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Abstract. The population sizes of species are affected not only by ecological interactions, such
as predation and competition, but also by infectious diseases. In this paper, we propose a model
combining disease and competition, and try to understand how the disease affects the two com-
peting species. We assume that only one of the species is susceptible to an SI type disease with
mass action incidence, and that infected individuals do not reproduce but suffer additional dis-
ease induced death. We further assume that infection does not reduce the competitive ability
of infectives. We show that if species 1 is a superior competitor without disease, then infection
of species 1 can enable an inferior competitor to coexist, either as a stable equilibrium or as a
limit cycle. If in the absence of the disease, the two species coexist, then the introduction of
the disease is partially determined by the basic reproduction number. If the basic reproduction
number is larger than 1 , then our system is uniformly persistent and the unique coexisting en-
demic disease equilibrium is globally stable under certain conditions. Meanwhile, if species 1 is
an inferior competitor without disease, then infection of species 1 can not change the outcomes
under certain conditions.

1. Introduction

Population sizes of species are affected not only by ecological factors, such as
competition and predation, but also by infectious diseases. In this paper, we investigate
how a disease affects two competing species. We assume that, in the absence of the
disease, birth, death, as well as intra- and interspecific competition are modelled by the
Lotka-Volterra equations:

N′
1 = N1(r1 −a11N1−a12N2), (1.1)

N′
2 = N2(r2 −a21N1−a22N2),

where Ni = Ni(t) is the number of individuals in species i and t � 0. bi and di are the
per capita birth and death rate of species i , respectively, and hence ri = bi − di is the
per capita growth rate of species i at low densities. ai j is the competition coefficient.
ai j/ri is the inhibition coefficient of species j on the growth of species i .

We assume that only one of the species is susceptible to the disease and that the
disease is of SI type. The disease is directly transmitted with mass action incidence
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and λ is the mass action coefficient (transmission rate). The birth rate is density inde-
pendent. We also assume that infected individuals do not reproduce, but are subject to
an additional disease induced death rate v . Moreover, the disease does not affect the
competitive ability of infectives. Even though the model is based on these simplifying
assumptions, it captures the essence of how certain diseases affect competing species.

Our model takes the following form:

S′ = S(r1−a11S−a11I−a12N2 −λ I),
I′ = I(λS−a11S−a11I−a12N2 −uI), (1.2)

N′
2 = N2(r2−a21S−a21I−a22N2),

where S = S(t) , I = I(t) is the number of susceptibles and infectives in species 1,
respectively. S + I = N1 , uI = d1 + v and all parameters are assumed to be strictly
positive.

Van den Driessche and Zeeman [5] considered a similar model, in which they
also assumed that only one of the species was susceptible to the disease, but they as-
sumed that infectives could reproduce and that there was pure vertical transmission.
In addition, they assumed that a11 was bigger than the horizontal transmission rate λ .
Their assumptions led to a three dimensional competitive Lotka-Volterra system, which
could be analyzed using the theory of Hirsch [9] and Zeeman [17]. Usually, the three
dimensional dynamical systems combining disease and competition are not competitive
Lotka-Volterra systems, such as system (1.2). The method used by Van den Driessche
and Zeeman [5] cannot be used for our model. In this paper, we use a new method to
analyze the dynamical behavior, in particular to prove global stability.

Host-host-pathogen models have been studied previously. Holt and Pickering [11]
studied a model in which two hosts shared a directly transmitted disease while host
populations could grow exponentially. Begon et al. [2] examined the situation in which
two hosts were affected by the same pathogen but the two hosts were subject to self reg-
ulation (intra-specific competition). Both papers provided insights of predicting species
coexistence and exclusion. Anderson and May [1] considered a two hosts model with
intra- and interspecific competition for a limited resource but only one host was affected
by a directly transmitted pathogen. Their model predicted the quite expected outcomes,
eg, that disease caused stable coexistence, but it did not predict oscillatory phenomena.
Venturino [16] considered a similar model of SIS type and found periodic solutions by
numerical simulations when there was no recovery. Greenman and Hudson [6] stud-
ied the case in which two competing hosts shared a directly transmitted disease of SI
type. They provided the possibility of both species coexistence and exclusion equi-
libria. Saenz and Hethcote [15] examined two host SIS, SIR and SIRS models with
frequency dependent incidence. They found that SIS type model with birth rate density
independent had the classical endemic dynamical behavior. Han and Pugliese [8] also
considered a two host SIS model with mass action. They provided conditions for the
persistence of either hosts or pathogens.

Most of those who have considered host-host-pathogen models used linearization
techniques in their analysis. The purpose of this paper is to analyze qualitatively the
dynamical behavior of system (1.2), in particular with respect to Hopf bifurcation, limit
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cycles and global stability. To do this we need much more powerful methods than
linearization.

The paper is organized as follows. In Section 2, we recall the dynamical behav-
ior of the Lotka-Volterra system (1.1). Disregarding degenerate cases, there are four
essentially different phase portraits of system (1.1). Later, in Section 5, we give a de-
tailed account of the dynamics of the eco-epidemiological model (1.2) in each of these
four cases. Before that we discuss the corresponding one-species eco-epidemiological
model, that is, system (1.2) without species 2. In Sections 4 and 5 we treat the full model
(1.2). In Section 4 we present some preliminaries, including existence of equilibria, lo-
cal stability of boundary equilibria of system (1.2), and a framework for proving global
stability of a unique interior equilibrium. The analysis can be found in Section 5. In
Subsections 5.1 and 5.2, we prove that infection of a superior competitor can enable
an inferior competitor to coexist, either as a stable steady state or as a limit cycle. In
Subsection 5.3, in which two species coexist without disease, we introduce a basic re-
production number which is defined in the disease-free coexistence steady state. We
show that under certain conditions, if the basic reproduction number is lower than 1,
then the disease-free coexistence equilibrium of system (1.2) is globally stable. If the
basic reproduction number is larger than 1, we show that system (1.2) is uniformly
persistent, and if two inequalities are satisfied, then the unique interior equilibrium of
system (1.2) is globally stable. In Subsection 5.4, where species 1 is an inferior com-
petitor, we show that if a certain inequality holds, then infection of species 1 is unable
to change the outcome. From a biological point of view it seems reasonable to conjec-
ture that the inequality can be dropped from the assumptions. We also do numerical
simulations in each case to support our analytical results. We close the paper by a brief
discussion.

