THE ANTIMAXIMUM PRINCIPLE AND THE EXISTENCE OF A SOLUTION FOR THE GENERALIZED p–LAPLACE EQUATIONS WITH INDEFINITE WEIGHT

MIEKO TANAKA

(Communicated by Jean-Pierre Gossez)

Abstract. This paper treats the antimaximum principle and the existence of a solution for quasilinear elliptic equation $-\text{div} (a(x, |\nabla u|) \nabla u) = \lambda m(x)|u|^{p-2}u + h(x)$ in Ω under the Neumann boundary condition. Here, a map $a(x, |y|)y$ on $\overline{\Omega} \times \mathbb{R}^N$ is strictly monotone in the second variable and satisfies certain regularity conditions. This equation contains the p-Laplacian problem as a special case.

1. Introduction

In this paper, we study the antimaximum principle (AMP) and consider the existence of a solution for the following quasilinear elliptic equation:

$$(P; \lambda, m, h) \begin{cases} -\text{div} (a(x, |\nabla u|) \nabla u) = \lambda m(x)|u|^{p-2}u + h(x) \quad \text{in} \; \Omega, \\ \frac{\partial u}{\partial \nu} = 0 \quad \text{on} \; \partial \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with C^2 boundary $\partial \Omega$, ν denotes the outward unit normal vector on $\partial \Omega$, a is a positive function on $\overline{\Omega} \times (0, +\infty)$, $\lambda \in \mathbb{R}$, $1 < p < \infty$, $m \in L^\infty(\Omega)$ and $h \in L^\infty(\Omega)_+$. Here, we set a map $A(x,y) := a(x, |y|)y$ for $(x,y) \in \overline{\Omega} \times \mathbb{R}^N$ and, then A is strictly monotone in the second variable and satisfies certain regularity conditions (see the following assumption (A)). The equation $(P; \lambda, m, h)$ contains the corresponding p-Laplacian problem as a special case. However, in general, we do not suppose that the operator A is $(p-1)$-homogeneous in the second variable.

Throughout this paper, we assume that

$$|\{m > 0\}| := |\{x \in \Omega; m(x) > 0\}| > 0 \quad (1.1)$$

where $|X|$ denotes the Lebesgue measure of a measurable set X. In this paper, we deal with the following four cases concerning the weight function $m \in L^\infty(\Omega)$ under (1.1):

(i) $m \not\equiv 0$ and $m(x) \geq 0$ for a.e. $x \in \Omega$;
(ii) $\int_{\Omega} m \, dx > 0$ and $|m < 0| > 0$;
(iii) $\int_{\Omega} m \, dx = 0$;
(iv) $\int_{\Omega} m \, dx < 0$.

Keywords and phrases: quasilinear elliptic equations, antimaximum principle, indefinite weight, nonlinear eigenvalue problems, the p-Laplacian, mountain pass theorem.
Here, we say that \(u \in W^{1,p}(\Omega) \) is a (weak) solution of \((P;\lambda,m,h)\) if

\[
\int_{\Omega} A(x,\nabla u) \nabla \phi \, dx = \lambda \int_{\Omega} m|u|^{p-2}u \phi \, dx + \int_{\Omega} h \phi \, dx
\]

for all \(\phi \in W^{1,p}(\Omega) \).

In [8], the study of AMP started by Clement and Peletier. They proved that there exists \(\delta > 0 \) for every \(\lambda \in (\lambda_1,\lambda_1 + \delta) \) such that any solution is negative in \(\Omega \) for \(-\Delta u = \lambda u + h \) in \(\Omega \) under the Dirichlet or Neumann boundary condition, where \(\lambda_1 \) denotes the first eigenvalue of \(-\Delta\). This situation is called as that “AMP holds at right of \(\lambda_1 \)”. Although the above \(\delta \) depends on \(h \) in general, they presented also the existence of such \(\delta \) independent of \(h \) in the case of \(N = 1 \) under the Neumann boundary condition. When we can take \(\delta \) independent of \(h \), we say that “AMP holds uniformly at right of \(\lambda_1 \)”. The AMP was extended in [16] to the case having the (indefinite) weight. Moreover, many authors have studied the AMP for the Laplace equation and other equations (cf. [2], [3], [5], [6], [10], [11], [22]). In the case of the \(p \)-Laplacean, Godoy et al ([13] and [14]) presented the several results concerning AMP for \(-\Delta_p u = \lambda m|u|^{p-2}u + h \) in \(\Omega \) under the Dirichlet and Neumann boundary conditions. First purpose of this paper is to prove similar results to one of [14] for the generalized \(p \)-Laplace equation \((P;\lambda,m,h)\).

On the other hand, it is obvious that the AMP has no effect if a solution does not exist. However, there are few existence results of a solution to our equation (and also the \(p \)-Laplace equation). For example, if \(\lambda < 0 \) and \(m \equiv 1 \) holds, then the standard argument guarantees the existence of a solution. In [14], it is shown that the equation \(-\Delta_p u = m|u|^{p-2}u + h \) in \(\Omega \) has a unique positive solution provided \(0 < \lambda < \lambda^*(m) \), \(\int_{\Omega} m \, dx < 0 \) and \(0 \not\equiv h \in L^\infty(\Omega)_+ \), where \(\lambda^*(m) \) is the principal eigenvalue defined in Section 2.1. To the Laplace problems under the Dirichlet boundary condition, the existence results are well known (cf. [1]).

Therefore, second purpose is to show that \((P;\lambda,m,h)\) has at least one solution under some condition to \(\lambda \) by variational methods. In particular, in the case where \(A \) is asymptotically \((p-1)\) homogeneous (see the condition \((AH)\) in Section 4.3), \((P;\lambda,m,h)\) has at least one solution if \(\lambda \) exists between the principal eigenvalue and the second eigenvalue (Theorem 6 and see Remark 7).

Throughout this paper, we assume that the map \(A \) satisfies the following assumption (\(A\):

\(\text{(A)}\) \(A(x,y) = a(x,|y|)y \), where \(a(x,t) > 0 \) for all \((x,t) \in \overline{\Omega} \times (0,+\infty) \) and

\(\text{(i)}\) \(A \in C^0(\overline{\Omega} \times \mathbb{R}^N,\mathbb{R}^N) \cap C^1(\overline{\Omega} \times (\mathbb{R}^N \setminus \{0\}),\mathbb{R}^N) \);

\(\text{(ii)}\) there exists \(C_1 > 0 \) such that

\[|D_\gamma A(x,y)| \leq C_1 |y|^{p-2} \quad \text{for every } x \in \overline{\Omega}, \text{ and } y \in \mathbb{R}^N \setminus \{0\} ; \]

\(\text{(iii)}\) there exists \(C_0 > 0 \) such that

\[D_\gamma A(x,y) \xi \cdot \xi \geq C_0 |y|^{p-2} |\xi|^2 \quad \text{for every } x \in \overline{\Omega}, \ y \in \mathbb{R}^N \setminus \{0\} \text{ and } \xi \in \mathbb{R}^N ; \]
(iv) there exists $C_2 > 0$ such that
\[|D_x A(x, y)| \leq C_2 (1 + |y|^{p-1}) \quad \text{for every } x \in \overline{\Omega}, \ y \in \mathbb{R}^N \setminus \{0\}; \]

(v) there exist $C_3 > 0$ and $1 \geq t_0 > 0$ such that
\[|D_x A(x, y)| \leq C_3 |y|^{p-1} (-\log |y|) \]
for every $x \in \overline{\Omega}$, $y \in \mathbb{R}^N$ with $0 < |y| < t_0$.

Throughout this paper, we assume $C_0 \leq p - 1 \leq C_1$ because we can take such desired C_0 and C_1 anew if necessary.

A similar hypothesis to (A) is considered in the study of quasilinear elliptic problems (cf. [21, Example 2.2.] and [9], [20], [19]). It is easily seen that many examples as in the above references satisfy the condition (AH). In particular, for $A(x, y) = |y|^{p-2} y$, that is, $\text{div} A(x, \nabla u)$ stands for the usual p-Laplacian $\Delta_p u$, we can take $C_0 = C_1 = p - 1$ in (A). Conversely, in the case where $C_0 = C_1 = p - 1$ holds in (A), by the inequalities in Remark 1 (ii) and (iii) in Section 2, we see $a(x, t) = |t|^{p-2}$ whence $A(x, y) = |y|^{p-2} y$.

In section 2.1, we recall several results concerning the weighted eigenvalue problems for the p-Laplacian. Then, in Section 3, we show that the AMP holds at some λ for our equation. Finally, we present the existence results to our equation (in Section 4).

2. Preliminaries

In what follows, the norm on $W^{1,p}(\Omega)$ is $||u||^p := ||\nabla u||_p^p + ||u||_p^p$, where $||u||_q$ denotes the norm of $L^q(\Omega)$ for $u \in L^q(\Omega)$ ($1 \leq q \leq \infty$). Setting
\[G(x, y) := \int_0^{|y|} a(x, t) t \, dt, \]
then we can easily see that
\[\nabla_y G(x, y) = A(x, y) \quad \text{and} \quad G(x, 0) = 0 \quad (2.1) \]
for every $x \in \overline{\Omega}$.

REMARK 1. It is easily seen that the following assertions hold under condition (A):

(i) for all $x \in \overline{\Omega}$, $A(x, y)$ is maximal monotone and strictly monotone in y;

(ii) $|A(x, y)| \leq \frac{C_1}{p-1} |y|^{p-1}$ for every $(x, y) \in \overline{\Omega} \times \mathbb{R}^N$;

(iii) $A(x, y) y \geq \frac{C_0}{p-1} |y|^p$ for every $(x, y) \in \overline{\Omega} \times \mathbb{R}^N$;
(iv) \(G(x,y) \) is convex in \(y \) for all \(x \) and satisfies the following inequalities:

\[
A(x,y)y \geq G(x,y) \geq \frac{C_0}{p(p-1)}|y|^p \quad \text{and} \quad G(x,y) \leq \frac{C_1}{p(p-1)}|y|^p
\]

for every \((x,y) \in \overline{\Omega} \times \mathbb{R}^N\),

where \(C_0 \) and \(C_1 \) are the positive constants in \((A)\).

Remark 2. Let \(m \in L^\infty(\Omega) \) and \(h \in L^\infty(\Omega)_+ \). Then, we remark the following:

(i) If \(u \in W^{1,p}(\Omega) \) is a solution of \((P; \lambda, m, h)\), then \(u \in C^{1,\alpha}(\overline{\Omega}) \) for some \(0 < \alpha < 1 \) and \(\partial u/\partial \nu = 0 \) on \(\partial \Omega \);

(ii) If \(u \in W^{1,p}(\Omega) \) is a non-trivial solution of \((P; \lambda, m, h)\) such that \(u \geq 0 \), then \(\min_{\overline{\Omega}} u > 0 \) holds;

Proof. For readers’ convenience, we give a sketch of the proof. (i): Let \(u \in W^{1,p}(\Omega) \) be a solution of \((P; \lambda, m, h)\). Then, because \(u \in L^\infty(\Omega) \) by the Moser iteration process (cf. Appendix in [19]), we see that \(u \in C^{1,\alpha}(\overline{\Omega}) \) \((0 < \alpha < 1)\) by the regularity result in [17]. Furthermore, by [7, Theorem 3], \(u \) satisfies the boundary condition

\[
0 = \frac{\partial u}{\partial \nu_A} = A(\cdot, \nabla u) \nu = a(\cdot, |\nabla u|)\frac{\partial u}{\partial \nu} \quad \text{in} \quad W^{-1/q,q}(\partial \Omega)
\]

for every \(1 < q < \infty \) (see [7] for the definition of \(W^{-1/q,q}(\partial \Omega) \)). Since \(u \in C^{1,\alpha}(\overline{\Omega}) \) and \(a(x,t) > 0 \) for every \(t \neq 0 \), \(u \) satisfies the Neumann boundary condition, that is, \(\frac{\partial u}{\partial \nu}(x) = 0 \) for every \(x \in \partial \Omega \).

