

+Cp

[∫ t1+ε

t1

(
E‖S(t1 + ε − s)G(s,x(s),x(b1(s)), . . . ,x(s),x(bm(s)))‖p)

2
p ds

] p
2
}

.

(20)

Noting that

‖G(s,x(s),x(b1(s)), . . . ,x(s),x(bn(s)))‖p
L0

2
� hl(s) and hl ∈ L1,

we conclude that E‖(Φ2x)(t1 + ε)− (Φ2x)(t1)‖p → 0 as ε → 0. Hence Φ2 is an
equicontinuous in Bl .

Finally, we need to prove that for 0 � t � T , (Φ2x)(t) is relatively compact in
Bl . It is easy to see that (Φ2x)(0) is relatively compact in Bl . Fixed by t ∈ (0,T ] , for
0 < ε < T , x ∈ Bl , we define

(Φε
2x)(t) = S(t)[x0 +g(x)]

+
∫ t−ε

0
S(t− s)G(s,x(s),x(b1(s)), . . . ,x(bn(s)))dω(s)

= S(t)[x0 +g(x)]

+S(ε)
∫ t−ε

0
S(t− ε − s)G(s,x(s),x(b1(s)), . . . ,x(bn(s)))dω(s). (21)

It follows from the compactness of S(ε)(ε > 0) that {(Φε
2x)(t) : x ∈ Bl} is relatively

compact in H for every ε ∈ (0,t) . Furthermore, for every x ∈ Bl , we have

E‖(Φ2x)(t)− (Φε
2x)(t)‖p � CpM

p
T

∫ t

t−ε
hl(s)ds. (22)
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Consequently, there are relatively compact sets {(Φε
2x)(t) : x ∈ Bl} arbitrary close the

(Φ2x)(t) , which implies that (Φ2x)(t) is also relatively compact in Bl .
Hence Φ2 is a compact operator by Arzel á-Ascoli theorem. Therefore, by Lemma

2.2, we show that the nonlocal problem (1) has a mild solution.
In the following, we derive the uniqueness of mild solution for the nonlocal prob-

lem (1).

THEOREM 3.2. Assume that (H1),(H3),(H5) and (H6) hold and x(0) ∈ L0
2 , then

the nonlocal problem (1) has a mild solution provided that

4p−1Mp
(
Lg +LFT p +CpLGT

p
2 +

q

∑
k=1

hk

)
< 1. (23)

Proof. Let Φ : PC(J,Lp(J,H))→ PC(J,Lp(J,H)) be defined as Theorem 3.1. For
t ∈ J,x,y ∈ PC(J,Lp(J,H)) , we have

E‖(Φx)(t)− (Φy)(t)‖p

� 4p−1
{

E‖S(t)[g(x)−g(y)]‖p

+E
∥∥∥

∫ t

0
S(t− s)[F(s,x(s),x(a1(s)), . . . ,x(av(s)))

−F(s,y(s),y(a1(s)), . . . ,y(av(s)))]ds
∥∥∥p

+E
∥∥∥

∫ t

0
S(t− s)[G(s,x(s),x(b1(s)), . . . ,x(bm(s)))

−G(s,x(s),y(b1(s)), . . . ,y(bm(s)))]dω(s)
∥∥∥p

+E
∥∥∥ ∑

0<tk<t

S(t− tk)[Ik(x(tk))− Ik(y(tk))]
∥∥∥p}

� 4p−1
(
MpLg +LFMpT p +CpM

pLGT
p
2 +Mp

q

∑
k=1

hk

)
E‖x− y‖p. (24)

Thus we have

‖(Φx)(t)− (Φy)(t)‖p
PC � 4p−1Mp

(
Lg +LFT p +CpLGT

p
2 +

q

∑
k=1

hk

)
‖x− y‖p

PC. (25)

Therefore, Φ is a contraction from (23), which implies that there exists an unique mild
solution for nonlocal problem (1).
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