2. The Lotka-Volterra model without disease

A complete description of the dynamics of the Lotka-Volterra competition model
(1.1) without disease can be found for instance in [10] and can be summarized as fol-
lows: System (1.1) has three boundary equilibrium points, E(0,0) , E1(r1/a11,0) and
E2(0,r2/a22) . These boundary equilibria correspond to both species absent, or one
species being absent while the other is at its carrying capacity. Solutions starting on
a positive axis approach the carrying capacity equilibrium on that axis. We define the
first and second zero-isoclines of system (1.1) as the straight lines on which N′

1 = 0 and
N′

2 = 0, respectively. In addition to the degenerate case in which the two zero-isoclines
coincide, we have the following four possibilities:

(A) r2a11 < r1a21 and r2a12 < r1a22 . The two zero-isoclines do not intersect and the
first is above the second. Species 1 inhibits species 2 more than it inhibits itself
and species 2 inhibits itself more than it inhibits species 1. Species 1 wins the
competition and all paths with N1(0) > 0 approach the equilibrium E1 .

(B) r2a11 < r1a21 and r1a22 < r2a12 . Each species inhibits the other more than it in-
hibits itself. The two zero-isoclines intersect at an unstable saddle equilibrium in
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the interior of R
2
+ . There exists a separatrix through the interior equilibrium and

the origin with solutions starting below the separatrix going to the equilibrium
E1 , and solutions starting above it going to the boundary equilibrium E2 .

(C) r1a21 < r2a11 and r2a12 < r1a22 . Each species inhibits itself more than it inhibits
the other species. In this case, the two zero-isoclines intersect , but now the
interior equilibrium is attractive, and all solutions starting with positive initial
values approach this interior equilibrium. The two species coexist.

(D) r1a21 < r2a11 and r1a22 < r2a12 . The two zero-isoclines do not intersect and
the second lies entirely above the first. Species 2 inhibits species 1 more than it
inhibits itself and species 1 inhibits itself more than it inhibits species 2. Species 2
wins the competition and the boundary equilibrium E2 is globally asymptotically
stable in intR2

+ .

In Section 5 we give a detailed analysis of how the introduction of a disease gov-
erned by (1.2) will affect the population dynamics in the four cases (A) – (D).

3. The one-species SI-model

In this section we investigate the following simple one-species eco-epidemiological
model obtained by putting N2 = 0 in system (1.2):

S′ = S(r1−a11S−a11I−λ I), (3.1)

I′ = I(λS−a11S−a11I−uI).

The system (3.1) has two boundary equilibria. One is (S, I) = (0,0) , which is
attractive in the I direction and unstable in the S direction, and the other is (S, I) =
(r1/a11,0) , which is attractive in the S direction.

As is the case for all epidemiologicalmodels, the existence of an interior (endemic)
equilibrium and the stability of the disease-free and endemic equilibria are determined
by the basic reproduction number R0 [4]. There is a general procedure for calculat-
ing R0 as the spectral radius of the next generation operator [3], but for this simple
model R0 can readily be written down directly from its verbal interpretation. The ba-
sic reproduction number is the expected number of secondary cases produced by one
typical infected individual in an otherwise disease free population. The average infec-
tious period of a typical infected individual is 1/(r1 + uI) , and an infected individual
will on average infect λ r1/a11 individuals per unit of time when the population is fully
susceptible. Hence

R0 =
λS

a11S+uI
=

λ r1/a11

r1 +uI
.

The following lemma shows that the intuitively expected result is indeed true.
Analogous theorems hold true for a large variety of epidemiological models.
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LEMMA 1. Consider the model (3.1). If R0 < 1 , there is no interior positive equi-
librium and the disease-free equilibrium (S, I) = (r1/a11,0) is globally asymptotically
stable in intR2

+ . If R0 > 1 , then there exists a unique positive (endemic) equilibrium
(S, I) = (1/λ 2)(uIλ + a11(uI + r1),r1λ − a11(uI + r1)) and it is a globally asymptoti-
cally stable focus in intR2

+ .

Proof. By directly calculating the endemic equilibrium (S, I) one finds that both
components are positive, if and only if r1λ − a11(uI + r1) > 0, which is equivalent to
R0 > 1. We write F1(S, I) = S(r1−a11S−a11I−λ I) , F2(S, I) = I(λS−a11S−a11I−
uI) and F(S, I) = (F1(S, I),F2(S, I))T . Define the scalar valued (Dulac) function ϕ by
ϕ(S, I) = 1/(SI) . One easily verifies that div(ϕF) < 0. Furthermore, all solutions of
system (3.1) are bounded in a simply connected region. By the Poincar é-Dulac theo-
rem (see [18], p.195), there is no periodic orbit for system (3.1), and (S, I) is globally
asymptotically stable in intR2

+ if R0 < 1 and (S, I) is globally asymptotically stable in
intR2

+ if R0 > 1.

4. The two-species SI-model: Preliminaries

In this section we give some preliminaries on the full two-species model needed
for the more detailed analysis of Section 5.

For system (1.2), solutions with nonnegative initial values remains nonnegative for
all further time. It also eventually satisfy 0 � {S(t), I(t)}� r1/a11 , 0 � N2(t) � r2/a22 .

4.1. Equilibria

System (1.2) has at most five equilibria on the boundary of R
3
+ . They are the

origin O = (0,0,0) , the two axial equilibria

QS = (r1/a11,0,0),QN2 = (0,0,r2/a22),

and possibly the two points

QSI =
1

λ 2 (uIλ +a11(uI + r1),r1λ −a11(uI + r1),0),

QSN2 =
1
� (r1a22− r2a12,0,r2a11− r1a21),

in the coordinate planes. Here

� = a11a22−a12a21.

For later use, we write QSN2 = (Ŝ,0, N̂2) . From Section 3 we know that QSI exists and
is globally asymptotically stable in the SI plane if and only if R0 > 1. As explained in
Section 2, QSN2 exists in and only in cases (B) and (C). Let

A =

⎡
⎣ a11 a11 + λ a12

λ −a11 −a11 −a12

a21 a21 a21

⎤
⎦ .
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If det(A) �= 0, then system (1.2) has an equilibrium

QSIN2 = (S∗, I∗,N∗
2 ) = A−1(r1,uI ,r2).

A straightforward calculation gives

S∗ =
1

a22λ 2 (�(r1 +uI)+ λ (a22uI +a12r2)),

I∗ =
1

a22λ 2 (−�(r1 +uI)+ λ (a22r1 −a12r2)), (4.1)

N∗
2 =

1
a22λ

(λ r2 −a21(r1 +uI)),

and S∗ + I∗ = (r1 + uI)/λ . QSIN2 is biologically feasible and a coexistence endemic
equilibrium if S∗, I∗,N∗

2 > 0. Note that

S∗ =
1

a22λ 2 [�(r1 +uI)+ λ (a22uI +a12r2)]

=
1

a22λ 2 [a11a22(r1 +uI)+ λa22uI +a12(λ r2 −a21(r1 +uI))].

So, if N∗
2 > 0, then we have S∗ > 0.