(ii): Let \(u \in W^{1,p}(\Omega) \) be a solution of \((P; \lambda, m, h)\) satisfying \(u \geq 0 \) and \(u \not\equiv 0 \). Then, we have

\[
-\text{div}A(x,\nabla u) + |\lambda|\|m\|_{\infty}u^{p-1} \geq h \geq 0 \quad \text{in} \quad \Omega.
\]

By noting that \(u \in C^{1,\alpha}(\overline{\Omega}) \) \((0 < \alpha < 1)\) by (i), we have \(u(x) > 0 \) for every \(x \in \Omega \) by Theorem B in [19, Appendix]. Due to the strong maximum principle (see Theorem A in [19, Appendix]), we easily see that \(u(x) > 0 \) for every \(x \in \partial \Omega \) (note \(\partial u/\partial \nu = 0 \) on \(\partial \Omega \) by (i)). This yields \(\min_{\overline{\Omega}} u > 0 \) because of \(u \in C^{1,\alpha}(\overline{\Omega}) \) by (i).

2.1. The weighted eigenvalue problems for the \(p \)-Laplacian

The following lemmas can be easily shown by way of contradiction. Here, we omit the proofs.

Lemma 1. ([14, Lemma 2.3.]) Assume \(\int_{\Omega} m \, dx < 0 \). Then, there exists a constant \(c > 0 \) such that \(\int_{\Omega} |\nabla u|^p \, dx \geq c\|u\|_p^p \) for every \(u \in W^{1,p}(\Omega) \) with \(\int_{\Omega} m \|u\|^p \, dx > 0 \).
Lemma 2. ([14, Lemma 2.8.]) Assume that $\int_\Omega m\,dx \neq 0$ and $\xi > 0$. Then, there exists a constant $b(m, \xi) > 0$ such that

$$\int_\Omega |\nabla u|^p\,dx - \xi \int_\Omega m|u|^p\,dx \geq b(m, \xi) \int_\Omega |u|^p\,dx$$

for every $u \in B(m) := \{u \in W^{1,p}(\Omega); \int_\Omega m|u|^p\,dx \leq 0\}$.

Lemma 3. Assume that $m \geq 0$ in Ω. Then, for every $\xi > 0$ there exists $d(\xi) > 0$ such that

$$\int_\Omega |\nabla u|^p\,dx + \xi \int_\Omega m|u|^p\,dx \geq d(\xi) \int_\Omega |u|^p\,dx$$

for every $u \in W^{1,p}(\Omega)$.

Lemma 4. Let $N < p$, $\lambda > 0$ and $\Lambda \subset \mathbb{R}$ be a compact set. Define

$$\tilde{B}(m) := \left\{u \in W^{1,p}(\Omega); \int_\Omega m|u|^p\,dx \geq 0 \text{ and } u \text{ vanishes somewhere in } \overline{\Omega}\right\}.$$

Then, there exists a $C > 0$ such that for every $\varepsilon \in \Lambda$, the following inequality holds:

$$\int_\Omega |\nabla u|^p\,dx + \lambda \int_\Omega (m+\varepsilon)|u|^p\,dx \geq C\|u\|_p^p$$

for every $u \in \tilde{B}(m+\varepsilon)$.

Proof. By way of contradiction, we suppose that there exist $\{\varepsilon_n\} \subset \Lambda$ and $u_n \in \tilde{B}(m+\varepsilon_n)$ such that

$$\int_\Omega |\nabla u_n|^p\,dx + \lambda \int_\Omega (m+\varepsilon_n)|u_n|^p\,dx < \frac{1}{n}\|u_n\|_p^p.$$

Set $v_n := u_n/\|u_n\|_p$. Then, because we have

$$\int_\Omega |\nabla v_n|^p\,dx \leq \int_\Omega |\nabla u_n|^p\,dx + \lambda \int_\Omega (m+\varepsilon_n)|v_n|^p\,dx < \frac{1}{n}$$

(2.3)

by $v_n \in \tilde{B}(m+\varepsilon_n)$, we may assume that v_n weakly converges to some v_0 in $W^{1,p}(\Omega)$ and $v_n(x)$ converges to $v_0(x)$ uniformly in $x \in \overline{\Omega}$ (note $W^{1,p}(\Omega) \hookrightarrow C(\overline{\Omega})$ is compact).

Moreover, it is easily seen that v_0 vanishes somewhere in $\overline{\Omega}$ because v_n vanishes somewhere in $\overline{\Omega}$ by $u_n \in \tilde{B}(m+\varepsilon_n)$. Since Λ is compact, we may assume that $\varepsilon_n \to \varepsilon_0$ as $n \to \infty$ for some $\varepsilon_0 \in \Lambda$ by choosing a subsequence. Consequently, $v_0 \in \tilde{B}(m+\varepsilon_0)$ holds. On the other hand, by taking the limit inferior in (2.3), we have $\int_\Omega |\nabla v_0|^p\,dx \leq 0$.

This implies that v_0 is a constant function such that $\|v_0\|_p = 1$. This contradicts to the fact that v_0 vanishes somewhere in $\overline{\Omega}$.

Now, we state several known results relative to the following weighted eigenvalue problems for the p-Laplacian:

$$-\Delta_p u = \lambda m(x)|u|^{p-2}u \text{ in } \Omega, \quad \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega.$$
We say that $\lambda \in \mathbb{R}$ is an eigenvalue of (2.4) if the equation (2.4) has a non-trivial solution. First, we recall the following principal eigenvalue $\lambda^*(m)$ which plays an important role for studying AMP.

$$\lambda^*(m) := \inf \left\{ \int_{\Omega} |u|^p dx \, ; \, u \in W^{1,p}(\Omega) \text{ and } \int_{\Omega} m|u|^p dx = 1 \right\}. \tag{2.5}$$

Proposition 1. ([14, Proposition 2.2.]) The following assertions hold;

(i) If $\int_{\Omega} m dx \geq 0$ holds, then $\lambda^*(m) = 0$;

(ii) If $\int_{\Omega} m dx < 0$ holds, then $\lambda^*(m) > 0$ is a simple eigenvalue and it admits a positive eigenfunction. In addition, the interval $(0, \lambda^*(m))$ contains no eigenvalues of (2.4).

Moreover, we recall a second value $\overline{\lambda}(m)$ defined by

$$\overline{\lambda}(m) := \inf \left\{ \int_{\Omega} |u|^p dx \, ; \, u \in W^{1,p}(\Omega), \int_{\Omega} m|u|^p dx = 1 \right\}. \tag{2.6}$$

In the case of $N < p$ (note that $W^{1,p}(\Omega)$ is compactly imbedded into $C(\overline{\Omega})$), we introduce $\tilde{\lambda}(m)$ as follows:

$$\tilde{\lambda}(m) := \inf \left\{ \int_{\Omega} |u|^p dx \, ; \, u \in W^{1,p}(\Omega), \int_{\Omega} m|u|^p dx = 1 \right\}. \tag{2.7}$$

It is easily shown that $\overline{\lambda}(m) = \tilde{\lambda}(m)$ (see section 3 in [14]). Concerning $\lambda^*(m)$ and $\overline{\lambda}(m)$, the following result is shown in [14].

Lemma 5. ([14, Lemma 3.1.]) If $p \leq N$, then $\lambda^*(m) = \overline{\lambda}(m)$. If $p > N$, then $\lambda^*(m) < \overline{\lambda}(m)$. Moreover, if $p > N$, then $(\lambda^*(m), \overline{\lambda}(m))$ has no eigenvalues of (2.4).

To prove lemma above, we need the following lemma proved by the same argument as in [13, Claim 4.1] or [5, Lemma 3.1.] (Note that Lemma 4 guarantees the boundedness of a minimizing sequence of $\tilde{\lambda}(m)$). Here, we omit the proof.

Lemma 6. Assume that $p > N$. Then, $\tilde{\lambda}(m)$ is attained. Furthermore, a minimizer for $\tilde{\lambda}(m)$ vanishes at exactly one point in $\overline{\Omega}$.

Lemma 7. Let $N < p$. Then, $\tilde{\lambda}(m + \varepsilon') < \tilde{\lambda}(m + \varepsilon) < \tilde{\lambda}(m)$ for every $\varepsilon' > \varepsilon > 0$ holds. Moreover, $\lim_{\varepsilon \to +0} \tilde{\lambda}(m + \varepsilon) = \tilde{\lambda}(m)$.

Proof. We choose a minimizer u for $\tilde{\lambda}(m)$ because Lemma 6 guarantees the existence of it. Then, for every $\varepsilon > 0$, we have

$$\tilde{\lambda}(m + \varepsilon) \leq \frac{\int_{\Omega} |u|^p dx}{\int_{\Omega} (m + \varepsilon)|u|^p dx} < \frac{\int_{\Omega} |u|^p dx}{\int_{\Omega} m|u|^p dx} = \int_{\Omega} |\nabla u|^p dx = \tilde{\lambda}(m)$$
by the definition of $\tilde{\lambda}(m + \epsilon)$. By applying the same argument to a minimizer for $\tilde{\lambda}(m + \epsilon)$, we obtain $\tilde{\lambda}(m + \epsilon') < \tilde{\lambda}(m + \epsilon)$ for $\epsilon' > \epsilon > 0$.

Now, we shall prove

$$\lim_{\epsilon \to +0} \tilde{\lambda}(m + \epsilon) = \tilde{\lambda}(m).$$

Let $\{\epsilon_n\}$ be any sequence such that $\epsilon_n > 0$ and $\epsilon_n \to 0$ as $n \to \infty$. Because we know $\limsup_{n \to \infty} \tilde{\lambda}(m + \epsilon_n) \leq \tilde{\lambda}(m)$ by the first assertion, it suffices only to prove $\liminf_{n \to \infty} \tilde{\lambda}(m + \epsilon_n) \geq \tilde{\lambda}(m)$. We take a minimizer u_n for $\tilde{\lambda}(m + \epsilon_n)$. Then, it follows from Lemma 4 with $\lambda = 1$ and $\Lambda = [0, \sup_n \epsilon_n]$ that $\{u_n\}$ is bounded in $W^{1,p}(\Omega)$ (note that $\|\nabla u_n\|^p = \tilde{\lambda}(m + \epsilon_n) < \tilde{\lambda}(m)$). Thus, we may assume, by choosing a subsequence, that there exists $u_0 \in W^{1,p}(\Omega)$ such that $u_n \rightharpoonup u_0$ in $W^{1,p}(\Omega)$ and $u_n \to u_0$ in $C(\overline{\Omega})$. Then, we see that $\int_{\Omega} m|u_0|^p \, dx = 1$ and u_0 vanishes somewhere in $\overline{\Omega}$ since $u_n(x)$ converges to $u_0(x)$ uniformly in $x \in \overline{\Omega}$. Hence, by the definition of $\tilde{\lambda}(m)$, we obtain

$$\liminf_{n \to \infty} \tilde{\lambda}(m + \epsilon_n) = \liminf_{n \to \infty} \int_{\Omega} |\nabla u_n|^p \, dx \geq \int_{\Omega} |\nabla u_0|^p \, dx \geq \tilde{\lambda}(m),$$

whence our claim is shown. Because $\{\epsilon_n\}$ is an arbitrary sequence, our conclusion is proved.

Finally, we recall the second eigenvalue of (2.4). The following result is shown in [4] (Although they handle the asymmetry case, it is sufficient to consider the case of $m \equiv n$ in this paper).

$\tilde{J}(u) := \int_{\Omega} |\nabla u|^p \, dx$ for $u \in W^{1,p}(\Omega), \quad \tilde{J} := J_{|S(m)}$ \hfill (2.8)

$S(m) := \left\{ u \in W^{1,p}(\Omega); \int_{\Omega} m|u|^p \, dx = 1 \right\}$, \hfill (2.9)

$\Sigma(m) := \{ \gamma \in C([0, 1], S(m)); \gamma(0) \in P \cap S(m), \gamma(1) \in (-P) \cap S(m) \}$, \hfill (2.10)

$c(m) := \inf_{\gamma \in \Sigma(m)} \max_{t \in [0, 1]} \tilde{J}(\gamma(t))$, \hfill (2.11)

where $P := \{ u \in W^{1,p}(\Omega); u(x) \geq 0 \text{ for a.e. } x \in \Omega \}$.

Lemma 8. ([4, Theorem 3.2.]) We have: $c(m)$ is an eigenvalue of (2.4) which satisfies $\lambda^+(m) < c(m)$. Moreover, there is no eigenvalues of (2.4) between $\lambda^+(m)$ and $c(m)$.

