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ASYMPTOTIC OUTPUT CONTROLLABILITY

VIA DYNAMIC MATRIX CONTROL

ÁDÁM BESENYEI AND PÉTER L. SIMON

(Communicated by Michal Fečkan)

Abstract. Motivated by industrial applications, we investigate the so-called Dynamic Matrix
Control (DMC) strategy for single-input single-output linear continuous-time time-invariant sys-
tems. DMC is a type of Model Predictive Control based on the step response model of the pro-
cess. We show that if the process is governed by a one-dimensional stable dynamical system,
then the method drives the output of the sampled system into the desired setpoint as time goes to
infinity, that is, the system is asymptotically output controllable with DMC. For two-dimensional
systems, sufficient condition on the asymptotic output controllability is given.

1. Introduction

Model Predictive Control (or Receding Horizon Control) designates a wide range
of control methods which make an explicit use of a model of the process to obtain the
control signal by minimizing an objective function. The common idea is the reced-
ing strategy which means that the objective function is minimized by considering also
future control actions along the so-called prediction horizon but only the first control
signal is applied to the system, then the horizon is displaced towards the future and the
next control signal is recalculated. The various MPC algorithms only differ amongst
themselves in the model used to represent the process, the noises and the cost function.
There are many areas of industrial applications of MPC, for example chemicals, food
processing, automotive and aerospace applications, see the survey papers [7, 15]. For
further details on Model Predictive Control, see the monographs [3, 11].

In view of the main idea of the Model Predictive Control strategy it is clear that the
process model plays an important role in the method. There are many types of models
used, one of which is the so-called step response model. If u(t) and y(t) denote the
input and output variables, respectively, then the step response model of the system is

y(t) =
∞

∑
i=1

giΔu(t− i)
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where the constants gi form the sampled output of the system when a step is applied in
the control variabe u . For stable systems one may take a truncated response and with
this model the control signal can be calculated by minimizing the objective function
along the prediction horizon. The step response model is used by the Dynamic Matrix
Control algorithm which was developed at the end of the seventies by Cutler and Ra-
maker, see [5, 6]. It became a successful and widely used technique in industrial and
engineering applications, see, e.g., [2, 4, 13]. However, this method got less attention
by the mathematical viewpoint, we are aware only a few papers dealing with the al-
gorithm in a pure mathematical way, investigating its stability, see [9, 18]. Hence our
motivation in this paper is theoretical, we would like to understand under what condi-
tions does the method drive the output of the system into the desired setpoint. Since
this question has not been investigated in detail from the rigorous mathematical point
of view, we study the DMC strategy that belongs to the ”first generation” of the MPC
method, described in several survey papers as ”the past of MPC”, and leave the rigorous
mathematical investigation of more sophisticated strategies as an object of future work.

The aim of the present paper is the analysis of the algorithm of DMC for single-
input single-output (SISO) linear continuous-time time-invariant systems. We apply the
DMC as a sampled control, i.e., the continuous system is observed at discrete instants,
and the control is kept constant along a step. We are interested in the convergence of the
method, more precisely, when the algorithm drives the output of the system into the de-
sired setpoint as time goes to infinity, that is, when the system is asymptotically output
controllable with DMC. We show that if the underlying system is one-dimensional and
it is stable then it is also asymptotically output controllable with DMC (see Theorem
2 and 3). For two-dimensional systems sufficient condition on the asymptotic output
controllability will be given (see Theorem 4). The new features of our approach are
as follows. On one hand, estimates on the rate of convergence will also be established
for both cases. On the other hand, our considerations are self-contained and the tech-
niques used are mainly elementary, making our approach more accessible for a broader
audience.

The paper is organized as follows. In Section 2, we give a brief introduction to the
basic theory of Dynamic Matrix Control. In Section 3, the method is described when
the state-space representation of the underlying system is known. In Sections 4 and 5,
asymptotic output controllability of one-dimensional systems is discussed and Section
6 is devoted to the asymptotic output controllability of two-dimensional systems.

2. The step response model and prediction

2.1. Basics of DMC

In this section we briefly summarize the basics of Dynamic Matrix Control, see
[3, 11] for details.