4.2. Local stability of boundary equilibria

In order to study global behavior of system (1.2), it is helpful to know the local
stability of each boundary equilibrium.

At equilibrium (S, I,N2) of system (1.2), the Jacobian matrix is given by

J =

⎡
⎣ S′/S−a11S −(a11 + λ )S −a12S

(λ −a11)I I′/I−a11I −a12I
−a21N2 −a21N2 N′

2/N2−a22N2

⎤
⎦ .

For O = (0,0,0) , we have

J0 =

⎡
⎣ r1 0 0

0 −uI 0
0 0 r2

⎤
⎦ .

So equilibrium O is locally unstable. It is attractive in the I direction and unstable in
the S and N2 directions.

For QS = (r1/a11,0,0) , we have

JS =

⎡
⎣−r1 −(a11 + λ )r1/a11 −a12r1/a11

0 (r1 +uI)(R0 −1) 0
0 0 r2 −a21r1/a11

⎤
⎦ .

Hence, the Jacobian matrix at QS has eigenvalues −r1 , (r1 + uI)(R0 − 1) and r2 −
a21r1/a11 . It is locally stable if and only if R0 < 1, and r1a21 > r2a11 , which is true in
cases (A) and (B).
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For QN2 = (0,0,r2/a22) , we have

JN2 =

⎡
⎣−r1 −a12r2/a22 0 0

0 −a12r2/a22−uI 0
−a21r2/a22 −a21r2/a22 −r2

⎤
⎦ .

Thus, the Jacobian matrix at QN2 has three eigenvalues r1−a12r2/a22 , −a12r2/a22−uI

and −r2 . It is locally stable if and only if r2a12 > r1a22 , which is true in cases (B) and
(D).

For QSN2 = (Ŝ,0, N̂2) , we have

JSN2 =

⎡
⎣ −a11Ŝ −(a11 + λ )Ŝ −a12Ŝ

0 (λ −a11)Ŝ−a12N̂2 −uI 0
−a21N̂2 −a21N̂2 −a22N̂2

⎤
⎦ .

As we have already mentioned, the equilibrium QSN2 exists in and only in cases (B)
and (C). It has eigenvalue (λ − a11)Ŝ− a12N̂2 − uI , and two other eigenvalues which
are determined by submatrix ĴSN2 , which is obtained by deleting the middle row and
middle column of matrix JSN2 . Matrix ĴSN2 can be regarded as the Jacobian for the
case of the two competing species introduced in Section 2. So, QSN2 is locally stable
if and only if in case (C) and (λ − a11)Ŝ− a12N̂2 − uI < 0. The latter condition can
be reformulated in terms of the inequality R̂0 > 1 for another reproduction number R̂0

(see Subsection 5.3).
For QSI = (S, I,0) , we have

JSI =

⎡
⎣ −a11S −(a11 + λ )S −a12S

(λ −a11)I −a11I −a12I
0 0 r2−a21(r1 +uI)/λ

⎤
⎦ .

We know that QSI exists if and only if R0 > 1. Consider the upper left matrix ĴSI

of JSI . We know its eigenvalues have negative real part if R0 > 1. Therefore, once
the equilibrium exists it is locally stable if and only if r2 − a21(r1 + uI)/λ < 0 or,
equivalently, if and only if N∗

2 < 0.

4.3. Mathematical framework

For two dimensional autonomous ODE systems, the Poincar é-Bendixson theory
together with Bendixson’s criterion can be used to prove global stability of the unique
equilibrium. In this section we introduce a theorem for proving global stability of the
unique equilibrium for higher dimensional autonomous ODE systems, which can be
regarded as an extension of the two dimensional case and which was developed in the
paper of Li and Muldowney [13]. It will be used for our model in Subsection 5.3.

Consider the ordinary differential equation

x′ = f (x), (4.2)

where f : D → R
n is a C1 function in an open set D ⊂ R

n . We make the following
assumptions:
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(H1 ) There exists a compact absorbing set K ⊂ D ,

(H2 ) Equation (4.2) has a unique equilibrium x in D .

A Bendixson criterion for (4.2) is a condition satisfied by f which precludes the
existence of nonconstant periodic solutions of (4.2). A Bendixson criterion is said to be
robust under C1 local perturbations of f at x1 ∈ D , if for sufficiently small ε > 0 and
sufficiently small neighborhoods U of x1 , it is also satisfied by all g ∈C1 such that the
support supp( f −g) ∈U and | f −g|C1 < ε , where

| f −g|C1 = sup{| f (x)−g(x)|+ |∂ f
∂x

(x)− ∂g
∂x

(x)| : x ∈ D}.

Such g is called a local ε−perturbation of f at x1 .
The following global stability result was established by Li and Muldowney [13].

LEMMA 2. Suppose that assumptions (H1) and (H2) hold. Assume that f sat-
isfies a Bendixson criterion that is robust under C1 local perturbations of f at all
nonequilibrium nonwandering points for (4.2). Then x is globally stable in D provided
it is stable.

We now turn our attention to a convenient Bendixson criterion introduced and
proved to be robust in the paper [13].

Let P(x) be an (n
2)×(n

2) matrix valued function and C1 for x∈D and assume that
P−1(x) exists and is continuous for x ∈ K . Let Pf be the matrix obtained by replacing

each entry of P by its derivative in the direction of f , and let ∂ f [2]

∂x be the second

additive compound matrix of ∂ f
∂x . For instance, for a 3×3 matrix L = (li j) , the second

additive compound matrix is

L[2] =

⎡
⎣ l11 + l22 l23 −l13

l32 l11 + l33 l12

−l31 l21 l22 + l33

⎤
⎦ .

We now define

B = Pf P
−1 +P

∂ f [2]

∂x
P−1. (4.3)

Let μ(B) be the Lozinskii measure of B with respect to a vector norm | · | in R
N ;

N = (n2) . It is defined by

μ(B) = lim
h→0+

|E +hB|−1
h

.

We can now define the quantity

q2 = limsup
t→∞

sup
x0∈K

1
t

∫ t

0
μ(B(x(s; f ,x0)))ds, (4.4)
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where x(s; f ,x0) is the solution of (4.2) subject to the initial condition x(0; f ,x0) = x0 .
The robust Bendixson criterion of Li and Muldowney [13] now takes the form

q2 < 0.

5. Analysis of the two-species SI-model

In this section we systematically investigate the dynamics of the system (1.2) in
four different cases. These cases correspond to the cases (A) – (D) of the classical
Lotka-Volterra competition model without the disease as discussed in Section 2.

5.1. Case A

We assume that species 1 is a superior competitor in absence of the disease. As
explained in Section 2, this is modeled by assuming

r2a11 < r1a21 and r2a12 < r1a22. (5.1)

Throughout this section, we assume that (5.1) holds.