Remark 3. we remark that $\tilde{\lambda}(m) < c(m)$ (if $N < p$). Indeed, if $\tilde{\lambda}(m) \geq c(m)$ under $N < p$, then it contradicts to the fact that $(\lambda^+(m), \tilde{\lambda}(m))$ (note $\tilde{\lambda}(m) = \overline{\lambda}(m)$) contains no eigenvalues of (2.4) by Lemma 5 since $c(m)$ is an eigenvalue of (2.4) and $\lambda^+(m) < c(m)$.

Lemma 9. For every $\epsilon' > \epsilon > 0$, we have $c(m + \epsilon') < c(m + \epsilon) < c(m)$. In addition, $\lim_{\epsilon \to +0} c(m + \epsilon) = c(m)$ holds.
Proof. First, we shall prove that \(c(m + \varepsilon) < c(m) \) for \(\varepsilon > 0 \). Because \(c(m) \) is an eigenvalue, we can choose a solution \(u \in W^{1,p}(\Omega) \) with \(\|u\| = 1 \) for \(-\Delta_p u = c(m)m|u|^{p-2}u \) in \(\Omega \), \(\partial u/\partial \nu = 0 \) on \(\partial \Omega \). Then, we note that \(u \) is a sign-changing function because any eigenfunction corresponding to \(\lambda \) other than the principal eigenvalue changes sign (refer to [15, Proposition 4.3.] or see Proposition 2 with \(C_0 = C_1 = p - 1 \) and \(h \equiv 0 \)). Thus, we have \(0 < \|\nabla u\|_p = c(m)\int_{\Omega}mu_+^p dx \) by taking \(\pm u_\pm \) as test function. Set a continuous path \(\gamma \) by

\[
\gamma_0(t) := \frac{(1-t)u_+ - tu_-}{((1-t)p\int_{\Omega}mu_+^p dx + t^p\int_{\Omega}mu_-^p dx)^{1/p}} \quad \text{for } t \in [0,1].
\]

Then, it is easily seen that \(\gamma_0 \in \Sigma(m) \) and

\[
c(m) = \|\nabla \gamma_0(t)\|_p^p > \frac{\|\nabla \gamma_0(t)\|_p^p}{1 + \varepsilon\|\gamma_0(t)\|_p^p} = \frac{\|\nabla \gamma_0(t)\|_p^p}{\int_{\Omega}(m + \varepsilon)|\gamma_0(t)|^p dx}
\]

for every \(t \in [0,1] \) (note \(\|\gamma_0(t)\|_p > 0 \)). By setting

\[
\gamma_\varepsilon := \frac{\gamma_0}{(\int_{\Omega}(m + \varepsilon)|\gamma_0|^p dx)^{1/p}} \in \Sigma(m + \varepsilon),
\]

we obtain \(c(m) > c(m + \varepsilon) \) by the definition of \(c(m + \varepsilon) \). By considering \(m + \varepsilon \) and \((m + \varepsilon) + (\varepsilon' - \varepsilon)\), we obtain \(c(m + \varepsilon) > c(m + \varepsilon') \) for \(\varepsilon' > \varepsilon \) due to the above assertion.

Let \(\{\varepsilon_n\} \) be any sequence such that \(\varepsilon_n \to 0 \) and \(\lim_{n \to \infty} \varepsilon_n = 0 \). By the first assertion, we can get \(\limsup_{n \to \infty} c(m + \varepsilon_n) \leq c(m) \). Now, we shall prove

\[
\lambda_0 := \liminf_{n \to \infty} c(m + \varepsilon_n) \geq c(m).
\]

We may put \(\lambda_0 = \lim_{n \to \infty} c(m + \varepsilon_n) \geq 0 \) by choosing a subsequence (note \(c(m + \varepsilon_n) > \lambda^*(m + \varepsilon_n) \geq 0 \)). By the same reason as in the first part, there exists a sign-changing solution \(u_n \in W^{1,p}(\Omega) \) with \(\|u_n\| = 1 \) for \(-\Delta_p u_n = c(m + \varepsilon_n)(m + \varepsilon_n)|u_n|^{p-2}u_n \) in \(\Omega \), \(\partial u_n/\partial \nu = 0 \) on \(\partial \Omega \). In addition, by the standard argument (refer to Proposition 3) and the boundedness of \(\|u_n\| \), we may assume that \(u_n \) converges to some \(u_0 \) in \(C^1(\Omega) \) by choosing a subsequence. Hence, \(u_0 \) is a solution with \(\|u_0\| = 1 \) of \(-\Delta_p u = \lambda_0 m|u|^{p-2}u \) in \(\Omega \), \(\partial u/\partial \nu = 0 \) on \(\partial \Omega \). This means that \(u_0 \) is an eigenfunction corresponding to \(\lambda_0 \) with weight \(m \). Because \(u_n \) changes sign and \(u_n \to u_0 \) in \(C^1(\Omega) \), \(u_0 \) vanishes somewhere in \(\overline{\Omega} \). Hence, we can see that \(\lambda_0 \neq 0 \) and \(\lambda_0 \neq \lambda^*(m) \) because any eigenfunction corresponding to the principal eigenvalue (that is, 0 or \(\lambda^*(m) \)) is positive or negative in \(\overline{\Omega} \) (see [15, Proposition 4.2.]). This implies that \(\lambda_0 \geq c(m) \) by Lemma 8, and so \(\liminf_{n \to \infty} c(m + \varepsilon_n) \geq c(m) \). As a result, our conclusion is shown since \(\{\varepsilon_n\} \) is an arbitrary sequence.

Lemma 10. Assume \(\int_{\Omega} m dx > 0 \). Then,

\[
X(m) := \left\{ u \in W^{1,p}(\Omega); \int_{\Omega} m|u|^{p-2}u dx = 0 \text{ and } \int_{\Omega} m|u|^p dx = 1 \right\} \neq \emptyset \quad (2.12)
\]
and
\[c(m) \geq \lambda_{X(m)} := \inf_{u \in X(m)} \int_{\Omega} |\nabla u|^p \, dx > 0 \]
(2.13)
hold, where $c(m)$ is the second eigenvalue defined by (2.11).

Proof. Since $c(m) > 0$ is an eigenvalue of (2.4), there exists a non-trivial solution u for $-\Delta_p u = c(m) m |u|^{p-2} u$ in Ω, $\partial u / \partial v = 0$ on $\partial \Omega$. Then, by taking $\phi \equiv 1$ or u as test function, we have $\int_\Omega m |u|^{p-2} u \, dx = 0$ (note $c(m) > 0$) and $\int_\Omega m |u|^p \, dx > 0$ because u changes sign (so $\| \nabla u \|_p > 0$, cf. [14, Proposition 2.4] or Proposition 2 with $C_0 = C_1 = p - 1$), and hence $u/(\int_\Omega m |u|^p \, dx)^{1/p}$ belongs to $X(m)$. As a result, it is easily seen that $c(m) \geq \lambda_{X(m)}$ holds.

Now, we shall prove $\lambda_{X(m)} > 0$ by way of contradiction. So, we assume that there exists a $\{u_n\} \subset X(m)$ such that $\| \nabla u_n \|_p \to 0$ as $n \to \infty$. Then, since Lemma 2 (with $\int_\Omega (-m) |u_n|^p \, dx = -1$) guarantees the boundedness of $\| u_n \|$, by choosing a subsequence if necessary, we may suppose that u_n strongly converges to some constant function u_0 in $W^{1,p}(\Omega)$ (note $\| \nabla u_0 \|_p = 0$). Hence, $u_0 = 1/(\int_\Omega m \, dx)^{1/p}$ holds because of $\int_\Omega m |u_0|^p \, dx = 1$. On the other hand, by taking the limit in the equality

\[0 = \int_\Omega m |u_n|^{p-2} u_n \, dx = u_0 \int_\Omega m |u_n|^{p-2} u_n \, dx = \int_\Omega m |u_n|^{p-2} u_n u_0 \, dx, \]

we obtain $\int_\Omega m |u_0|^p \, dx = 0$. This is a contradiction.

** Remark 4.** In the case of $p \geq 2$ and $m \equiv 1$, it is proved that $c(m) = \lambda_{X(m)}$ holds (see [12, Theorem 6.2.29]).

2.2. Elementary results

Here, we define a positive constant A_p by

\[A_p := \frac{C_1}{p-1} \left(\frac{C_1}{C_0} \right)^{p-1} \geq 1, \]

(2.14)
which is equal to 1 in the case of $A(x,y) = |y|^{p-2} y$ (i.e. the special case of the p-Laplacian) because we can choose $C_0 = C_1 = p - 1$.

Lemma 11. Let $\varepsilon > 0$. For every u, $\phi \in W^{1,p}(\Omega) \cap C^1(\Omega) \cap L^\infty(\Omega)$ with $u \geq 0$ and $\phi \geq 0$ in Ω, we have

\[\int_\Omega A(x, \nabla u) \nabla \left(\frac{\phi^p}{(u + \varepsilon)^{p-1}} \right) \, dx \leq A_p \| \nabla \phi \|_p^p. \]

Proof. Let $\varepsilon > 0$ and let u, $\phi \in W^{1,p}(\Omega) \cap C^1(\Omega) \cap L^\infty(\Omega)$ satisfy $u \geq 0$ and $\phi \geq 0$ in Ω. Then, we have

\[A(x, \nabla u) \nabla \left(\frac{\phi^p}{(u + \varepsilon)^{p-1}} \right) \]
\[
= p \left(\frac{\phi}{u + \varepsilon} \right)^{p-1} A(x, \nabla u) \nabla \phi - (p-1) \left(\frac{\phi}{u + \varepsilon} \right)^p A(x, \nabla u) \nabla u \\
\leq \frac{pC_1}{p-1} \left(\frac{\phi}{u + \varepsilon} \right)^{p-1} |\nabla u|^{p-1} |\nabla \phi| - C_0 \left(\frac{\phi}{u + \varepsilon} \right)^p |\nabla u|^p \\
= \left\{ \left(\frac{pC_0}{p-1} \right)^{1/p} \frac{\phi}{u + \varepsilon} \right\}^{p-1} \left(\frac{p}{p-1} \right)^{1/p} C_1 C_0^{(1-p)/p} |\nabla \phi| \\
- C_0 \left(\frac{\phi}{u + \varepsilon} \right)^p |\nabla u|^p \\
\leq A_p |\nabla \phi|^p \text{ in } \Omega
\]

by (ii) and (iii) in Remark 1 and Young’s inequality.

Proposition 2. Let \(h \in L^\infty(\Omega)_+ \). If one of the following holds, then the equation \((P; \lambda, m, h)\) has no solutions \(u \not\equiv 0 \) such that \(u(x) \geq 0 \) for a.e. \(x \in \Omega \):

(i) \(m \geq 0 \) in \(\Omega \) and \(\lambda > 0 \) if \(h \not\equiv 0 \) or \(\lambda \neq 0 \) if \(h \equiv 0 \);

(ii) \(\int_\Omega m dx > 0, |m < 0| > 0 \) and \(\lambda \not\in [-A_p \lambda^*(m), 0] \);

(iii) \(\int_\Omega m dx = 0 \) and \(\lambda \neq 0 \) if \(h \equiv 0 \) or \(\lambda \in \mathbb{R} \) if \(h \not\equiv 0 \);

(iv) \(\int_\Omega m dx < 0 \) and \(\lambda \not\in [0, A_p \lambda^*(m)] \).

Proof. Let \(u \) be a non negative solution of \((P; \lambda, m, h)\) with \(u \not\equiv 0 \). Then, \(u \in C^{1,\alpha}(\overline{\Omega}) \) (some \(0 < \alpha < 1 \)) and \(\min_{\overline{\Omega}} u > 0 \) by Remark 2.

(i): By taking \(\phi \equiv 1 \) as test function, we have

\[
0 = \lambda \int_\Omega m u^{p-1} dx + \int_\Omega h dx.
\]

In the case of \(h \not\equiv 0 \), this yields \(\lambda < 0 \) because of

\[
\lambda \int_\Omega m u^{p-1} dx = - \int_\Omega h dx < 0 \text{ and } \int_\Omega m u^{p-1} dx > 0.
\]

In the case of \(h \equiv 0 \), then we see that \(\lambda = 0 \) occurs.