Suppose we have a SISO linear discrete-time time-invariant system with input u(t)
and output y(t) (t ∈ Z). The unit step response of the system is generated by the unit
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step control

u(t) =
{

0, if t � 0,
1, if t > 0

assuming (without loss of generality) that y(0) = 0. Denote gi = y(i) (i = 0,1, . . .) ,
where obviously g0 = 0, then according to the step response model the system is de-
scribed by the equation

ymodel(t) =
∞

∑
i=1

giΔu(t− i) (2.1)

where Δu(t) = u(t)−u(t −1) is the control effort at instant t . Therefore, it is natural
to define the predicted output of the system at time (t + k) calculated at instant t by

ŷ(t + k|t) =
∞

∑
i=1

giΔu(t + k− i)+ n̂(t + k|t)

where n̂(t + k|t) denotes the predicted disturbance at time (t + k) calculated at instant
t . We assume that the disturbance is constant along the prediction and it is equal to
the difference of the measured output and the value given by the model (2.1), that is,
n̂(t + k|t) = n̂(t|t) = ymeas(t)− ymodel(t) . This implies that

ŷ(t + k|t)

=
k

∑
i=1

giΔu(t + k− i)+
∞

∑
i=k+1

giΔu(t + k− i)+ ymeas(t)−
∞

∑
i=1

giΔu(t− i)

=
k

∑
i=1

giΔu(t + k− i)+ f (t + k)

where

f (t + k) = ymeas(t)+
∞

∑
i=1

(gk+i−gi)Δu(t− i)

is the so-called free response of the system, i.e., the part of the response that does
not depend on the future control actions. We assume that the system is stable, that
is, limt→∞ y(t) exists, so that there is N such that gi ≈ gN for i � N . We call N the
sampling time (i.e., the coefficients of the step response tend to a constant value after
N sampling periods). Clearly, if N exists, then the free response can be calculated as

f (t + k) = y(t)+
N

∑
i=1

(gk+i−gi)Δu(t− i) (2.2)

where we use the convention gi = gN for i � N .
Suppose now that we want to predict the output of the system for p instants ahead,

p is called the prediction horizon, and we take m control actions (m � p) along this
horizon. Then the predictions are

ŷ(t +1|t) = g1Δu(t)+ f (t +1)
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ŷ(t +2|t) = g2Δu(t)+g1Δu(t +1)+ f (t +2)
...

ŷ(t + p|t) =
p

∑
i=p−m+1

giΔu(t + p− i)+ f (t + p),

which can be written in the matrix form

ŷ = GΔu+ f

where we denote ŷ = (ŷ(t +1|t), . . . , ŷ(t + p|t)) , Δu = (Δu(t), . . . ,Δu(t +m−1)) and
f = ( f (t +1), . . . , f (t + p)) , further,

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 0 . . . 0
g2 g1 . . . 0
...

...
. . .

...
gm gm−1 . . . g1
...

...
. . .

...
gp gp−1 . . . gp−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the dynamic matrix of the system (which is a p×m matrix).
Assume that a reference trajectory w(t) is given and the control signal is deter-

mined such that the following (quadratic) objective function is minimized:

J =
p

∑
i=1

(ŷ(t + i|t)−w(t + i))2 +
m

∑
i=1

λ (Δu(t + i−1))2

= |GΔu+ f−w|2 + λ |Δu|2
(2.3)

with λ � 0. We note that the second sum of (2.3) penalizes the large control efforts.
If there are no other constraints on the control variable then the minimum point of the
function (2.3) is obtained by simple differentiation, and we find that

Δu = (GT G+ λ I)−1GT (w− f). (2.4)

(If there are other constraints on the control, for instance, umin � u(t) � umax for every
t , then the minimum may be obtained by numerical optimization.) Remember that only
u(t) is applied to the system, the control law is recalculated at the next instant by using
the above method. Below we consider the method in two special cases.

2.2. Constant reference trajectory with λ = 0

In what follows, we suppose that the reference trajectory is constant, i.e., w(t) =
w ∈ C is the setpoint. Further, let p = m (i.e., at each instant of the prediction horizon
a control action is taken) and λ = 0 in the objective function (2.3). In this case G is a
square matrix thus (2.4) implies that if G−1 exists (which is equivalent to g1 �= 0) then
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the control effort vector should be Δu = G−1(w− f) . Recall that we only need the first
entry of Δu . Observe that G−1 is a lower triangular matrix with upper left corner entry
1/g1 thus

u(t)−u(t−1) =
1
g1

(w− f (t +1))

hence

u(t) = u(t−1)+
1
g1

(w− f (t +1)).

Now from (2.2) we obtain that

u(t) =
1
g1

(w− y(t))+
N

∑
i=1

2gi−gi−1−gi+1

g1
u(t− i). (2.5)

Recall that we use the convention gN+1 = gN , further, g1 �= 0 is assumed.