THEOREM 1. If R0 � 1 , then the disease-free equilibrium QS of system (1.2) is
globally asymptotically stable in intR3

+ .

Proof. It follows from the first equation of (1.2) that

S′ � S(r1 −a11S).

If S(0) > r1/a11 , the density S(t) of susceptibles will therefore decrease until it hits
the value r1/a11 at a time t0 . By uniqueness of solutions, one cannot have I(t0) =
N2(t0) = 0. Therefore, every solution starting in intR3

+ will eventually enter the region
S � r1/a11 and stay there thereafter. It now follows from the second equation of system
(1.2) that

I′ � I(λ (r1/a11)− (r1 +uI)) = I(R0−1)/(r1 +uI).

Because R0 � 1, we have I′ � 0. Hence I(t) is decreasing and bounded below and
therefore has a limit as t → ∞ . Because I′ = 0 if and only if I = 0 this limit must be
equal to 0. The limiting case of system (1.2) is the two dimensional competitive Lotka-
Volterra system (1.1). With inequalities (5.1), (r1/a11,0) is a globally asymptotically
stable equilibrium of system (1.1) in intR2

+ . Thus, QS is a globally asymptotically
stable equilibrium of system (1.2) in intR3

+ .

THEOREM 2. If 1 < R0 < r1a21/r2a11 , then QSI exists in the positive quadrant of
the SI-plane and is a locally stable equilibrium of system (1.2). It is the only equilibrium
in addition to the origin and the two axial equilibria.
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Proof. QSN2 does not exist under condition (5.1). O , QS and QN2 are locally
unstable. QSI exists in the positive quadrant of the SI-plane when R0 > 1 and is locally
stable if R0 < r1a21/r2a11 as shown in Subsection 4.2. The condition R0 < r1a21/r2a11

is equivalent to N∗
2 < 0. Thus, QSIN2 does not exist in R

3
+ .

When R0 = r1a21/r2a11 , it is the degenerate case for Theorem 2. it is difficult to
see QSI is local stable or not. QSIN2 does not exist as N∗

2 = 0 when R0 = r1a21/r2a11 .

THEOREM 3. QSI is an unstable equilibrium of system (1.2) and QSIN2 exists
in intR3

+ if and only if R0 > r1a21/r2a11 . If QSIN2 exists, system (1.2) is uniformly
persistent.

Proof. As shown in Subsection 4.2, the Jacobian JSI has a positive eigenvalue if
and only if N∗

2 > 0 or, equivalently, if and only if R0 > r1a21/r2a11 . Now, we only
need to show that if N∗

2 > 0, then QSIN2 exists in intR3
+ . We already remarked that if

N∗
2 > 0, then S∗ > 0. So we only need to show that I∗ > 0. If � < 0, then I∗ > 0 by

the inequality r2a12 < r1a22 . If � > 0, then I∗ > 0 is equivalent to

λ
r1 +uI

a22r1 −a12r2

� > 1.

Using the inequality r2a11 < r1a21 and N∗
2 > 0, we get

λ
r1 +uI

a22r1 −a12r2

� >
λ

r1 +uI

r1

a11
>

a21r1

r2a11
> 1.

Thus I∗ > 0. The proof of uniform persistence is similar to the corresponding proof of
Theorem 9. Therefore we omit the details.

THEOREM 4. If QSIN2 exists in intR3
+ and � > 0 , then QSIN2 is a locally stable

equilibrium of system (1.2).

Proof. The characteristic equation of the Jacobian matrix J evaluated at QSIN2 is

z3 + k1z
2 + k2z+ k3 = 0, (5.2)

where k1 = a11(S∗+ I∗)+a22N∗
2 , k2 =�(S∗+ I∗)N∗

2 +λ 2S∗I∗ and k3 = λ 2a22S∗I∗N∗
2 .

k1k2− k3 = a11(S∗ + I∗)[�(S∗ + I∗)N∗
2 + λ 2S∗I∗]+a22(S∗+ I∗)N∗

2�N∗
2 .

We have k1 > 0 and k3 > 0 independently on whether � is larger or smaller than 0.
k2 > 0 and k1k2−k3 > 0 when �> 0. By the Routh-Hurwitz conditions [14], all roots
have negative real parts and thus QSIN2 is a locally stable equilibrium of system (1.2).

Next we consider the possibility of QSIN2 losing its stability through a Hopf bifur-
cation. We use the transmission rate λ as bifurcation parameter.

A simple Hopf bifurcation occurs at λ = λ1 , if
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(a) the characteristic equation (5.2) has a pair {z1,z2} of conjugate purely imaginary
roots and the third root (which is necessarily real) is negative when λ = λ1 ,

(b) d
dλ (Rez1(λ ))|λ=λ1

�= 0,

(c) l1(λ1) �= 0, where l1(λ ) is the first Lyapunov coefficient (see below).

Consider a smooth system

X ′ = F(X ,α),

where X ∈ R
n and α ∈ R

m is a vector of parameters. F(0,α) = 0 and α = 0 is the
bifurcation point.

For all sufficiently small ||α|| , there exists a local invariant center manifold Wc(α)
of dimension nc that is locally attracting if nu = 0, repelling if ns = 0, and of saddle
type if nsnu > 0. Here, nc , nu and ns are the dimension of center manifold, unstable
manifold and stable manifold, respectively.

In this place, we only consider codimension 1 equilibrium bifurcation, which
means α ∈ R . Then

F(X ,0) = AX +
1
2
B(X ,X)+

1
6
C(X ,X ,X)+O(4),

where O(4) is a function with order at least four in their variable X .
For the Hopf bifurcation we have z1,2 = ±iw , w > 0 (nc = 2) . We calculate the

first focal value using the following formula (see, for example, Kuznetsov [12]):

l1(0) =
1

2w
R[〈p,C(q,q,q)〉−2〈p,B(q,A−1B(q,q))〉

+ 〈p,B(q,(2iwEn −A)−1B(q,q))〉],

where Aq = iwq , AT p = −iwp , 〈p,q〉 = 〈q,q〉 = 1.
If l1(0) �= 0 then the restriction of X ′ = F(X ,α) to its center manifold Wc(α) is

locally topologically equivalent to

ρ ′ = ρ(β (α)+ l1ρ2),
ϕ = 1.

Moreover, if l1(0) is negative then there is a stable limit cycle for β (α) > 0. If
l1(0) is positive then there is an unstable limit cycle for β (α) < 0.

For system (1.2), the bifurcation equilibrium is QSIN2 and the bifurcation point is
λ1 , we can do the simple transformation to transfer them to 0 when we calculate l1(λ1)
by using the formula l1(0) given above.