(ii) \sim (iv): By Lemma 11, we obtain

\[
A_p \|\nabla \phi\|_p^p \geq \int_\Omega A(x, \nabla u) \nabla \left(\frac{\phi^p}{(u + \varepsilon)^{p-1}} \right) dx \\
= \lambda \int_\Omega m \left(\frac{u}{u + \varepsilon} \right)^{p-1} \phi^p dx + \int_\Omega h \frac{\phi^p}{(u + \varepsilon)^{p-1}} dx \\
\geq \lambda \int_\Omega m \left(\frac{u}{u + \varepsilon} \right)^{p-1} \phi^p dx
\]
for every \(\varepsilon > 0 \) and \(\varphi \in W^{1,p}(\Omega) \cap C^1(\Omega) \cap L^\infty(\Omega) \) satisfying \(\varphi \geq 0 \) in \(\Omega \). Thus, by \(\varepsilon \downarrow 0 \) (note \(u > 0 \) in \(\overline{\Omega} \)), we have \(A_p \| \nabla \varphi \|^p \geq \lambda \int_{\Omega} m \varphi^p \, dx \) for every \(\varphi \in W^{1,p}(\Omega) \cap C^1(\Omega) \cap L^\infty(\Omega) \) satisfying \(\varphi \geq 0 \) in \(\Omega \). By combining the above inequality and an argument as in [14, Proposition 2.4.], we can easily prove our assertion (note \(\lambda m = (-\lambda)(-m) \)).

Proposition 3. Let \(f_n: \Omega \times \mathbb{R} \to \mathbb{R} \) be a Carathéodory function satisfying

\[
|f_n(x,t)| \leq D(1 + |t|^{r-1}) \quad \text{for every} \ x \in \Omega, \ t \in \mathbb{R}
\]

with some positive constant \(D \) independent of \(n \) and \(r \in [p, p^*) \), where \(p^* = \infty \) if \(N \leq p \), \(p^* = pN/(N-p) \) if \(N > p \). Assume that \(A_n: \Omega \times \mathbb{R}^N \to \mathbb{R}^N \) is a map satisfying (A) (i), (ii), (iii) and (iv) with positive constants \(C_1, C'_1 \) and \(C_2 \) independent of \(n \). If \(u_n \) is a solution for

\[
-\text{div} A_n(x,\nabla u) = f_n(x,u) \quad \text{in} \ \Omega, \quad \partial u / \partial \nu = 0 \quad \text{on} \ \partial \Omega
\]

and \(\{u_n\} \) is bounded in \(W^{1,p}(\Omega) \), then there exist a subsequence \(\{u_{n_l}\} \) of \(\{u_n\} \) and \(u_0 \in C^1(\overline{\Omega}) \) such that \(u_{n_l} \to u_0 \) in \(C^1(\overline{\Omega}) \) as \(l \to \infty \).

Proof. Since \(\{u_n\} \) is bounded in \(W^{1,p}(\Omega) \), we may assume that \(u_n \) weakly converges to some \(u_0 \) in \(W^{1,p}(\Omega) \) by choosing a subsequence.

We can show that there exists a \(C > 0 \) depend only \(|\Omega|, \ p, \ N, \ D, \ C'_1, \ C_2 \) and the embedding constant of \(W^{1,p}(\Omega) \) to \(L^{\overline{p}}(\Omega) \) such that

\[
\|u_n\|_\infty \leq C \max\{1, \|u_n\|((\overline{p}-p)/(\overline{p}-r))\}
\]

by the Moser iteration process (refer to Theorem C in [19]), where \(\overline{p} = p^* \) if \(N > p \) and \(\overline{p} = r \) is any constant if \(N \leq p \). Since \(D, \ C'_1 \) and \(C'_0 \) are independent of \(n \), \(\|u_n\|_\infty \) is bounded. Therefore, the regularity result in [17] guarantees that there exist \(\gamma \in (0, 1) \) and \(M > 0 \) independent of \(n \) such that \(u_n \in C^{1,\gamma}(\overline{\Omega}) \) and \(\|u_n\|_{C^{1,\gamma}(\overline{\Omega})} \leq M \) (where we use the fact that \(C'_2 \) is independent of \(n \) also). Since the inclusion of \(C^{1,\gamma}(\overline{\Omega}) \) to \(C^1(\overline{\Omega}) \) is compact, \(u_n \) converges \(u_0 \) in \(C^1(\overline{\Omega}) \) (note that \(u_n \to u_0 \) in \(W^{1,p}(\Omega) \)).

3. Antimaximum principle

In this section, we assume that \(\int_{\Omega} m \, dx > 0 \) without loss of generality by noting \(\lambda m = (-\lambda)(-m) \).

Theorem 1. Assume \(\int_{\Omega} m \, dx > 0 \) (resp. \(\int_{\Omega} m \, dx = 0 \)). Then, for any \(0 \neq h \in L^\infty(\Omega)_+ \) there exists \(\delta = \delta(h) > 0 \) such that any solution \(u \) of \((P; \lambda, m, h) \) satisfies \(u < 0 \) in \(\overline{\Omega} \) provided \(0 < \lambda < \delta \) (resp. \(0 < |\lambda| < \delta \)).
Proof. Because of $\lambda m = (-\lambda)(-m)$, it is sufficient to prove that for any $0 \neq h \in L^\infty(\Omega)_+$ there exists $\delta = \delta(h) > 0$ such that any solution u of $(P; \lambda, m, h)$ satisfies $u < 0$ in $\overline{\Omega}$ provided $0 < \lambda < \delta$. By way of contradiction, we may assume that there exist $0 \neq h \in L^\infty(\Omega)_+$, $\{\lambda_n\}$ and a solution $u_n \in W^{1,p}(\Omega)$ of $(P; \lambda_n, m, h)$ such that

Moreover, we note that $\|u_n\|$ is bounded if $\|u_n\|_p$ is bounded by the following inequality

$$
\frac{C_0}{p-1} \|\nabla u_n\|^p_p \leq \int_\Omega A(x, \nabla u_n)\nabla u_n \, dx = \lambda_n \int_\Omega m |u_n|^p + \int_\Omega h u_n \, dx
\leq \lambda_n \|m\|_\infty \|u_n\|^p_p + \|h\|_\infty \|u_n\|_1,
$$

(3.1)

where we use (iii) in Remark 1. Hence, by applying Proposition 3 to $A_n(x, y) = A(x, y)$ or $A_n(x, y) := A(x, y\|u_n\|_p)/\|u_n\|_p^{-1}$, we see that u_n or $u_n/\|u_n\|_p$ has a convergent subsequence in $C^1(\overline{\Omega})$ in the case where $\|u_n\|_p$ is bounded or not, respectively. Therefore, by the same argument as in [14, Theorem 3.2.], we can obtain a contradiction.

It follows from the following proposition that we can not take such δ independent of h as in Theorem 1.

Proposition 4. Assume that $N \geq p$ and $\int_\Omega m \, dx \geq 0$. Then, for any $\varepsilon > 0$ there exists $0 \neq h \in L^\infty(\Omega)_+$ such that for any $\lambda \geq \varepsilon$ the equation $(P; \lambda, m, h)$ has no solution u satisfying $u \leq 0$ in $\overline{\Omega}$ and $\{x \in \Omega_m; u(x) = 0\} = 0$, where $\Omega_m := \{x \in \Omega; m(x) \neq 0\}$.

Proof. By using Lemma 11 instead of [14, Lemma 2.5.] as in the argument of [14, Theorem 3.5.], we shall give the proof. Assume by contradiction that there exists $\varepsilon_0 > 0$ such that for any $0 \neq h \in L^\infty(\Omega)_+$, there exist $\lambda_h \geq \varepsilon_0$ and u_h being a solution of $(P; \lambda_h, m, h)$ with $u_h \leq 0$ in $\overline{\Omega}$ and $\{x \in \Omega_m; u_h(x) = 0\} = 0$. Fix $0 < \delta < \varepsilon_0/A_p$, where A_p is the positive constant defined by (2.14). Because we know $\lambda(m) = \lambda^*(m) = 0$ in the case of $N \geq p$ by Lemma 5, there exists $\varphi \in W^{1,p}(\Omega)$ such that $\varphi = 0$ on some (open) ball $B \subset \Omega$,

$$
\int_\Omega m |\varphi|^p \, dx = 1 \quad \text{and} \quad \int_\Omega |\nabla \varphi|^p \, dx < \delta.
$$

By considering $|\varphi|$ instead of φ, we may assume that $\varphi \geq 0$ in Ω. Here, we choose $h \in C^0(\Omega)$ such that $h \geq 0$, $h \neq 0$ and $\text{supp} h \subset B$. By the above contradictory hypothesis, we can obtain $\lambda_h \geq \varepsilon_0$ and $u_h \in W^{1,p}(\Omega)$ being a solution of $(P; \lambda_h, m, h)$ with $u_h \leq 0$ in $\overline{\Omega}$ and $\{x \in \Omega_m; u_h(x) = 0\} = 0$. Set $v = -u_h$, then v is non negative solution of

$$
-\text{div} A(x, \nabla v) = \lambda_h m v^{p-1} - h \quad \text{in} \ \Omega, \quad \frac{\partial v}{\partial n} = 0 \quad \text{on} \ \partial \Omega
$$

since A is odd in the second variable. Let $\varphi_M := \max \{\varphi, M\} \in W^{1,p}(\Omega) \cap L^\infty(\Omega)$ for $M > 0$. Then, for this φ_M and v, the inequality as in Lemma 11 holds because we
see that $p(\varphi_M/(v+\varepsilon))^{p-1}\nabla \varphi_M - (p-1)(\varphi_M/(v+\varepsilon))p \nabla v \in L^p(\Omega)^N$ (note $v = -u_h \in C^1(\overline{\Omega})$ (see Remark 2)). Thus, we obtain

$$A_p \|\nabla \varphi_M\|_p^p \geq \int_{\Omega} A(x, \nabla v) \nabla \left(\frac{\varphi_M^p}{(v+\varepsilon)^{p-1}} \right) dx = \lambda_h \int_{\Omega_m} m \left(\frac{v}{v+\varepsilon} \right)^{p-1} \varphi_M^p dx$$

for every $\varepsilon > 0$ and $M > 0$ by supp $h \cap$ supp $\varphi_M = \text{supp} h \cap$ supp $\varphi = \emptyset$. Because $v > 0$ a.e. on Ω_m, by taking $\varepsilon \downarrow 0$ and $M \to \infty$ in the above inequality, we obtain

$$\varepsilon_0 \leq \lambda_h = \lambda_h \int_{\Omega} m \varphi^p dx = \lambda_h \int_{\Omega_m} m \varphi^p dx \leq A_p \|\nabla \varphi\|_p^p < A_p \delta < \varepsilon_0.$$

This is a contradiction.

Remark 5. For the usual p-Laplace equation under the Dirichlet boundary condition, it is known that AMP holds at right of the principal eigenvalue $\lambda_1(m)$ and at left of $-\lambda_1(-m)$ (see [14]). However, in generall, we do not know wherther AMP holds near $\pm \lambda_1(\pm m)$ or not for the equation

$$-\text{div} A(x, \nabla u) = \lambda m |u|^{p-2}u + h \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial \Omega, \quad (3.2)$$

A major cause is that $C_0 \lambda_1(m)/(p-1) < A_p \lambda_1(m)$ occurs in the case of $C_0 < C_1$ because $\lambda_1(m)$ is positive. On the other hand, by the same argument as in the proof of Proposition 2, we can prove that equation (3.2) has no positive solutions provided $\lambda \not\in [-A_p\lambda_1(-m), A_p\lambda_1(m)]$ and $0 \neq h \in L^{\infty}(\Omega)_+.$

3.1. The case of $N < p$

Theorem 2. Assume that $N < p$ and $0 \neq h \in L^{\infty}(\Omega)_+$. Then, the following assertions hold:

(i) Suppose $\int_{\Omega} m dx > 0$ and λ satisfies $0 < \lambda \leq C_0 \bar{\lambda}(m)/(p-1)$. Then, any solution u of $(P; \lambda, m, h)$ satisfies $u < 0$ in Ω.