2.3. Constant reference trajectory with λ > 0

Let us consider another special case when λ > 0, further, p = m = 1 (i.e., the
prediction horizon is 1 and 1 control action is taken). Then G = [g1] so (2.4) implies
that

u(t)−u(t−1) = (GT G+ λ I)−1GT (w− f (t +1))

=
g1

g2
1 + λ

(w− f (t +1)).
(2.6)

Assuming g1 �= 0 and introducing 0 < μ = g2
1/(g2

1 + λ ) � 1, equation (2.6) may be
written as

u(t) = u(t−1)+
μ
g1

(w− f (t +1))

and so

u(t) =
μ
g1

(w− y(t))+
(

μ
g1−g2

g1
+1
)
u(t−1)

+
N

∑
i=2

μ
2gi−gi−1−gi+1

g1
u(t− i).

(2.7)

Notice that for μ = 1 (i.e., for λ = 0) equation (2.7) yields (2.5).

3. State-space representation and asymptotic output controllability

3.1. The continuous process

Suppose that a SISO linear continuous-time time-invariant system is given in the
following state-sapce representation:

ẋ(t) = Ax(t)+Bu(t) (3.1)

y(t) = Cx(t) (3.2)
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where A ∈ Cn×n is the state matrix, B ∈ Cn×1 is the input matrix, C ∈ C1×n is the
output matrix, further, x(t) ∈ Cn is the state variable, u(t) ∈ C is the control (input)
variable and y(t) ∈ C is the observed (output) variable, see [17]. We assume that A
is diagonalizable and has no zero eigenvalues, i.e., there exists an invertible P ∈ Cn×n

such that P−1AP = Λ where Λ is diagonal with nonzero diagonal entries. Then the
system (3.1)-(3.2) can be reformulated as

(P−1x)̇ = (P−1AP)(P−1x)+ (P−1B)u (3.3)

y = (CP)(P−1x). (3.4)

Therefore, by introducing the new state variable P−1x , the new state matrix P−1AP =
Λ , the new input matrix P−1B and the new ouput matrix CP , we may assume that A is
diagonal. If the control variable is constant, u(t) = u ∈ C , then the solution of (3.1) is
given by

x(t) = eAtx(0)+ (eAt − I)A−1Bu. (3.5)

3.2. The sampled process

Now we construct a sampled version of the continuous process by measuring y at
discrete instants (without noises). We choose a time step τ and in what follows, for
simplicity, time is measured in integers, t = j ∈ Z means that we are at instant jτ .
Supposing that u is held constant along the interval [ jτ,( j+1)τ] , the solution formula
(3.5) yields the following discretized form of (3.1):

x(t) = eAτx(t−1)+ (eAτ − I)A−1Bu(t−1). (3.6)

The step response of the system is obtained by applying a step in the control variable,
from (3.5) it follows that for i = 0,1, . . . ,N ,

gi = Cx(i) = Cx(0)+C((eAτ)i − I)A−1B = C((eAτ)i − I)A−1B (3.7)

where Cx(0) = y(0) = 0 by assumption in case of generating the step response. We
further assume that gi = gN for i > N .

3.3. The DMC algorithm for the sampled process

We are interested in the case when the system (3.1) is stable, i.e., the eigenvalues of
A lie in the open left half plane, so that at the stationary state x = −A−1Bu . Therefore,
if the output of system is driven into the setpoint y = w , then w = −CA−1Bu hence
u = −w/CA−1B and x = A−1Bw/CA−1B . Thus, in case CA−1B �= 0, it is convenient
to reformulate the recurrences (3.6) and (2.7) in terms of

x̃(t) = x(t)− A−1Bw
CA−1B

and ũ(t) = u(t)+
w

CA−1B
. (3.8)

We obtain

x̃(t) = eAτ x̃(t−1)+ (eAτ − I)A−1Bũ(t−1), (3.9)
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ũ(t) = − μ
g1

Cx̃(t)+
(

μ
g1−g2

g1
+1

)
ũ(t−1)

+
N

∑
i=2

μ
2gi−gi−1−gi+1

g1
ũ(t− i).

(3.10)

Finally, the substitution of equation (3.9) into (3.10) and g1 = C(eAτ − I)A−1B yield
the following recurrences

x̃(t) = eAτ x̃(t−1)+ (eAτ − I)A−1Bũ(t −1) (3.11)

ũ(t) = − μ
g1

CeAτ x̃(t−1)+
(

μ
g1−g2

g1
+1− μ

)
ũ(t−1)

+
N

∑
i=2

μ
2gi−gi−1−gi+1

g1
ũ(t− i).