Now we show that conditions (a) and (b) are equivalent to the following condi-
tions:

(a’) k3(λ1)− k1(λ1)k2(λ1) = 0,
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(b’) (k3 − k1k2)′|λ=λ1
�= 0.

If k1 > 0, then it can be easily shown that condition (a) is equivalent to condition
(a’). For λ = λ1 , we have

(z2 + k2)(z+ k1) = 0,

which has three roots z1 = +i
√

k2 , z2 = −i
√

k2 , z3 = −k1 < 0. For values λ near λ1 ,
the roots are in general of the following forms:

z1(λ ) = ξ1(λ )+ iξ2(λ ), z2(λ ) = ξ1(λ )− iξ2(λ ), z3 = ξ3(λ ).

Substituting z j(λ ) = ξ1(λ )± iξ2(λ ) ( j = 1,2) into equation (5.2) and calculating the
derivative, we find that

ψ(λ )ξ ′
1(λ )−φ(λ )ξ ′

2(λ )+ Θ(λ ) = 0, (5.3)

ψ(λ )ξ ′
2(λ )+ γ(λ ) = 0, (5.4)

where

ψ = 3ξ 2
1 (λ )+2k1(λ )ξ1(λ )+ k2(λ )−3ξ 2

2 (λ ),
φ = 6ξ1(λ )ξ2(λ )+2k1(λ )ξ2(λ ),
Θ = ξ 2

1 (λ )k′1(λ )+ k′2(λ )ξ1(λ )+ k′3(λ )− k′1(λ )ξ 2
2 (λ ),

φ = 2ξ1(λ )ξ2(λ )k′1(λ )+ k′2(λ )ξ2(λ ).

If one multiplies equation (5.3) by ψ and multiplies equation (5.4) by φ , and add the
two equations, one obtains

d
dλ

(Rez(λ )) = −φγ + ψΘ
ψ2 + φ2 .

Note that ξ1(λ1) = 0, ξ 2
2 (λ1) = k2(λ1) , and k1(λ1)k2(λ1) = k3(λ1) . Thus we have

d
dλ

(Re z(λ ))|λ=λ1
= −φγ + ψΘ

ψ2 + φ2 |λ=λ1
=

2k2(k′3 − k′1k2 − k1k′2)
ψ2 + φ2 |λ=λ1

.

Therefore condition (b) is equivalent to condition (b’).
Next we investigate under what circumstances the conditions (a’) and (b’) hold. A

direct calculation shows that

k3 − k1k2 =
−(r1 +uI)�

a22λ 3 ((λ r2 − c1)(λ r2 − c2)− c3(c4λ + c6)(c5λ − c6))

=
−(r1 +uI)�

a22λ 3 (A1λ 2 +A2λ +A3),

where

A1 = r2
2 − c3c4c5,

A2 = −r2(c1 + c2)− c3c6(c5 − c4),
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A3 = c1c2 + c3c
2
6,

c1 = a21(r1 +uI),
c2 = (a21−a11)(r1 +uI),
c3 = −a11/(a22�),
c4 = a22r1 −a12r2,

c5 = a22uI +a12r2,

c6 = −�(r1 +uI).

Therefore condition (a’) is equivalent to λ1 being a root of the quadratic equation

A1λ 2 +A2λ +A3 = 0.

Consequently, condition (a’) is satisfied by λ1 and λ2 given by

λ1,2 =
−A2±

√
A2

2−4A1A3

2A1
, (5.5)

where λ1 is the expression with sign + and λ2 is the one with sign − .
Because λ is a positive parameter, the inequality

A2
2−4A1A3 � 0,

is a necessary condition for a Hopf bifurcation at either λ1 or λ2 .
Next we consider condition (b’). Again a direct computation gives

(k3 − k1k2)′(λ ) =
3(r1 +uI)�

a22λ 4 (A1λ 2 +A2λ +A3)− (r1 +uI)�
a22λ 3 (2A1λ +A2)

= − (r1 +uI)�
a22λ 3 (2A1λ +A2).

Thus condition (b’) holds at λ1 and λ2 if and only if

2A1λ1,2 +A2 �= 0,

which means A2
2−4A1A3 �= 0. Combing with above inequality, we have

A2
2−4A1A3 > 0. (5.6)

We still have to check whether the equilibrium QSIN2 exists in intR3
+ for the

parameter values λ1 and λ2 . A straightforward calculation shows that if

−A2 +
√

A2
2−4A1A3

2A1(r1 +uI)
>

a21

r2
, (5.7)

then QSIN2 exists in intR3
+ for λ = λ1 , whereas the inequality

−A2−
√

A2
2−4A1A3

2A1(r1 +uI)
>

a21

r2
(5.8)
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ensures the existence of QSIN2 ∈ intR3
+ for λ = λ2 . If inequalities 5.7 and 5.8 hold,

then QSIN2 exists in intR3
+ for both λ = λ1 and λ = λ2 .

We now collect our findings into a theorem.

THEOREM 5. If QSIN2 exists in intR3
+ and � < 0 , and if condition (5.6) and at

least one of conditions (5.7) and (5.8) are satisfied, then system (1.2) undergoes Hopf
bifurcation at QSIN2 if l1 �= 0 . For conditions (5.7) and (5.8), if only inequality (5.7)
holds, then system (1.2) undergoes Hopf bifurcation at λ = λ1 ; if only inequality (5.8)
holds, then system (1.2) undergoes Hopf bifurcation at λ = λ2 ; if both inequalities
hold, then system (1.2) undergoes Hopf bifurcation at λ = λi , i = 1,2 . Moreover,
if l1(λi) < 0 , then those periodic solutions are limit cycles, while if l1(λi) > 0 , then
periodic solutions are repelling.

EXAMPLE 1. We take

r1 = 5, r2 = 10, a11 = 1, a21 = 3, a12 = 2, a22 = 5 and uI = 1.

Then

� = −1 < 0, R0 = 5λ/6, r1a21/(r2a11) = 3/2,

A1 = 75, A2 = −324, A3 = 1116/5,

λ1 = (54+
√

1056)/25 = 3.4598,
d

dλ
(Re z(λ ))λ=λ1

= 6
√

1056/(5λ 3
1 ) > 0,

and the first focal value l1 = 0.0299399853. The equilibrium QSIN2 , evaluated for
the parameter value λ = λ1 , is (1.3449,0.3893,0.9595) . The parameter λ is used to
change the strength of the disease. We will show numerically how the dynamics of
system (1.2) evolves as R0 is increased. Specifically, the dynamics for the parameter
values λ = 1, 7/5, 2, 3.459, 3.5, 6 are illustrated.