In addition, if $|\{m < 0\}| > 0$ and $(C_1/C_0)^p \lambda^*(-m) > \bar{\lambda}(-m)$, then the same conclusion holds for every λ satisfying

$$- \frac{C_0}{p-1} \bar{\lambda}(-m) \leq \lambda < -A_p \lambda^*(-m);$$

(ii) Suppose $\int_{\Omega} m dx = 0$ and λ satisfies

$$0 < \lambda \leq \frac{C_0 \bar{\lambda}(m)}{p-1} \quad \text{or} \quad - \frac{C_0 \bar{\lambda}(-m)}{p-1} \leq \lambda < 0.$$

Then, any solution u of $(P; \lambda, m, h)$ satisfies $u < 0$ in Ω.
Proof. By $\lambda m = (-\lambda)(-m)$ and $\lambda^*(m) = 0$ if $\int_{\Omega} m \, dx \geq 0$, it is sufficient to prove that any solution of $(P; \lambda, m, h)$ is negative in $\overline{\Omega}$ under the hypothesis that $0 \neq h \in L^\infty(\Omega)_+$, $A_p \lambda^*(m) < \lambda \leq C_0 \tilde{\lambda}(m)/(p - 1)$ with any $m \in L^\infty(\Omega)$ with (1.1). By way of contradiction, we shall prove our assertion above. So, we assume that there exist $m \in L^\infty(\Omega)$ with (1.1), $0 \neq h \in L^\infty(\Omega)_+$, $\lambda \in (A_p \lambda^*(m), C_0 \tilde{\lambda}(m)/(p - 1)]$ and $u \in W^{1,p}(\Omega)$ being a solution of $(P; \lambda, m, h)$ with $u \geq 0$ somewhere in $\overline{\Omega}$. By taking $\varphi = -u$ as test function, we have

$$\frac{C_0}{p - 1} \|\nabla u_-\|_p^p \leq \int_{\Omega} A(x, \nabla u)(-\nabla u_-) \, dx$$

$$= \lambda \int_{\Omega} mu_- \, dx - \int_{\Omega} hu_- \, dx$$

$$\leq \lambda \int_{\Omega} mu_- \, dx.$$ \hspace{1cm} (3.3)

Then, we can see that $\int_{\Omega} mu_- \, dx > 0$. Indeed, if $\int_{\Omega} mu_- \, dx = 0$ (note $\lambda > 0$), then $\nabla u_- \equiv 0$ and $\int_{\Omega} hu_- \, dx = 0$ holds, whence $u_- \equiv 0$. Thus, $u \geq 0$ and $u \neq 0$ by $h \neq 0$. This contradicts to Proposition 2 because of $\lambda > A_p \lambda^*(m)$.

As a result, we can get a contradiction easily by the following inequality (obtained by (3.3))

$$\frac{\|\nabla u_-\|_p^p}{\int_{\Omega} mu_- \, dx} \leq \frac{p - 1}{C_0} \lambda \leq \tilde{\lambda}(m),$$

the definition of $\tilde{\lambda}(m)$, Lemma 6 and a similar argument to [5, Theorem 2.1.].

Theorem 3. Assume that $N < p$ and $0 \neq h \in L^\infty(\Omega)_+$. Then, the following assertions hold:

(i) Let $\int_{\Omega} m \, dx > 0$. Then, there exists $\delta = \delta(h) > 0$ for every λ satisfying

$$C_0 \tilde{\lambda}(m)/(p - 1) < \lambda < C_0 \tilde{\lambda}(m)/(p - 1) + \delta$$

such that any solution u of $(P; \lambda, m, h)$ satisfies $u < 0$ in $\overline{\Omega}$.

In addition, if $|\{m < 0\}| > 0$ and $(C_1/C_0)^p \tilde{\lambda}^*(-m) < \tilde{\lambda}(-m)$, then there exists $\delta' = \delta'(h) > 0$ such that the same conclusion holds for every λ satisfying

$$- \frac{C_0}{p - 1} \tilde{\lambda}(-m) - \delta' < \lambda < - \frac{C_0}{p - 1} \tilde{\lambda}(-m);$$

(ii) Let $\int_{\Omega} m \, dx = 0$. Then, there exists $\delta = \delta(h) > 0$ for every λ satisfying

$$\frac{C_0 \tilde{\lambda}(m)}{p - 1} < \lambda < \frac{C_0 \tilde{\lambda}(m)}{p - 1} + \delta \text{ or } - \frac{C_0 \tilde{\lambda}(-m)}{p - 1} - \delta' < \lambda < - \frac{C_0 \tilde{\lambda}(-m)}{p - 1}$$

such that any solution u of $(P; \lambda, m, h)$ satisfies $u < 0$ in $\overline{\Omega}$.
Proof. By the same reason as in the proof of Theorem 2, it is sufficient to prove that for any $m \in L^\infty(\Omega)$ with (1.1) and $0 \neq h \in L^\infty(\Omega)_+$, there exists a $\delta > 0$ such that any solution of $(P; \lambda, m, h)$ is negative in $\overline{\Omega}$ if

$$C_0 \frac{\tilde{\lambda}(m)}{p - 1} < \lambda < C_0 \frac{\tilde{\lambda}(m)}{p - 1} + \delta$$

under the hypothesis $A_p \lambda^*(m) < C_0 \tilde{\lambda}(m)/(p - 1)$ (note $A_p \lambda^*(m) < C_0 \tilde{\lambda}(m)/(p - 1)$ if and only if $(C_1/C_0)^p \lambda^*(m) < \tilde{\lambda}(m)$), where A_p is the positive constant defined by (2.14). Thus, by way of contradiction, we assume that there exist $m \in L^\infty(\Omega)$ with (1.1), $0 \neq h \in L^\infty(\Omega)_+$, $\{\lambda_n\}$ and $\{u_n\} \subset W^{1,p}(\Omega)$ such that $\lambda_n \downarrow C_0 \tilde{\lambda}(m)/(p - 1)$ and u_n is a solution of $(P; \lambda_n, m, h)$ satisfying $u_n \geq 0$ somewhere in $\overline{\Omega}$.

If $\|u_n\|_p$ is bounded, then we can obtain a subsequence $\{u_{n_k}\}$ convergent to some u_0 in $C^1(\overline{\Omega})$ by Proposition 3 with $A_n = A$. This implies that u_0 is a solution of $(P; \lambda, m, h)$ with $u_0 \geq 0$ somewhere in Ω for $\lambda = C_0 \tilde{\lambda}(m)/(p - 1)$. This contradicts to Theorem 2.

Thus, we may assume that $\|u_n\|_p \to \infty$ as $n \to \infty$ by choosing a subsequence if necessary. Set $v_n := u_n/\|u_n\|_p$. Then, by a similar inequality to (3.1), we can get the boundedness of $\|v_n\|$. So, we may suppose, by choosing a subsequence, that there exists $v \in W^{1,p}(\Omega)$ such that $v_n \to v$ in $W^{1,p}(\Omega)$ and $v_n(x) \to v(x)$ uniformly in $x \in \overline{\Omega}$. We note that $v \geq 0$ somewhere in $\overline{\Omega}$ because $v_n \geq 0$ somewhere in $\overline{\Omega}$. Moreover, we can obtain (note $\lambda_n \to C_0 \tilde{\lambda}(m)/(p - 1)$):

$$\|\nabla v_+\|_p^p \leq \tilde{\lambda}(m) \int_{\Omega} mv_+^p \, dx \quad \text{and} \quad \|\nabla v_-\|_p^p \leq \tilde{\lambda}(m) \int_{\Omega} mv_-^p \, dx$$

(3.4)

by taking the limit inferior in the following inequalities.

$$\frac{C_0}{p - 1} \|\nabla v_+\|_p^p \leq \int_{\Omega} A(x, \nabla u_n) \frac{\nabla u_{n+}}{\|u_n\|_p^p} \, dx = \lambda_n \int_{\Omega} mv_{n+}^p \, dx + \int_{\Omega} h \frac{v_{n+}}{\|u_n\|_p^p} \, dx,$$

$$\frac{C_0}{p - 1} \|\nabla v_-\|_p^p \leq \int_{\Omega} A(x, \nabla u_n) \frac{-\nabla u_{n-}}{\|u_n\|_p^p} \, dx = \lambda_n \int_{\Omega} mv_{n-}^p \, dx - \int_{\Omega} h \frac{v_{n-}}{\|u_n\|_p^p} \, dx,$$

where we use (iii) in Remark 1.

Here, we shall consider by dividing into three cases:

(a) $\int_{\Omega} mv_+^p \, dx > 0$; \hspace{10pt} (b) $\int_{\Omega} mv_+^p \, dx = 0$ and $\int_{\Omega} mv_-^p \, dx = 0$;

(c) $\int_{\Omega} mv_+^p \, dx = 0$ and $\int_{\Omega} mv_-^p \, dx > 0$.

Case (a): If $v_+ > 0$ in $\overline{\Omega}$, then v_+ is positive in $\overline{\Omega}$ for sufficiently large n because $v = v_+ > 0$ in $\overline{\Omega}$ and $v_n(x) \to v(x)$ uniformly in $x \in \overline{\Omega}$. This means that u_n is a positive solution of $(P; \lambda_n, m, h)$ for sufficiently large n. This contradicts to Proposition 2 because of $\lambda_n > C_0 \tilde{\lambda}(m)/(p - 1) > A_p \lambda^*(m)$. So, we suppose that v_+ vanishes somewhere in $\overline{\Omega}$. Then, it follows from (3.4) that $v_+/(\int_{\Omega} mv_+^p dx)^{1/p}$ is a minimizer for $\tilde{\lambda}(m)$. Thus v_+ vanishes at exactly one point $x_0 \in \overline{\Omega}$ by Lemma 6, whence $v = v_+$ occurs. Now we shall prove that

$$\frac{C_0 \tilde{\lambda}(m)}{p - 1} \int_{\Omega} m \varphi^p \, dx \leq A_p \|\nabla \varphi\|_p^p \quad \text{for every} \ \varphi \in W^{1,p}(\Omega) \ \text{with} \ \varphi \geq 0.$$
If (3.5) is shown, then we have a contradiction because we can choose some \(\phi \in W^{1,p}(\Omega) \) with \(\phi \geq 0 \), \(\int_{\Omega} m \phi^p \, dx = 1 \) and \(\| \nabla \phi \|_p < \lambda^*(m) + \delta \) for \(\delta > 0 \) satisfying \(A_p \delta < C_0 \tilde{\lambda}(m)/(p-1) - A_p \lambda^*(m) \) (note \(C_0 \tilde{\lambda}(m)/(p-1) > A_p \lambda^*(m) \)).

To prove (3.5), we fix \(\varepsilon > 0 \) and \(\phi \in C^1(\overline{\Omega}) \) with \(\phi \geq 0 \). For sufficiently large \(n \), we have \(v_n + \varepsilon \geq \varepsilon/2 \) in \(\overline{\Omega} \), and hence \(u_n + \varepsilon \| u_n \|_p \geq \varepsilon \| u_n \|_p /2 > 0 \) in \(\overline{\Omega} \) since \(v_n \) converges to \(v = v^+ \) uniformly in \(\overline{\Omega} \). Thus, Lemma 11 yields the following inequality (note \(u_n \in C^1(\overline{\Omega}) \)):

\[
A_p \| \nabla \phi \|_p \geq \int_{\Omega} A(x, \nabla u_n) \nabla \left(\frac{\phi^p}{(u_n + \varepsilon \| u_n \|_p)^{p-1}} \right) \, dx
\]

\[
= \lambda_n \int_{\Omega} m \left(\frac{u_n}{u_n + \varepsilon \| u_n \|_p} \right)^{p-1} \phi^p \, dx + \int_{\Omega} h \left(\frac{\phi^p}{(u_n + \varepsilon \| u_n \|_p)^{p-1}} \right) \, dx
\]

\[
\geq \lambda_n \int_{\Omega} m \left(\frac{v_n}{v_n + \varepsilon} \right)^{p-1} \phi^p \, dx.
\]

Hence, by taking the limit in the above inequality, we have

\[
\frac{C_0 \tilde{\lambda}(m)}{p-1} \int_{\Omega} m \left(\frac{v}{v + \varepsilon} \right)^{p-1} \phi^p \, dx \leq A_p \| \nabla \phi \|_p.
\]

Moreover, by taking \(\varepsilon \downarrow 0 \), we can get (3.5) since \(C^1(\overline{\Omega}) \) is dense in \(W^{1,p}(\Omega) \) and \(v(x) > 0 \) if \(x \neq x_0 \).