(3.12)

Introducing
v(t) = (x̃(t), ũ(t), . . . , ũ(t−N +1)) ∈ C

n+N (3.13)

the recurrences (3.11) and (3.12) may be written in the form

v(t) = MNv(t−1) (3.14)

where the (N +n)× (N+n) matrix MN has the block-matrix form

MN =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

eAτ (eAτ − I)A−1B 0 . . . 0 0

− μCeAτ

g1
μ g1−g2

g1
+1− μ μ 2g2−g1−g3

g1
. . . μ 2gN−1−gN−2−gN

g1
μ 2gN−gN−1−gN+1

g1

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.15)
So we obtained that the Dynamic Matrix Control algorithm is equivalent to the iteration
(or difference equation) (3.14).

3.4. Asymptotic output controllability

The iteration is said to be (exponentially) stable if v(t)→ 0 as t → ∞ for every ini-
tial value v(0) . Regarding the stability of difference equations we recall the following
well-known result, see [8].

THEOREM 1. Let Q∈ Ck×k . Then lim j→∞ Qjz = 0 for every z ∈Ck if and only if
lim j→∞ Qj = 0 and this occurs if and only if ρ(Q) < 1 where ρ(Q) = maxi=1,...,n |λi| is
the spectral radius of Q (sometimes such a Q is called a discrete-time Hurwitz matrix).
Moreover, for every fixed norm ‖ · ‖ and for every ε > 0 there exists j0 such that for
j � j0 and z ∈ Ck

‖Qjz‖ � (ρ(Q)+ ε) j‖z‖.
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If the difference equation is exponentially stable, then it means that the DMC
algorithm is also convergent, that is, for every setpoint w , it drives the output of the
system into w as t → ∞ . We say that the system (3.1)-(3.2) is asymptotically output
controllable with DMC (see [17]). Moreover, for fixed instant t ,

‖v(t + j)‖ = ‖M j
Nv(t)‖ � ‖M j

N‖‖v(t)‖

and
|ỹ(t + j)| = |Cx̃(t + j)| � ‖C‖‖v(t + j)‖

hence
|y(t + j)−w|� C · (ρ(MN)+ ε) j ( j � j0)

where the constant C does not depend on ε and j0 (it depends on C and v(t) , that is,
the state of the system at instant t and the controls applied before t ).

We note that if the output can be driven to any setpoint in finite time by a suit-
able control then the system is called output controllable. A necessary and sufficient
condition, the so-called Kalman rank condition, for output controllability of the system
(3.1)-(3.2) is that the matrix [

CB CAB . . . CAn−1B
]

has full rank (which is 1 in our case), see [17].
In Section 4, 5 and 6 we shall analyze the asymptotic output controllability for

dimension n = 1 and n = 2, respectively. We compute the characteristic polynomial of
the matrix MN and study the location of its zeros. The locus of roots of a polynomial
with respect to the unit circle centered at the origin has an extensive theory, several
criteria are known, see [10] for a detailed discussion. However, our consideration will
be self-contained and elementary. We give sufficient conditions on the convergence of
the above control strategy and some estimates on the rate of convergence will be also
established (see Theorem 2, 3 and 4).

4. The one-dimensional case with λ = 0

In this section we consider the case when n = 1 in the state space representation
(3.1)-(3.2) so A,B,C are constants, further, p = m (i.e., at each instant of the prediction
horizon a control action is taken) and λ = 0 (so μ = 1) in the objective function (2.3)
(see Subsection 2.2). Furthermore, the cases B = 0 and C = 0 are out of interest since
then the system is not controllable. The matrix MN defined by (3.15) reduces to

M̃N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

eAτ g1
C 0 . . . 0 0

−CeAτ

g1

g1−g2
g1

2g2−g1−g3
g1

. . .
2gN−1−gN−2−gN

g1

2gN−gN−1−gN+1
g1

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.1)
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Note that M̃N is not defined if g1 = 0 or C = 0. Clearly, g1 = 0 implies B = 0 or
C = 0 by the unique solvability of the equation (3.1) which has been excluded above.

In what follows, we establish explicit bounds for the spectral radius of M̃N by
calculating its characteristic polynomial and estimating its roots. For simplicity, denote
α := eAτ .

PROPOSITION 1. The characteristic polynomial of the (N +1)× (N +1) matrix
M̃N given by (4.1) is

p̃N(x) = (−1)N+1(xN+1 −αNx+ αN). (4.2)

We recall a well-known result from linear algebra, for the proof see [8].

LEMMA 1. The characteristic polynomial of the k× k matrix⎡
⎢⎢⎢⎢⎢⎣

ck−1 ck−2 . . . c1 c0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

is
(−1)k(xk − ck−1x

k−1 − . . .− c1x− c0).