In Figure 1, if λ = 1, then R0 < 1, and the disease-free equilibrium QS is globally
asymptotically stable in intR3

+ . The disease is not strong enough to affect the long-
term demographics. When λ = 7/5, 1 < R0 < 3/2, QS is unstable, and QSI becomes
biologically feasible and stable. The disease is strong enough to be endemic in species
1, and species 1 is still strong enough to drive species 2 to extinction. When λ = 2,
R0 > 3/2, QSI is unstable, and QSIN2 becomes biologically feasible and stable. The
disease has weakened species 1 enough to let species 2 barely survive. In Figure 2, λ =
3.459, which is a little smaller than λ1 , we see that QSIN2 is locally stable, and there
is one stable periodic orbit. When λ = λ1 , system (1.2) undergoes Hopf bifurcation,
and from the signs of d

dλ (Rez(λ ))λ=λ1
and l1 , we know that there is an unstable limit

cycle at λ = λ1− ε . Thus, when λ = 3.459, system (1.2) has at least two limit cycles,
one is stable and the other is unstable. Figure 3 shows what happens when λ continues
to increase and becomes larger than λ1 . In this situation, QSIN2 becomes unstable
and there is stable periodic orbit. When λ = 3.5, the limit cycle looks like in the two
dimensional case, but when λ increases more, the limit cycle does not look like in the
two dimensional case. When λ attains larger values, the population size of species
changes dramatically.
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Figure 1: Dynamics of system (1.2) with λ = 1 in (a1) , λ = 7/5 in (a2) , and λ = 2
in (a3) .
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Figure 2: Dynamics of system (1.2) with λ = 3.459. The initial value is
(1.344,0.389,0.959) in (a41) , (1.3,0.3,0.9) in (a42) , and (3,2,1) in (a43) .

5.2. Case B

Throughout this section, we assume that

r2a11 < r1a21 and r1a22 < r2a12. (5.9)

It follows that � < 0 and that QN2 is locally stable.

THEOREM 6. If R0 � 1 , then almost every trajectory of system (1.2) in intR3
+ is

attracted to QS or QN2 .

Proof. As in the poof of Theorem 1 one shows that if R0 � 1 all trajectories in
intR3 are approaching a point in the SN2 -plane, where there is initial condition depen-
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Figure 3: Dynamics of system (1.2) with λ = 3.5 in (a5) and λ = 6 in (a6) .

dent competitive exclusion by inequalities (5.9). Thus, all trajectories except the two
dimensional stable manifold of QSN2 , are attracted to QS or QN2 in intR3

+ .

THEOREM 7.

(i) QSI exists and it is locally stable if 1 < R0 < r1a21/r2a11 .

(ii) QSIN2 exists in intR3
+ if r1a21/r2a11 < R0 < r1�/(a11(r1a22− r2a12)) .

(iii) If QSIN2 exists in intR3
+ , and if condition (5.6) and at least one of conditions (5.7)

and (5.8) are satisfied, then system (1.2) admits a Hopf bifurcation if l1 �= 0 .

Proof. Statement (i) was proved in Theorem 2. N∗
2 > 0 is equivalent to R0 >

r1a21/r2a11 , and I∗ > 0 is equivalent to R0 < r1�/(a11(r1a22− r2a12)) . The inequal-
ity r1a21/r2a11 < r1�/(a11(r1a22 − r2a12)) follows from the first inequality of (5.9).
Statement (iii) was proved in Theorem 5.

EXAMPLE 2. We take

r1 = 20, r2 = 18, a11 = 8, a21 = 10, a12 = 16, a22 = 10 and uI = 5.

Then

� = −80 < 0, R0 = λ/10, r1a21/r2a11 = 25/18,

A1 = 621.44, A2 = −13920, A3 = 52500,

λ1 = 17.5993,
d

dλ
(Re z(λ ))λ=λ1

> 0,

and the first focal value l1 = −0.098445. The equilibrium QSIN2 , evaluated at λ = λ1 ,
is (1.2748,0.1457,0.3795) . From the signs of d

dλ (Re z(λ ))λ=λ1
and l1 , we know there

is a stable limit cycle at λ = λ1 + ε .
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In Figure 4 (top left and bottom left), λ = 8, then R0 < 1, and there is initial-
condition-dependent exclusion between QS and QN2 . When λ = 12 (top middle
and bottom middle), 1 < R0 < 15/18, QS losts its its stability, but QSI is stable.
Meanwhile, QN2 still keeps its stability. At λ = 15 (top right and bottom right),
25/18 < R0 < 25/11, QSI loses its stability, while QSIN2 becomes biologically fea-
sible and stable. QN2 keeps on its stability. Increasing λ more, QSIN2 undergoes
Hopf bifurcation. In Figure 5, λ = 18, QSIN2 becomes unstable, and there is initial-
condition-dependent oscillatory endemic coexistence or extinction of species 1.
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Figure 4: Dynamics of system (1.2) with different λ . Left: λ = 8. Middle: λ = 12.
Right: λ = 15. On the top line the initial value is [2.8,0.4,0.2] . On the bottom line the
initial value is [0.4,0.2,1.5] .

5.3. Case C

Throughout this section we assume that

r1a21 < r2a11 and r2a12 < r1a22. (5.10)
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Figure 5: Dynamics of system (1.2) with λ = 18. Left: the initial value is [2.6,0.1,0.1] .
Middle: the initial value is [1.26,0.12,0.4] . Right: the initial value is [0.4,0.2,1.5] .

Recall from Section 3 that the basic reproduction number for the one-species SI-
model is

R0 =
r1

a11

λ
r1 +uI

.

We now define the basic reproduction number R̂0 for the two-species model by

R̂0 =
λ Ŝ

a11Ŝ+a12N̂2 +uI
=

λ
r1 +uI

r1a22− r2a12

� ,

where, as before, � = a11a22 − a12a21 > 0. R̂0 is the expected number of secondary
cases produced by one infected individual introduced into a population in the disease-
free coexistence steady state QSN2 . Note that it follows from the first inequality in
(5.10) that

R̂0 =
λ

r1 +uI

r1a22− r2a12

� <
λ

r1 +uI

r1a22− r1
a21
a11

a12

� = R0. (5.11)

THEOREM 8. QSIN2 exists in intR3
+ if and only if R̂0 > 1 .