Case (b): In this case, it follows from (3.4) that \(\nabla v = 0 \) holds, and so \(v \) is a constant function with \(\| v \|_p = 1 \). Because \(v \geq 0 \) somewhere in \(\overline{\Omega} \), we see \(v = 1/|\Omega|^{1/p} \).

Then, by the same reason as in the first part of the case (a), we have a contradiction.

Case (c): In this case, we can see that \(v \) is non positive in \(\overline{\Omega} \) (that is, \(v = -v_- \)) since \(\nabla v_+ \equiv 0 \) by (3.4) and \(\int_{\Omega} m v_-^p \, dx = 0 < \int_{\Omega} m v_+^p \, dx \).

If \(v = -v_- \) does not vanish in \(\overline{\Omega} \), then \(u_n < 0 \) in \(\overline{\Omega} \) for sufficiently large \(n \). This yields a contradiction because \(u_n \geq 0 \) somewhere in \(\overline{\Omega} \).

Thus, we may assume that \(v_- \) vanishes somewhere in \(\overline{\Omega} \). Then, (3.4) implies that \(v_- / (\int_{\Omega} m v_+^p \, dx)^{1/p} \) is a minimizer for \(\tilde{\lambda}(m) \). By considering

\[
\int_{\Omega} A(x, -\nabla u_n) \nabla \left(\frac{\phi^p}{(-u_n + \varepsilon \| u_n \|_p)^{p-1}} \right) \, dx \leq A_p \| \nabla \phi \|_p
\]

instead of (3.6) as in the proof of case (a), we have the same inequality (3.5) for every \(\phi \in W^{1,p}(\Omega) \) with \(\phi \geq 0 \) (note that \(A \) is odd in the second variable and \(-u_n(x) + \varepsilon \| u_n \|_p \to \infty \) uniformly in \(x \in \overline{\Omega} \)). As a result, we can get a contradiction by the same reason as in the last part of the case (a).

4. Existence of a solution

4.1. Existence of a positive solution

Theorem 4. Let \(0 \neq h \in L^\infty(\Omega)_+ \). If one of the following cases holds, then \((P; \lambda, m, h) \) has a positive solution:
(i) \(m \geq 0 \) in \(\Omega \) and \(\lambda < 0 \);

(ii) \(\int_{\Omega} mdx > 0, \ |\{m < 0\}| > 0 \) and \(0 > \lambda > -C_0 \lambda^*(m)/(p-1) \);

(iii) \(\int_{\Omega} mdx < 0 \) and \(0 < \lambda < C_0 \lambda^*(m)/(p-1) \),

where \(\lambda^*(m) \) is the principal eigenvalue obtained by (2.5).

To prove the existence of a positive solution, we define a \(C^1 \) functional \(I_\lambda^+ \) on \(W^{1,p}(\Omega) \) as follows:

\[
I_\lambda^+(u) := \int_{\Omega} G(x, \nabla u) \, dx - \frac{\lambda}{p} \int_{\Omega} mu^p_+ \, dx - \int_{\Omega} h u_+ \, dx + \frac{1}{p} \|u_-\|^p_p \tag{4.1}
\]

for \(\lambda \in \mathbb{R} \) and \(u \in W^{1,p}(\Omega) \), where \(G(x, y) := \int_0^{\|y\|} a(x, t) \, dt \) (see (2.1) for details).

Remark 6. We remark that non-trivial critical points of \(I_\lambda^+ \) correspond to positive solutions for \((P; \lambda, m, h) \). Indeed, if \(u \) is a critical point of \(I_\lambda^+ \), then we have

\[
\frac{C_0}{p-1} \|\nabla u_-\|^p_p + \|u_-\|^p_p \leq \int_{\Omega} A(x, \nabla u)(-\nabla u_-) \, dx + \int_{\Omega} h u_- \, dx + \|u_-\|^p_p = 0
\]

by taking \(-u_-\) as test function. Thus, \(u_- \equiv 0 \), and hence \(u \geq 0 \). As a result,

\[
\int_{\Omega} A(x, \nabla u) \nabla \varphi \, dx = \lambda \int_{\Omega} mu^{p-1} \varphi \, dx + \int_{\Omega} h \varphi \, dx
\]

holds for every \(\varphi \in W^{1,p}(\Omega) \). Because of \(u \not\equiv 0 \), \(u \) is a positive solution of \((P; \lambda, m, h) \) by Remark 2.

Lemma 12. Let \(0 \neq h \in L^\infty(\Omega)_+ \). If either \(m \geq 0 \) and \(\lambda < 0 \) or \(\int_{\Omega} mdx < 0 \) and \(0 < \lambda < C_0 \lambda^*(m)/(p-1) \) holds, then \(I_\lambda^+ \) is bounded from below, coercive and weakly lower semi-continuous (w.l.s.c.) on \(W^{1,p}(\Omega) \).

Proof. Note that \(\Phi(u) := \int_{\Omega} G(x, \nabla u) \, dx \) is w.l.s.c. on \(W^{1,p}(\Omega) \) (cf. [18, Theorem 1.2]) because \(\Phi \) is convex and continuous on \(W^{1,p}(\Omega) \). Thus, \(I_\lambda^+ \) is also w.l.s.c. on \(W^{1,p}(\Omega) \) since the inclusion of \(W^{1,p}(\Omega) \) to \(L^p(\Omega) \) is compact.

Now, we prove that \(I_\lambda^+ \) is bounded from below and coercive on \(W^{1,p}(\Omega) \).

Case of \(m \geq 0 \) and \(\lambda < 0 \): By Lemma 3 and (2.2), we can obtain

\[
I_\lambda^+(u) \geq \frac{C_0}{p(p-1)} \|\nabla u\|^p_p + \frac{\lambda}{p} \int_{\Omega} mu^p_+ \, dx - \|h\|_{\infty} \|u\|_1 + \frac{1}{p} \|u_-\|^p_p \\
\geq \frac{C_0}{p(p-1)} \|u_-\|^p_p + \frac{C_0}{2p(p-1)} \left(\|\nabla u_+\|^p_p + \frac{2(p-1)|\lambda|}{C_0} \int_{\Omega} mu^p_+ \, dx \right) \\
+ \frac{C_0}{2p(p-1)} \|\nabla u_+\|^p_p - \|h\|_{\infty} \|u\|_p |\Omega|(p-1)/p \\
\geq \frac{C_0}{p(p-1)} \|u_-\|^p_p + \frac{C_0 \min\{d(\xi), 1\}}{2p(p-1)} \|u_+\|^p_p - \|h\|_{\infty} \|u\|_p |\Omega|(p-1)/p
\]
for every $u \in W^{1,p}(\Omega)$ (note $p - 1 \geq C_0$), where $d(\xi) > 0$ is a constant obtained by Lemma 3 with $\xi = 2(p - 1)|\lambda|/C_0$. This implies that I_λ^+ is bounded from below, coercive because of $p > 1$.

Case of $\int_{\Omega} mdx < 0$ and $0 < \lambda < C_0 \lambda^*(m)/(p - 1)$: For every $u \in W^{1,p}(\Omega)$ with $\int_{\Omega} mu_+^p dx > 0$, we have

\[
I_\lambda^+(u) \geq \frac{1}{p} \left(\frac{C_0}{p} - \frac{\lambda}{\lambda^*(m)} \right) \|\nabla u_+\|^p_p + \frac{C_0}{p(p - 1)} \|\nabla u_-\|^p_p - \|h\|_\infty \|u\|_1 + \frac{1}{p} \|u_-\|^p_p
\]

\[
\geq \frac{1}{2p} \left(\frac{C_0}{p} - \frac{\lambda}{\lambda^*(m)} \right) \|\nabla u_+\|^p_p + \frac{c}{2p} \left(\frac{C_0}{p} - \frac{\lambda}{\lambda^*(m)} \right) \|u_+\|^p_p
\]

\[
+ \frac{C_0}{p(p - 1)} \|u_-\|^p_p - \|h\|_\infty \|u\|^p_{p|\Omega|^{(p - 1)/p}} \tag{4.2}
\]

by (2.2), the definition of $\lambda^*(m)$, Lemma 1 and $C_0 \leq p - 1$, where c is a positive constant independent of u obtained in Lemma 1. Next, we deal with $u \in W^{1,p}(\Omega)$ with $\int_{\Omega} mu_+^p dx \leq 0$. Take a δ such that $0 < \delta < \lambda$. Then, we obtain for any $u \in W^{1,p}(\Omega)$ with $\int_{\Omega} mu_+^p dx \leq 0$

\[
I_\lambda^+(u) \geq \frac{C_0}{2p(p - 1)} \left(\|\nabla u_+\|^p_p - \frac{2(p - 1)\delta}{C_0} \int_{\Omega} mu_+^p dx \right) + \frac{C_0}{2p(p - 1)} \|\nabla u_+\|^p_p
\]

\[
+ \frac{\delta - \lambda}{p} \int_{\Omega} mu_+^p dx + \frac{C_0}{p(p - 1)} \|u_-\|^p_p - \|h\|_\infty \|u\|_1
\]

\[
\geq \frac{C_0 b(m, \xi)}{2p(p - 1)} \|u_+\|^p_p + \frac{C_0}{2p(p - 1)} \|\nabla u_+\|^p_p
\]

\[
+ \frac{C_0}{p(p - 1)} \|u_-\|^p_p - \|h\|_\infty \|u\|^p_{p|\Omega|^{(p - 1)/p}} \tag{4.3}
\]

by (2.2) and Lemma 2, where $b(m, \xi)$ is a positive constant obtained in Lemma 2 with $\xi = 2(p - 1)\delta/C_0$. Consequently, our conclusion follows from (4.2) and (4.3).

Proof of Theorem 4. By the properties of I_λ^+ obtained as in Lemma 12, I_λ^+ has a global minimizer in all cases as in Theorem 4 (cf. [18, Theorem 1.1.]), where, we use $\lambda m = (-\lambda)(-m)$ in the case (ii). Thus, we see that $(P; \lambda, m, h)$ has a positive solution by Remark 6.

4.2. Other existence results for the general case

Theorem 5. Assume $0 \neq h \in L^\infty(\Omega)_+$. If one of the following conditions holds, then $(P; \lambda, m, h)$ has a solution:

- (i) $m \geq 0$ in Ω and $0 < \lambda < C_0 c(m)/(p - 1)$;
- (ii) $\int_{\Omega} mdx > 0$ and $0 < \lambda < C_0 \lambda^*(m)/(p - 1)$;
- (iii) $N < p$ and $A_p \lambda^*(m) < \lambda < C_0 \lambda(m)/(p - 1)$,
where $c(m)$, $\lambda_{X(m)}$, A_p and $\tilde{\lambda}(m)$ are positive constants defined by (2.11), (2.13), (2.14) and (2.7), respectively.

To show the existence of a solution, we define a C^1 functional I_λ on $W^{1,p}(\Omega)$ as follows:

$$I_\lambda(u) := \int_\Omega G(x, \nabla u) \, dx - \frac{\lambda}{p} \int_\Omega m|u|^p \, dx - \int_\Omega h u \, dx$$ \hspace{1cm} (4.4)

for $\lambda \in \mathbb{R}$ and $u \in W^{1,p}(\Omega)$, where $G(x,y) := \int_0^{|y|} a(x,t) \, dt$ (see (2.1) for details). Note that critical points of I_λ correspond to solutions of $(P; \lambda, m, h)$ (see Remark 2).

First, we shall prove that I_λ has the mountain pass geometry.