Proof. [Proof of Proposition 1] By expanding det(M̃N −xI) along the first column
and using Lemma 1 it follows that

p̃N(x) = (−1)N(α − x)

(
xN − g1−g2

g1
xN−1 −

N

∑
i=2

2gi−gi−1−gi+1

g1
xN−i

)

+(−1)N−1αxN−1.

(4.3)

Now (3.7) implies that

g1−g2

g1
=

α −α2

α −1
= −α,

gN −gN−1

g1
=

αN −αN−1

α −1
= αN−1, (4.4)

further, for i = 2, . . . ,N−1,

2gi−gi−1−gi+1

g1
=

2α i −α i−1−α i+1

α −1
= α i−1−α i, (4.5)

so that from (4.3) it follows

p̃N(x) = (−1)N(α − x)

(
xN + αxN−1 +

N−1

∑
i=2

(α i −α i−1)xN−i −αN−1

)

+(−1)N−1αxN−1

= (−1)N+1(xN+1 −αNx+ αN).
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REMARK 1. Observe that p̃N does not depend on C which is not surprising, since
in the beginning one may suppose C = 1, otherwise we take x(t)/C instead of x(t) in
(3.1)-(3.2). Moreover, in the computation of pN we supposed A �= 0, however, it is
easily seen that the formula for pN is also valid in this case (by passing to the limit).

Furthermore, we see that if |α|< 1 (i.e., ReA< 0) and N is sufficiently large, then
pN is “close” to the polynomial (−1)N+1xN+1 which has only zero roots. Therefore, it
is plausible to think that for large N the roots of p̃N are “close” to 0, hence the roots
lie inside the unit circle. This argument can be made precise by using the well-known
Rouché’s theorem, see [1].

LEMMA 2. (Rouché’s theorem) Let Ω be a bounded region of the complex plane
and γ ⊂ Ω be a Jordan-curve (simple closed curve). Suppose that f0, f1 : Ω → C are
holomorphic functions such that | f0(z)− f1(z)| < | f0(z)| for z ∈ γ . Then f0 and f1
have the same number of zeros (counted by multiplicity) inside γ .

PROPOSITION 2. Suppose |α| < 1 . Then the absolute value of the (real or com-
plex) roots of p̃N given by (4.2) are less than

R = 3
1

N+1 |α| N
N+1 . (4.6)

Proof. We apply Rouché’s theorem with f0(z) = (−1)N+1zN+1 , f1(z) = pN(z)
and γ = {|z| = R} . Since for z ∈ γ we have |z| < 2 thus

| f0(z)− f1(z)| = |α|N |z−1|< 3|α|N = |z|N+1 = | f0(z)|,
therefore, p̃N(z) has the same number of roots inside γ as zN+1 , i.e., all the (N + 1)
roots of p̃N lie inside γ .

Since for |α| < 1 and sufficiently large N the bound (4.6) is less than 1, in view
of the arguments of Subsection 3.4 we obtain the main result of this section.

THEOREM 2. Consider the system described by (3.1)-(3.2) in one dimension with
A,B,C nonzero constants. Suppose that we want to drive the output of the system into
the setpoint w by using the Dynamic Matrix Control strategy with p = m (i.e., at each
instant of the prediction horizon a control action is taken) and λ = 0 in the objective
function (2.3): we measure y (without noises) at discrete instants with constant time
step τ > 0 and the stepwise constant control u is determined by (2.5) where the gi

constants are obtained from the step response of the system. If the system (3.1) is
stable, i.e. ReA < 0 , then there exists a sufficiently large sampling time N such that
the method drives the output of the system into the desired setpoint as t → ∞ , i.e., the
system is asymptotically output controllable with DMC. Moreover, for every fixed t and
ε > 0 small enough there exists k0 such that the following estimate holds:

|y(t + k)−w|� C · (R1 + ε)k (k � k0)

where
R1 = 3

1
N+1 (eAτ)

N
N+1
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and the constant C does not depend on ε and k0 (it depends on C, on the state of the
system at instant t and on the controls applied before t ).

REMARK 2. As it follows from the arguments of Subsection 3.4, the system (3.1)-
(3.2) is output controllable in one dimension if the matrix [CB] has full rank, i.e., CB �=
0. So Theorem 2 briefly says that a one-dimensional stable system which is output
controllable is also asymptotically output controllable with the DMC strategy.