Proof. We start by writing the N and I components of QSIN2 in terms of R0 and
R̂0 . It follows from the expression (4.1) for N∗

2 and the first inequality in (5.10) that

N∗
2 =

1
a22λ

(λ r2−a21(r1 +uI))

>
1

a22λ

(
λ

r1a21

a11
−a21(r1 +uI)

)

= a21
r1 +uI

a22λ
(R0 −1). (5.12)
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The expression (4.1) for I∗ can be written as

I∗ =
λ (r1a22− r2a12)− (r1 +uI)�

a22λ 2 =
(r1 +uI)�

a22λ 2 (R̂0−1). (5.13)

Assume that QSIN2 exists in intR3
+ . Then, in particular, I∗ > 0 and (5.13) shows

that R̂0 > 1. Conversely, if R̂0 > 1, then by (5.11) also R0 > 1 and hence (5.12) implies
that N∗

2 > 0 and (5.13) that I∗ > 0. As shown in Subsection 4.1, N∗
2 > 0 implies that

S∗ > 0 and so QSIN2 ∈ intR3
+

THEOREM 9. System (1.2) is uniformly persistent if R̂0 > 1 .

Proof. Define

X = {(S, I,N2) : S � 0, I � 0,N2 � 0},
X0 = {(S, I,N2) : S > 0, I > 0,N2 > 0},

∂X0 = X \X0,

We see that X0 is open, dense in X and X0 ⊂ X , ∂X0 ⊂ X , ∂X0∪X0 = X , ∂X0∩X0 =
/0 . Also, we define T (t) : X �→ X by T (t)(x) = x(t,x) , where x(t,x) is the solution of
system (1.2) at time t with initial value x at time 0. It is easy to see that T (t) is a C0

semigroup on X , compact and point dissipative in X . Both X0 and ∂X0 are positively
invariant for system (1.2). Let

A∂ =
⋃

x∈A∂

ω(x),

where A∂ is the global attractor for T (t) on ∂X0 . It is easy to see that

∂X0 = M1 ∪M2∪M3∪M4 ∪M5,

where:

M1 = {(S, I,N2) : S > 0, I > 0,N2 = 0},
M2 = {(S, I,N2) : S > 0, I = 0,N2 = 0},
M3 = {(S, I,N2) : S > 0, I = 0,N2 > 0},
M4 = {(S, I,N2) : S = 0, I � 0,N2 > 0},
M5 = {(S, I,N2) : S = 0, I = 0,N2 � 0}.

Mi is invariant. Analyzing the dynamics of system (1.2) in Mi respectively, one verifies
the following assertions: QSI is a global attractor in M1 ; QS is a global attractor in M2 ;
QSN2 is a global attractor in M3 ; QN2 is a global attractor in M4 ; O is a global attractor
in M5 . It then follows that {QSI,QS,QSN2 ,QN2 ,O} is isolated and is an asyclic covering
of A∂ . By the Theorem 4.1 of [7], we only need to show that Ws(QS)∩ X0 = /0 ,
Ws(QSN2)∩X0 = /0 , Ws(QN2)∩X0 = /0 , Ws(O)∩X0 = /0 .

Now we show that Ws(QS)∩X0 = /0 . As shown in Subection 4.2, there are three
eigenvalues of JS . One of them is negative and the other two are positive under condi-
tion (5.10) and R̂0 > 1. The negative eigenvalue −r1 corresponds to an eigenvector of
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the form [1,0,0] , and hence corresponds to solutions that remain in the boundary ∂X0 .
Thus the stable set of this constant solution QS does not intesect X0 . Similar argument
applies to QSI , QSN2 , QN2 , and O . By Theorem 4.1 of [7], we conclude that ∂X0 is a
strong repeller for X0 and system (1.2) is uniformly persistent.

THEOREM 10. If R0 � 1 , then the disease-free equilibrium QSN2 is globally asymp-
totically stable in intR3

+ .

Proof. Because R0 � 1, we have I(t) → 0 as t → +∞ . The limiting case of sys-
tem (1.2) is the two dimensional competitive Lotka-Volterra system (1.1). For system
(1.1) with inequalities (5.10), we know that (Ŝ, N̂2) is globally asymptotically stable in
intR2

+ . Thus, QSN2 is globally asymptotically stable in intR3
+ .

The assumption R0 � 1 of Theorem 10 seems too strong. It is formulated in terms
of the basic reproduction number R0 for the single-species SI-model and not in terms
of the basic reproduction number R̂0 for the two-species model under consideration.
Furthermore, one can easily check that if R̂0 < 1 < R0 , then QSN2 is the only stable
equilibrium. Therefore, both our biological and mathematical intuition lead us to the
following conjecture.

CONJECTURE 1. If R̂0 � 1, then the disease-free equilibrium QSN2 is globally
asymptotically stable in intR3

+ .

THEOREM 11. If R̂0 > 1 and if
(

a12a21

a22a11
,
a11a22

a12a21

)⋂(
λ +a11

a11
,

a11

λ −a11

)
�= /0, (5.14)

then the coexistence endemic disease equilibrium QSIN2 is globally asymptotically sta-
ble in intR3

+ .

Proof. The Jacobian matrix J associated with a general solution (S(t), I(t),N2(t))
to system (1.2) is

J =

⎡
⎣ S′/S−a11S −(a11 + λ )S −a12S

(λ −a11)I I′/I−a11I −a12I
−a21N2 −a21N2 N′

2/N2−a22N2

⎤
⎦ ,

and its second additive compound matrix J[2] is

J[2] =

⎡
⎢⎣

j[2]
11 −a12I a12S

−a21N2 j[2]
22 −(a11 + λ )S

a21N2 (λ −a11)I j[2]
33

⎤
⎥⎦ ,

where

j[2]
11 = S′/S+ I′/I−a11S−a11I,
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j[2]
22 = S′/S+N′

2/N2−a11S−a22N2,

j[2]
33 = I′/I +N′

2/N2 −a11I−a22N2.

We introduce the function P(S, I,N2) = diag(p1, p2, p3) , where p1 , p2 , p3 are
positive parameters. Then Pf P−1 = 0 and matrix B = Pf P−1 +PJ[2]P−1 is

B =

⎡
⎢⎣

j[2]
11 −k1a12I/k2 k1a12S/k3

−k2a21N2/k1 j[2]
22 −k2(a11 + λ )S/k3

k3a21N2/k1 k3(λ −a11)I/k2 j[2]
33

⎤
⎥⎦ .

Let (u,v,w) denote the vectors in R
3 ∼= R

(32) , we select a norm in R
3 as |(u,v,w)|=

max{|u|, |v|, |w|} , then the Lozinskii measure μ of B with respect to this l∞ norm can
be calculated by adding the absolute value of the off diagonal elements to the diagonal
one in each column of B , and then take the maximum of the three sums, see [13]. We
thus obtain

μ(B) = max

⎛
⎝ S′/S+ I′/I−q1S−q2I

S′/S+N′
2/N2 −q3S−q4N2

I′/I +N′
2/N2−q5I−q6N2

⎞
⎠ ,

where

q1 = a11− p1a12/p3,

q2 = a11− p1a12/p2,

q3 = a11− p2(a11 + λ )/p3,

q4 = a22− p2a21/p1,

q5 = a11− p3(λ −a11)/p2, and

q6 = a22− p3a21/p1.