Lemma 13. Assume that $h \in L^\infty(\Omega)_+$, $\int_\Omega m \, dx \neq 0$ and

$$\frac{C_1 \lambda^*(m)}{p-1} < \lambda < \frac{C_0 c(m)}{p-1}.$$

Then, I_λ is bounded from below on $E(m)$ defined by

$$E(m) := \left\{ u \in W^{1,p}(\Omega); \|\nabla u\|^p_p \geq c(m) \int_\Omega m|u|^p \, dx \right\}. \hspace{1cm} (4.5)$$

Furthermore, there exist u_0, $u_1 \in W^{1,p}(\Omega)$ such that

$$\max\{I_\lambda(u_0), I_\lambda(u_1)\} < \inf_{E(m)} I_\lambda \leq \max_{t \in [0,1]} I_\lambda(\gamma(t))$$

for every $\gamma \in \Gamma$, where

$$\Gamma := \left\{ \gamma \in C([0,1], W^{1,p}(\Omega)); \gamma(0) = u_0, \gamma(1) = u_1 \right\}.$$

Proof. First, we shall prove $\inf_{E(m)} I_\lambda > -\infty$. For every $u \in W^{1,p}(\Omega)$ with

$$\int_\Omega m|u|^p \, dx \leq 0,$$

we have

$$I_\lambda(u) \geq \frac{C_0}{p(p-1)} \|\nabla u\|^p_p - \frac{\lambda}{p} \int_\Omega m|u|^p \, dx - \|h\|_\infty \|u\|_1$$

$$\geq \frac{C_0 b(m, \xi)}{p(p-1)} \|u\|^p_p - \|h\|_\infty \|u\|_p \|\Omega\|(p-1)/p > -\infty$$ \hspace{1cm} (4.6)

by (2.2), Lemma 2 and Hölder’s inequality, where $b(m, \xi)$ is a positive constant obtained in Lemma 2 with $\xi = (p-1)\tilde{\lambda}/C_0$. Thus, I_λ is bounded from below on $B(m)$, where $B(m)$ is a set defined by

$$B(m) := \{ u \in W^{1,p}(\Omega); \int_\Omega m|u|^p \, dx \leq 0 \} \subset E(m). \hspace{1cm} (4.7)$$
Here, we choose a constant δ such that $1 > \delta > \lambda(p - 1)/(c(m)C_0)$.

Let $m \geq 0$ in Ω. In this case, for every $u \in E(m)$, we have

$$
I_\lambda(u) \geq \frac{C_0(1 - \delta)}{p(p - 1)} \|\nabla u\|_p^p + \frac{1}{p} \left(\frac{C_0\delta c(m)}{p - 1} - \lambda \right) \int_{\Omega} m |u|^p \, dx - \|h\|_{\infty} \|u\|_{p,\Omega}^{(p-1)/p}
$$

$$
= \frac{C_0(1 - \delta)}{p(p - 1)} \left\{ \|\nabla u\|_p^p + \frac{p - 1}{C_0(1 - \delta)} \left(\frac{C_0\delta c(m)}{p - 1} - \lambda \right) \int_{\Omega} m |u|^p \, dx \right\}
$$

$$
- \|h\|_{\infty} \|u\|_{p,\Omega}^{(p-1)/p}
$$

$$
\geq d(\xi') \frac{C_0(1 - \delta)}{p(p - 1)} \|u\|_p^p - \|h\|_{\infty} \|u\|_{p,\Omega}^{(p-1)/p} > -\infty
$$

(4.8)

by (2.2), the definition of $E(m)$ and Lemma 3, where $d(\xi') > 0$ is a constant obtained in Lemma 3 with

$$
\xi' = \frac{p - 1}{C_0(1 - \delta)} \left(\frac{C_0\delta c(m)}{p - 1} - \lambda \right).
$$

Similarly, in the other cases (that is, m changes sign), for every $u \in E(m)$ with

$$
\int_{\Omega} m |u|^p \, dx > 0,
$$

we obtain

$$
I_\lambda(u) \geq \frac{C_0(1 - \delta)}{p(p - 1)} \|\nabla u\|_p^p + \frac{1}{p} \left(\frac{C_0\delta c(m)}{p - 1} - \lambda \right) \int_{\Omega} m |u|^p \, dx - \|h\|_{\infty} \|u\|_{p,\Omega}^{(p-1)/p}
$$

$$
= \frac{C_0(1 - \delta)}{p(p - 1)} \left\{ \|\nabla u\|_p^p + \frac{p - 1}{C_0(1 - \delta)} \left(\frac{C_0\delta c(m)}{p - 1} - \lambda \right) \int_{\Omega} (-m) |u|^p \, dx \right\}
$$

$$
- \|h\|_{\infty} \|u\|_{p,\Omega}^{(p-1)/p}
$$

$$
\geq b(-m, \xi') \frac{C_0(1 - \delta)}{p - 1} \|u\|_p^p - \|h\|_{\infty} \|u\|_{p,\Omega}^{(p-1)/p} > -\infty
$$

(4.9)

by (2.2), the definition of $E(m)$, Lemma 2 (note $\int_{\Omega} (-m) |u|^p \, dx < 0$) and Hölder’s inequality, where $b(-m, \xi')$ is a positive constant obtained in Lemma 2 with

$$
\xi' = \frac{p - 1}{C_0(1 - \delta)} \left(\frac{C_0\delta c(m)}{p - 1} - \lambda \right).
$$

Consequently, we see that I_λ is bounded from below on $E(m)$ by (4.6) and (4.8) or (4.9).

Fix a positive constant ε such that $C_1(\lambda^*(m) + \varepsilon)/(p - 1) < \lambda$. Then, by the definition of $\lambda^*(m)$, we can choose a non negative function $v_0 \in W^{1,p}(\Omega)$ (note that we can use $|v_0|$ instead of v_0 if necessary) such that

$$
\int_{\Omega} m v_0^p \, dx = 1 \quad \text{and} \quad \|\nabla v_0\|_p^p < \lambda^*(m) + \varepsilon.
$$
Then, for sufficiently large $T > 0$, we have

$$I_\lambda(\pm T v_0) \leq \frac{C_1 T^p}{p(p-1)} \|\nabla v_0\|_p^p - \frac{\lambda T^p}{p} + T \int_\Omega h v_0 \, dx$$

$$< -\frac{T^p}{p} \left(\lambda - \frac{C_1}{p-1} (\lambda^* + \epsilon) \right) + T \int_\Omega h v_0 \, dx < \inf_{E(m)} I_\lambda$$ \hfill (4.10)

by (2.2), $\lambda - C_1 (\lambda^* + \epsilon)/(p - 1) > 0$ and $p > 1$. Hence, we set $u_0 := T v_0$ and $u_1 := -T v_0$ for $T > 0$ satisfying (4.10).

Now, we shall prove

$$\max_{t \in [0,1]} I_\lambda(\gamma(t)) \geq \inf_{E(m)} I_\lambda$$

for every $\gamma \in \Gamma$.

Fix any $\gamma \in \Gamma$. If $\gamma([0,1]) \cap B(m) \neq \emptyset$, then

$$\max_{t \in [0,1]} I_\lambda(\gamma(t)) \geq \inf_{B(m)} I_\lambda \geq \inf_{E(m)} I_\lambda$$

because of $B(m) \subset E(m)$ (see (4.7)). So, we may assume that $\gamma([0,1]) \cap B(m) = \emptyset$, namely $\int_\Omega m|\gamma(t)|^p \, dx > 0$ for every $t \in [0,1]$. Set

$$\tilde{\gamma}(t) := \frac{\gamma(t)}{\left(\int_\Omega m|\gamma(t)|^p \, dx \right)^{1/p}},$$

and then $\tilde{\gamma} \in \Sigma(m)$ (see (2.10) for the definition of $\Sigma(m)$). By the definition of $c(m)$, we have $\max_{t \in [0,1]} \|\nabla \tilde{\gamma}(t)\|_p^p \geq c(m)$. This implies that there exists $u_\gamma \in \gamma([0,1])$ such that

$$\|\nabla u_\gamma\|_p^p \geq c(m) \int_\Omega m|u_\gamma|^p \, dx,$$

whence $u_\gamma \in E(m)$. As a result, we obtain

$$\max_{t \in [0,1]} I_\lambda(\gamma(t)) \geq I_\lambda(u_\gamma) \geq \inf_{E(m)} I_\lambda.$$

Lemma 14. Assume that

$$h \in L^\infty(\Omega)_+, \quad \int_\Omega m \, dx = 0 \quad \text{and} \quad 0 < \lambda < \frac{C_0 c(m)}{p-1}.$$

Then, there exists $\epsilon_0 > 0$ such that $\lambda < C_0 (m + \epsilon_0)/(p - 1)$ and I_λ is bounded from below on $E(m + \epsilon_0)$ defined by (4.5) with $m + \epsilon_0$. Furthermore, there exist $u_0, u_1 \in W^{1,p}(\Omega)$ such that

$$\max\{I_\lambda(u_0), I_\lambda(u_1)\} \leq \inf_{E(m + \epsilon_0)} I_\lambda \leq \max_{t \in [0,1]} I_\lambda(\gamma(t))$$

for every $\gamma \in C([0,1], W^{1,p}(\Omega))$ with $\gamma(0) = u_0$ and $\gamma(1) = u_1$.

Proof. By Lemma 9 and \(\lambda < C_0 c(m)/(p-1) \), we can choose \(\varepsilon_0 > 0 \) satisfying \(\lambda < C_0 (m + \varepsilon_0)/(p-1) \). For every \(u \in W^{1,p}(\Omega) \), we have

\[
I_\lambda(u) \geq \frac{C_0}{p(p-1)} \|\nabla u\|_p^p - \frac{\lambda}{p} \int_\Omega (m + \varepsilon_0)|u|^p dx + \frac{\varepsilon_0 \lambda}{p} \|u\|_p^p - \|h\|_\infty \|u\|_1.
\]

Thus, by the same argument as in the proof of Lemma 13 with \(m + \varepsilon_0 \) instead of \(m \), we can show that \(I_\lambda \) is bounded from below on \(E(m + \varepsilon_0) \) (note \(\varepsilon_0 \lambda > 0 \)). Moreover, by choosing a non negative function \(v_0 \in W^{1,p}(\Omega) \) such that

\[
\int_\Omega mv_0^p \, dx = 1 \quad \text{and} \quad \|\nabla v_0\|_p < \lambda^*(m) + \varepsilon = \varepsilon
\]

for \(0 < \varepsilon < \lambda (p-1)/C_1 \), we have

\[
I_\lambda(\pm T v_0) \leq - \frac{T^p}{p} \left(\lambda - \frac{C_1 \varepsilon}{p-1} \right) + T \int_\Omega hv_0 \, dx < \inf_{E(m+\varepsilon_0)} I_\lambda
\]

for sufficiently large \(T > 0 \), where we use (2.2) in the first integral. The last assertion can be proved by the same argument as in the proof of Lemma 13 with \(m + \varepsilon_0 \) instead of \(m \).

PROOF OF THEOREM 5. By Proposition 6 in the last subsection 4.4, we will see that \(I_\lambda \) satisfies the Palais-Smale condition in all cases. Hence, the mountain pass theorem guarantees the existence of a critical point of \(I_\lambda \) since \(I_\lambda \) has the mountain pass geometry by Lemma 13 (if \(\int_\Omega mdx \neq 0 \)) or Lemma 14 (if \(\int_\Omega mdx = 0 \)), where we use \(A_p \geq C_1/(p-1) \) when \(\int_\Omega mdx < 0 \) and \(N < p \). Therefore, \((P;\lambda, m, h) \) has at least one solution.

4.3. Asymptotically \((p-1)\) homogeneous case

In this subsection, we deal with the special case where the map \(A(x,y) \) is asymptotically \((p-1)\) homogeneous in the following sense:

\((AH) \) there exist a positive function \(a_\infty \in C^1(\overline{\Omega}, \mathbb{R}) \) and a continuous function \(\tilde{a}(x,t) \) on \(\overline{\Omega} \times \mathbb{R} \) such that

\[
A(x,y) = a_\infty(x)|y|^{p-2}y + \tilde{a}(x,|y|)y \quad \text{for every} \ x \in \Omega, \ y \in \mathbb{R}^N,
\]

\[
\lim_{t \to +\infty} \frac{\tilde{a}(x,t)}{t^{p-2}} = 0 \quad \text{uniformly in} \ x \in \overline{\Omega},
\]

and \(A \) satisfies the hypothesis \((A)\).

Under this hypothesis, we obtain the following existence result.

THEOREM 6. Assume that \((AH)\), \(m \in L^\infty(\Omega) \) and \(0 \neq h \in L^\infty(\Omega)_+ \). If

\[
\lambda^*(m) \sup_{x \in \Omega} a_\infty(x) < \lambda < c(m) \inf_{x \in \Omega} a_\infty(x),
\]

then \((P;\lambda, m, h) \) has at least one solution.
Under the hypothesis \((AH)\), we define
\[
\tilde{G}(x,y) := \int_{0}^{\|y\|} \tilde{a}(x,t) \, dt.
\]
Then, the functional \(I_\lambda\) is written by
\[
I_\lambda(u) = \frac{1}{p} \int_{\Omega} a_{\infty}|\nabla u|^p \, dx + \int_{\Omega} \tilde{G}(x,\nabla u) \, dx - \frac{\lambda}{p} \int_{\Omega} m|u|^p \, dx - \int_{\Omega} h u \, dx
\]
for \(u \in W^{1,p}(\Omega)\).