5. The one-dimensional case with λ > 0

We suppose that in the objective function λ > 0, further, p = m = 1, i.e., the
prediction horizon is 1 and 1 control action is taken (see Subsection 2.3). Then the
method reduces to the iteration (3.14) with the matrix (3.15):

MN =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α g1
C 0 . . . 0 0

− μCα
g1

μ g1−g2
g1

+1− μ μ 2g2−g1−g3
g1

. . . μ 2gN−1−gN−2−gN
g1

μ 2gN−gN−1−gN+1
g1

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.1)

where α = eAτ as in the previous section. We calculate the characteristic polynomial
of M̃N and show that if μ is sufficiently close to 1 (i.e., λ is close to 0) then the
eigenvalues of M̃N lie inside the unit circle.

PROPOSITION 3. Let N � 2 . Then the characteristic polynomial of the (N +1)×
(N +1) matrix M̃N defined by (5.1) is

pN(x) = (−1)N+1(xN+1 − (1− μ)(α +1)xN

+(1− μ)αxN−1− μαNx+ μαN). (5.2)

Proof. Analogously to the proof of Proposition 1, by expanding the determinant
det(MN −xI) along the first column and using Lemma 1 and the expressions (4.4), (4.5)
it follows that

pN(x) = (−1)N(α − x)
(

xN +(μα −1+ μ)xN−1

+
N−1

∑
i=2

μ(α i −α i−1)xN−i − μαN−1
)

+(−1)N−1μαxN−1

= (−1)N+1(xN+1 − (1− μ)(α +1)xN +(1− μ)αxN−1− μαNx+ μαN).
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REMARK 3. For μ = 1 (i.e., for λ = 0), we have pN = p̃N , and for μ = 0 (i.e.,
as λ → +∞), pN(x) = (−1)N+1xN−1(x−α)(x− 1) which has all roots on the closed
unit disk for |α| < 1. Therefore, we expect that in case |α| < 1 and for sufficiently
large N , the roots of pN lie inside the unit circle.

PROPOSITION 4. For every |α| < 1 there exist a sufficiently large N and 0 �
μ∗ < 1 such that for all μ∗ � μ � 1 the roots of the polynomial pN lie inside the circle
{|z| = R} where R is given by (4.6).

Proof. By Proposition 2 the roots of p̃N lie inside a circle centered at the origin
having radius R given by (4.6). If |α| < 1 and N is sufficiently large, this radius is
less than 1. We show that if μ � μ∗ for some μ∗ , then the roots of pN lie inside this
circle, as well. We apply Rouché’s theorem with f0(z) = p̃N(z) , f1(z) = pN(z) and
γ = {|z| = R} . We have to verify that for |z| = R ,

(1− μ)|(α +1)zN −αzN−1−αNz+ αN | < |zN+1 −αNz+ αN |. (5.3)

For |α| < 1 and |z| = R < 1 it follows that

|zN+1 −αNz+ αN | � |z|N+1 −|α|N −|α|N = |α|N > 0,

further, obviously

(1− μ)|(α +1)zN −αzN−1−αNz+ αN | � (1− μ)5RN,

therefore, (5.3) holds true if
(1− μ)5RN < |α|N ,

or equivalently

1− μ <
1
5
3−

N
N+1 |α| 1

N+1 .

Now, the main result of this section follows.

THEOREM 3. Consider the system described by (3.1)-(3.2) in one dimension with
nonzero constants A,B,C. Suppose that we want to drive the output of the system into
the setpoint w by using the Dynamic Matrix Control strategy with p = m = 1 (i.e.,
the prediction horizion is 1 and 1 control action is taken) and λ > 0 in the objective
function (2.3): we measure y (without noises) at discrete instants with constant time
step τ > 0 and the stepwise constant control u is determined by (2.7) where the gi

constants are obtained from the step response of the system. If the system (3.1) is
stable, i.e. ReA < 0 , then there exist a sufficiently large sampling time N and λ ∗ > 0
such that for every 0 � λ � λ ∗ the method drives the output of the system into the
desired setpoint as t → ∞ , i.e., the system is asymptotically output controllable with
DMC. Moreover, for every fixed t and ε > 0 small enough there exists k0 such that the
following estimate holds:

|y(t + k)−w|� C · (R1 + ε)k (k � k0)
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where
R1 = 3

1
N+1 (eAτ)

N
N+1

and the constant C does not depend on ε and k0 (it depends on C, on the state of the
system at instant t and on the controls applied before t ).

6. Two-dimensional case

In this Section we suppose that n = 2 in the representation (3.1)-(3.2) of the pro-
cess, p = m (i.e., at each instant of the prediction horizon a control action is taken) and
λ = 0 in the objective function (2.3). Let

A =
[

λ1 0
0 λ2

]
, B =

[
b1

b2

]
, C =

[
c1 c2

]
.