Let qi > 0 for i = 1,2, ...,6. We get

a12a21

a11a22
<

p3

p2
<

a11a22

a12a21
,

λ +a11

a11
<

p3

p2
<

a11

λ −a11
.

So, if (
a12a21

a22a11
,
a11a22

a12a21

)⋂(
λ +a11

a11
,

a11

λ −a11

)
�= /0,

we can choose suitable values of pi to ensure that qi > 0. Since system (1.2) is uni-
form persistent when R̂0 > 1, there exists a constant c and T0 > 0 independent of
(S(0), I(0),N2(0)) ∈ K , the compact absorbing set, such that

S(t) > c, I(t) > c,and N2(t) > c for t > T0.

Thus, for each solution (S(t), I(t),N2(t)) of (1.2) with (S(0), I(0),N2(0))∈K and
for t > T0 , we have

1
t

∫ t

0
μ(B)ds <

1
t

∫ T0

0
μ(B)ds+

1
t
(log

S(t)
S(T0)

+ log
I(t)
I(T0)

)−q1c−q2c,



516 MATS GYLLENBERG, XIAOLI LIU AND PING YAN

which implies q2 < −(q1 +q2)c/2 < 0. This completes the proof.

EXAMPLE 3. We take

r1 = 3.8, r2 = 4, a11 = 2, a21 = 2, a12 = 1, a22 = 2.5 and uI = 0.2.

Then � = 3, R̂0 = 11λ/24 < R0 = 19λ/40. In Figure 6, when λ = 2, R0 < 1, the
disease free equilibrium QSN2 is globally asymptotically stable. When λ = 2.15, R̂0 <
1 < R0 , QSI becomes biologically feasible, but unstable. The disease-free equilibrium
QSN2 is locally stable. This supports our conjecture 1.

When λ = 2.5, R̂0 > 1 and condition (5.14) holds, the coexistence endemic equi-
librium QSIN2 exists and is globally stable. When λ = 6, R̂0 > 1 and condition (5.14)
does not hold, and from the bottom right of Figure 6, it seems that QSIN2 is still globally
stable, but we have not been able to prove it.

The numerical simulations accounted for in Example 3 lead us to the following
conjecture.

CONJECTURE 2. QSIN2 is globally asymptotically stable in intR3
+ if R̂0 > 1.
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Figure 6: Dynamics of system (1.2) with λ = 2(top left), λ = 2.15(top right), λ =
2.5(bottom left) and λ = 5(bottom right).
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5.4. Case D

Throughout this section we assume that

r1a21 < r2a11 and r1a22 < r2a12. (5.15)

THEOREM 12. If

(a12 +a21)2 < 4a22a11, (5.16)

then QN2 is a globally asymptotically stable equilibrium of system (1.2) in intR3
+ .

Proof. Let n∗2 = r2/a22 and consider the Lyapunov function

V (S, I,N2) = N2−n∗2−n∗2 log
N2

n∗2
+S+ I

defined on the positive orthant. Note that V is nonnegative.
Its time derivative along the trajectories of system (1.2) is

V ′(S, I,N2) = N′
2 −n∗2

N′
2

N2
+S′+ I′

� (N2 −n∗2)(r2 −a21N1 −a22N2)+N1(r1 −a11N1 −a12N2)
= (N2 −n∗2)(r2 −a21N1 −a22N2)+N1(−a12(N2 −n∗2)

−a11N1 + r1−a12n
∗
2)

� −a22(N2 −n∗2)
2− (a21 +a12)N1(N2 −n∗2)−a11N

2
1 +(r1−a12n

∗
2)N1.

From the second inequality of (5.15), we know that r1 −a12n∗2 < 0. So we have

V ′(S, I,N2) � −a22(N2 −n∗2)
2 − (a21 +a12)N1(N2 −n∗2)−a11N

2
1 ,

if (a21 +a12)2 < 4a22a11 , we have

V ′(S, I,N2)) � 0 for all {(S, I,N2) : S � 0, I � 0,N2 > 0} .

From the above analysis, we notice that only at QN2 one has V ′(S, I,N2) = 0. This
proves the global stability of QN2 in intR3

+ .

THEOREM 13.

(i) QN2 is locally stable and it is globally asymptotically stable in intR3
+ if R0 � 1 .

(ii) QSI exists if R0 > 1 , and it is unstable.

(iii) System (1.2) has no interior equilibrium QSIN2 .
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Proof. Regarding statement (i), it is easy to check the global stability as we have
done in former sections. The local stability, we get from the results of Section 4. As to
statement (ii), QSI exists if R0 > 1. We showed in Subsection 4.2 that once QSI existed
it was locally stable if r2−a21(r1 +uI)/λ < 0, which means that R0 < r1a21/(r2a11) <
1. So if QSI exists, it is unstable. To prove statement (iii), assume that N∗

2 > 0. If
� > 0, then I∗ < 0 by the second inequality of (5.15), if � < 0, then I∗ < 0 by the
first inequality of (5.15). Hence system (1.2) has no interior equilibrium.

By Theorem 13, QN2 is the only locally stable equilibrium. An increase of R0

gives rise to QSI , but it is unstable. Moreover, an increase of R0 does not give rise
to an interior equilibrium. Furthermore, in the two-species model without disease, the
boundary equilibrium without species 1 is globally asymptotically stable. The sufficient
conditions in Theorem 13 are formulated in terms of the “wrong” basic reproduction
number. Hence both mathematical and biological arguments make the following con-
jecture feasible.

CONJECTURE 3. QN2 is globally asymptotically stable in intR3
+ whenever (5.15)

holds.

6. Discussion

In this paper we have investigated a model for two competing species in which one
species can be affected by an infectious disease that increase the mortality of infected
individuals. We have proven results on global stability of steady states, permanence and
Hopf bifurcation. As is usual in the theory of infectious diseases, we have formulated
most of our results in terms of the basic reproduction number, that is, the expected
number of secondary cases produced by one infected individual in an otherwise disease
free population at equilibrium. As a matter of fact, we have had to deal with two
different reproduction numbers evaluated at different disease free equilibria. Some of
our results are what one would expect, for instance that the disease free steady state is
globally asymptotically stable if the basic reproduction number is less than or equal to
one. In other cases we have only been able to prove results that appear to be too weak
because we have either formulated them in terms of the “wrong” reproduction number
or added technical assumptions with no biological interpretation. In these case we have
formulated precise conjectures of stronger results that we believe to be true.

In our analysis we have applied mathematical methods and results, e.g., the robust
Bendixson criterion of Li and Muldowney [13], that as far as we know have not been
used in mathematical epidemiology before.
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