(Recall that CA−1B �= 0 is supposed, in order to x̃(t) and ũ(t) be well-defined, see
(3.8).) Then by (3.7), for i = 0,1, . . . ,N we have

gi =C((eAτ )i − I)A−1B = c1b1
α i

1 −1
λ1

+ c2b2
α i

2 −1
λ2

(6.1)

where we used the notation α j = eλ jτ ( j = 1,2) . As before, we assume that gi = gN

for i > N . This case the matrix MN defined by (3.15) takes the form

MN =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 0 b1
α1−1

λ1
0 . . . 0 0

0 α2 b2
α2−1

λ2
0 . . . 0 0

− c1α1
g1

− c2α2
g1

g1−g2
g1

2g2−g1−g3
g1

. . .
2gN−1−gN−2−gN

g1

2gN−gN−1−gN+1
g1

0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(6.2)

An analogue of Proposition 1 is the following.

PROPOSITION 5. Let N � 4 . Then the characteristic polynomial of the (N +2)×
(N +2) matrix MN given by (6.2) is

pN(x) = (−1)N+2
(

xN+2 −
(

α1 + α2 +
g1−g2

g1

)
xN+1 + γ2x

2 + γ1x+ γ0

)

where γi = O(|α1|N + |α2|N) .
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Proof. By expanding det(MN − xI) along the first two columns we find that

pN(x) = (α1 − x)(α2− x)qN(x)+ (α1− x)
c2b2α2(α2 −1)

g1λ2
(−x)N−1

+(α2− x)
c1b1α1(α1 −1)

g1λ1
(−x)N−1

= (α1 − x)(α2− x)qN(x)+ (−1)N+1 g1−g2

g1
xN +(−1)N+1α1α2x

N−1

where qN(x) is the characteristic polynomial of the N×N matrix⎡
⎢⎢⎢⎢⎢⎣

g1−g2
g1

2g2−g1−g3
g1

. . .
2gN−1−gN−2−gN

g1

2gN−gN−1−gN+1
g1

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

which is

qN(x) = (−1)N
(

xN − g1−g2

g1
xN−1 − 2g2−g1−g3

g1
xN−2 − . . .

− 2gN −gN−1−gN+1

g1

)

due to Lemma 1. Clearly, the constant term in pN is

γ0 = (−1)N+1α1α2
gN −gN−1

g1
,

the coefficient of x is

γ1 = (−1)N+2(α1 + α2)
gN −gN−1

g1
+(−1)N+1α1α2

2gN−1−gN−2−gN

g1
,

and the coefficient of x2 is

γ2 = (−1)N+1 gN −gN−1

g1
+(−1)N+2(α1 + α2)

2gN−1−gN−2−gN

g1

+(−1)N+1α1α2
2gN−2−gN−3−gN−1

g1
.

Now by (6.1) it is clear that |γi|� β ·(|α1|N + |α2|N) where the constant β may depend
on ci,bi,αi (i = 1,2) but not on N . The coefficient of xN+1 is also clear since it is
−TrMN . So it remains to verify that the coefficient of x j is zero for j not being the
above specific values. Then the coefficient of x j is

γ j = (−1)N+1 2gN− j+2−gN− j −gN− j+3

g1
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+(−1)N+2(α1 + α2)
2gN− j+1−gN− j −gN− j+2

g1

+(−1)N+1α1α2
2gN− j −gN− j−1−gN− j+1

g1
.

Since in general gi − gi−1 = C((eAτ)i − (eAτ)i−1)A−1B , and the characteristic polyno-
mial of eAτ is x2 − (α1 + α2)x+ α1α2 , therefore, by the Cayley-Hamilton theorem it
follows

(gi−gi−1)−(α1 + α2)(gi−1−gi−2)+ α1α2(gi−2−gi−3)

= C
(
(eAτ)i−2 − (eAτ)i−3

)(
(eAτ)2 − (α1 + α2)eAτ + α1α2

)
A−1B

= 0

which yields γ j = 0.

PROPOSITION 6. Suppose |αi| < 1 ( i = 1,2) , further,∣∣∣∣α1 + α2 +
g1−g2

g1

∣∣∣∣< 1.

Then for every ε > 0 there is a sufficiently large N∗ such that for all N � N∗ all the
(N+2) eigenvalues of the matrix (6.2) lie inside the circle centered at the origin having
radius R2 + ε where

R2 =
∣∣∣∣α1 + α2 +

g1−g2

g1

∣∣∣∣ .
Proof. We apply Rouché’s theorem for pN(z) =: f1(z) the characteristic polyno-

mial of MN and

f0(z) := (−1)N+2
(

zN+2 −
(

α1 + α2 +
g1−g2

g1

)
zN+1

)

which has all zeros inside the circle with radius R2 + ε . Since for fixed |z| , by Propo-
sition 5 it follows

| f0(z)− f1(z)| = O(|α1|N + |α2|N) → 0 as N → ∞,

therefore, for sufficiently large N and |z| = R2 + ε ,

| f0(z)− f1(z)| < | f0(z)| =
∣∣∣∣z− (α1 + α2)− g1−g2

g1

∣∣∣∣� ε.

Hence f0 and f1 have the same number of zeros inside the circle {|z| = R2 + ε} .
Now we obtain the main result of this section.
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THEOREM 4. Consider the system described by (3.1)-(3.2) in two dimensions with
diagonal matrix A having eigenvalues λ1,λ2 . Suppose that we want to drive the output
of system into the setpoint w by using the Dynamic Matrix Control strategy with p =
m (at each instant of the prediction horizon a control action is taken) and λ = 0 in
the objective function (2.3): we measure y (without noises) at discrete instants with
constant time step τ > 0 and the stepwise constant control u is determined by (2.7)
where the gi constants are obtained from the step response of the system and g1 �= 0 .
If the system (3.1) is stable, i.e. Reλi < 0 (i = 1,2) , further, CA−1B �= 0 and

R2 :=
∣∣∣∣eλ1τ + eλ2τ +

g1−g2

g1

∣∣∣∣< 1, (6.3)

then there exists a sufficiently large sampling time N such that the method drives the
output of the system into the desired setpoint as t → ∞ , i.e., the system is asymptotically
output controllable with DMC. Moreover, for every fixed t and ε > 0 small enough
there exists k0 such that the following estimate holds:

|y(t + k)−w|� C · (R2 + ε)k (k � k0)

where the constant C does not depend on ε and k0 (it depends on C, on the state of
the system at instant t and on the controls applied before t ).

REMARK 4. If Reλi < 0 (i = 1,2) then

eλ1τ + eλ2τ +
g1−g2

g1
→ 0 as τ → ∞,

so that the condition (6.3) holds for every sufficiently large τ . Clearly, in case Reλi is
close to 0, τ should be large. Intuitively, if the system stabilizes slowly then for short
time step the step response model does not apply, we should let the system move into
the state where the model already applies.

Observe that if g1 = 0 and CA−1B = 0 simultaneously for some τ > 0, then by
(6.1),

c1b1/λ1 = −c2b2/λ2 and c1b1e
λ1τ/λ1 = −c2b2e

λ2τ/λ2

thus it follows that g1 = 0 for every τ > 0. This means that the control u has no effect
on the output so the system could not be controlled.

From the arguments of Subsection 3.4 it follows that the system (3.1)-(3.2) is not
output controllable if and only if the matrix

[
CB CAB

]
, which is now a vector, is not

of full rank, i.e., CB = 0 and CAB = 0. This implies that g1 = 0 independently of the
choice of τ > 0.

Finally, we remark that the above analysis might be carried out for arbitrary dimen-
sion n . Indeed, it is not so difficult to see that in general the characteristic polynomial
of the matrix (3.15) takes the form

pN(x) = (−1)N+n(xN+n + γN+n−1x
N+n−1 + · · ·+ γN+1x

N+1

+ γn+1x
n+1 + · · ·+ γ1x+ γ0

)
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where γi → 0 as N → ∞ for i = 1, . . . ,n+1. By using the results of [10] on the loca-
tion of the zeros of a polynomial, one may obtain sufficient conditions for MN being a
discrete-time Hurwitz matrix. Algoritmically these conditions are easy to check, how-
ever, the formulas become more complicated, that is why we considered above only
dimensions one and two.

7. Discussion and conclusions

In this paper we studied the so-called Dynamic Matrix Control (DMC) strategy
which has many industrial applications. DMC is a kind of Model Predictive Control
which is based on the step response model of the process. The main objective was to
find sufficient conditions for asymptotic output controllability, that is, when the method
drives the output of the system into the desired setpoint as time goes to infinity. We
have shown that a process governed by a one-dimensional stable dynamical system is
asymptotically output controllable with the method. Moreover, if the system is not
stable, then it is not necessarily asymptotically output controllable with DMC. For two-
dimensional systems sufficient condition for asymptotic output controllability has been
given. In addition, estimates on the rate of convergence has also been established. Such
an analysis of the DMC seems to be completely new.
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e-mail: simonp@cs.elte.hu

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