Now, we shall prove that \(I_\lambda\) has the mountain pass geometry.

Lemma 15. Assume that \((AH), h \in L^\infty(\Omega)_{+}, \int_{\Omega} m \, dx \neq 0 \) and \(\lambda^* (m) \sup_{x \in \Omega} a_{\infty}(x) < \lambda < c(m) \inf_{x \in \Omega} a_{\infty}(x)\).

Then, \(I_\lambda\) is bounded from below on \(E(m)\) defined by (4.5). Furthermore, there exist \(u_0, u_1 \in W^{1,p}(\Omega)\) such that
\[
\max\{I_\lambda(u_0), I_\lambda(u_1)\} < \inf_{E(m)} I_\lambda \leq \max_{t \in [0,1]} I_\lambda(\gamma(t))
\]
for every \(\gamma \in \Gamma\), where
\[
\Gamma := \{ \gamma \in C([0,1], W^{1,p}(\Omega)) ; \gamma(0) = u_0, \gamma(1) = u_1 \}.
\]

Proof. By the property of the function \(\tilde{a}\) as in \((AH)\) and Young’s inequality, for every \(\varepsilon > 0\) there exist constants \(C_{\varepsilon} > 0\) and \(C_{\varepsilon}' > 0\) such that
\[
\left| \tilde{G}(x,y) \right| \leq \frac{\varepsilon}{2} |y|^p + C_{\varepsilon} |y| \leq \varepsilon |y|^p + C_{\varepsilon}'
\]
for every \(x \in \Omega\) and \(y \in \mathbb{R}^N\). Therefore, we have
\[
I_\lambda(u) \geq \frac{a - p\varepsilon}{p} \|\nabla u\|_p^p - \frac{\lambda}{p} \int_{\Omega} m|u|^p \, dx - \|h\|_{\infty} \|u\|_1 - C_{\varepsilon}'|\Omega|
\]
for every \(u \in W^{1,p}(\Omega)\), where \(a := \inf_{x \in \Omega} a_{\infty}(x)\). Here, we choose \(\varepsilon > 0\) and \(0 < \delta < 1\) such that \(\lambda < (a + p\varepsilon)\delta c(m)\). By a similar argument to Lemma 13, we can show that \(I_\lambda\) is bounded from below on \(E(m)\).

Next, we shall prove the existence of desired \(u_0\) and \(u_1\). Take \(\varepsilon' > 0\) satisfying
\[
\lambda > (\overline{a} + p\varepsilon')(\lambda^*(m) + \varepsilon'),
\]
where \(\overline{a} := \sup_{x \in \Omega} a_{\infty}(x)\). Choose a function \(v_0 \in W^{1,p}(\Omega)\) such that
\[
\int_{\Omega} m|v_0|^p \, dx = 1 \quad \text{and} \quad \|\nabla v_0\|_p^p < \lambda^*(m) + \varepsilon'.
\]
Then, for sufficiently large $T > 0$, we have
\[
I_{\lambda}(\pm T v_0) \leq -\frac{T^p}{p} \{ \lambda - (\sigma + p\varepsilon') (\lambda^*(m) + \varepsilon') \} + T \int_{\Omega} |h| v_0 |dx + C'_\varepsilon |\Omega|
\]
\[
< \inf_{E(m)} I_{\lambda},
\]
where we use (4.11) with $\varepsilon = \varepsilon'$. Thus, by setting $u_0 := T v_0$ and $u_1 := -T v_0$ for such $T > 0$, our claim is shown. Finally, it follows from the same argument as in Lemma 13 that every $\gamma \in \Gamma$ links $E(m)$.

By combining the proof of Lemma 15 with one of Lemma 14, we can show the following lemma in the case of $\int_{\Omega} m dx = 0$. Here, we omit the proof.

Lemma 16. Assume that (AH), $h \in L^\infty(\Omega)_+$, $\int_{\Omega} m dx = 0$ and
\[
\lambda^*(m) \sup_{x \in \Omega} a_\infty(x) < \lambda < c(m) \inf_{x \in \Omega} a_\infty(x).
\]
Then, there exists $\varepsilon_0 > 0$ such that $\lambda < c(m + \varepsilon_0) \inf_{x \in \Omega} a_\infty(x)$ and I_{λ} is bounded from below on $E(m + \varepsilon_0)$ defined by (4.5) with $m + \varepsilon_0$. Furthermore, there exist u_0, $u_1 \in W^{1,p}(\Omega)$ such that
\[
\max \{ I_{\lambda}(u_0), I_{\lambda}(u_1) \} < \inf_{E(m + \varepsilon_0)} I_{\lambda} \leq \max_{t \in [0,1]} I_{\lambda}(\gamma(t))
\]
for every $\gamma \in C([0,1], W^{1,p}(\Omega))$ with $\gamma(0) = u_0$ and $\gamma(1) = u_1$.

Proof of Theorem 6. It suffices to prove the existence of a critical point of I_{λ} because critical points of I_{λ} correspond to solutions of (P; λ, m, h). By Proposition 6 in the last subsection 4.4, we will see that I_{λ} satisfies the Palais-Smale condition if λ is not an eigenvalue of
\[
-\text{div} \left(a_\infty(x) \left| \nabla u \right|^{p-2} \nabla u \right) = \lambda m(x) |u|^{p-2} u \quad \text{in } \Omega, \quad \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial \Omega. \tag{4.12}
\]
Hence, by admitting that λ is not an eigenvalue of (4.12), the mountain pass theorem guarantees the existence of a critical point of I_{λ} since I_{λ} has the mountain pass geometry by Lemma 15 or 16 in the case of $\int_{\Omega} m dx \neq 0$ or $\int_{\Omega} m dx = 0$, respectively.

Now, we shall prove that the equation (4.12) has no non-trivial solution provided $\lambda^*(m) \sup_{x \in \Omega} a_\infty(x) < \lambda < c(m) \inf_{x \in \Omega} a_\infty(x)$ by way of contradiction. So, we assume that there exists a non-trivial solution $v \in W^{1,p}(\Omega)$ of (4.12). By taking $\pm v_\pm$ as test function, we have
\[
\inf_{x \in \Omega} a_\infty(x) \| \nabla v_\pm \|_p^p \leq \lambda \int_{\Omega} m v_\pm^p dx \leq \sup_{x \in \Omega} a_\infty(x) \| \nabla v_\pm \|_p^p. \tag{4.13}
\]
We shall show that $\int_{\Omega} m v_\pm^p dx > 0$ and $\int_{\Omega} m v_\pm^p dx > 0$. If $\int_{\Omega} m v_\pm^p dx = 0$ holds, then $v = -v_-$ or $v = c > 0$ with $c = \| v_+ \|_p$ occurs because of $\| \nabla v_+ \|_p > 0$ obtained by
(4.13). Thus, \(-v\) or \(v\) is a positive solution of (4.12) belonging to \(C^1(\overline{\Omega})\) such that
\[\min_{\overline{\Omega}} v_\pm = \min_{\overline{\Omega}} (-v) > 0\] or
\[\min_{\overline{\Omega}} v > 0,\]
respectively (see Remark 2 with \(h \equiv 0\)). Then, by applying an argument as in Proposition 2 (with \(h \equiv 0\)) to the equation (4.12), we obtain the inequality
\[
\lambda \int_{\Omega} m \varphi^p \, dx = \int_{\Omega} a_\infty |\nabla \psi|^{p-2} \nabla \psi \nabla \left(\frac{\varphi^p}{\psi^{p-1}} \right) \, dx
\leq \int_{\Omega} a_\infty |\nabla \varphi|^p \, dx \leq \sup_{x \in \Omega} a_\infty(x) \|\nabla \varphi\|^p_p
\]
for every \(\varphi \in C^1(\overline{\Omega})\) with \(\psi \geq 0\), where \(\psi = v_-\) if \(v < 0\) or \(\psi = v_+\) if \(v > 0\). By the density of \(C^1(\overline{\Omega})\), we have
\[
\lambda \int_{\Omega} m \varphi^p \, dx \leq \sup_{x \in \Omega} a_\infty(x) \|\nabla \varphi\|^p_p \quad \text{for every } \varphi \in W^{1,p}(\Omega) \text{ with } \varphi \geq 0.
\]
This implies that \(\lambda \leq \lambda^*(m) \sup_{x \in \Omega} a_\infty(x)\) (refer to Proposition 2). This is a contradiction.

Similarly, if \(\int_{\Omega} m v_+^p \, dx = 0\), then we can get a contradiction since \(v = v_+\) or \(v = -c < 0\) holds. Therefore, our claim is shown. As a result, we can define a continuous path \(\gamma_0 \in \Sigma(m)\) (see (2.10) for the definition of \(\Sigma(m)\)) by
\[
\gamma_0(t) := \frac{(1-t)v_+ - tv_-}{(1-t)p \int_{\Omega} m v_+^p \, dx + t^p \int_{\Omega} m v_-^p \, dx}^{1/p}.
\]
Hence, we have a contradiction to the definition of \(c(m)\) because
\[
\tilde{J}(\gamma_0(t)) = \|\nabla \gamma_0(t)\|^p_p \leq \frac{\lambda}{\inf_{x \in \Omega} a_\infty(x)} < c(m) \quad \text{for every } t \in [0, 1]
\]
holds by (4.13), where \(\tilde{J}\) is the functional defined by (2.8).

Remark 7. Let \(\lambda^*(a_\infty, m)\) and \(c(a_\infty, m)\) be the principal eigenvalue or the second eigenvalue of
\[
-\text{div} \left(a_\infty(x)|\nabla u|^{p-2} \nabla u \right) = \lambda m(x)|u|^{p-2} u \quad \text{in } \Omega, \quad \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial \Omega, \quad (4.14)
\]
respectively. Namely,
\[
\lambda^*(a_\infty, m) := \inf \left\{ \int_{\Omega} a_\infty |\nabla u|^p \, dx; \int_{\Omega} m |u|^p \, dx = 1 \right\},
\]
\[
c(a_\infty, m) := \inf_{\gamma \in \Sigma(m)} \max_{t \in [0, 1]} \int_{\Omega} a_\infty |\nabla \gamma(t)|^p \, dx.
\]
Then, in the assumption of Theorem 6, we can replace
\[
\lambda^*(m) \sup_{x \in \Omega} a_\infty(x) < \lambda < c(m) \inf_{x \in \Omega} a_\infty(x)
\]
with \(\lambda^*(a_\infty, m) < \lambda < c(a_\infty, m)\). In [23], the present author provides the existence result in the more general cases.
4.4. Palais-Smale condition

In this section, we prove that I_λ satisfies the Palais-Smale condition under the several situation. The following result is proved in [20]. It plays an important role for our proof.

Proposition 5. ([20, Proposition 1]) Let $A : W^{1,p}(\Omega) \rightarrow W^{1,p}(\Omega)^*$ be the map defined by

$$\langle A(u), v \rangle = \int_\Omega A(x, \nabla u) \nabla v \, dx$$

for $u, \ v \in W$. Then, A is maximal monotone, strictly monotone and has the $(S)_+$ property, that is, any sequence $\{u_n\}$ weakly convergent to u with

$$\limsup_{n \to \infty} \langle A(u_n), u_n - u \rangle \leq 0 \quad \text{strongly converges to } u.$$

First, we state the result for the Palais-Smale condition in the general case.

Proposition 6. Let $h \in L^\infty(\Omega)$. If one of the following cases holds, then I_λ satisfies the Palais-Smale condition:

(i) $m \geq 0$ in Ω and $0 < \lambda < C_0 c(m)/(p - 1)$,

(ii) $\int_\Omega m \, dx > 0$ and $0 < \lambda < C_0 \lambda(m)/(p - 1)$,

(iii) $N < p$ and $A_p \lambda^*(m) < \lambda < C_0 \tilde{\lambda}(m)/(p - 1)$,

where $c(m), \lambda(m), A_p$ and $\tilde{\lambda}(m)$ are positive constants defined by (2.11), (2.13), (2.14) and (2.7), respectively.

Proof. Let $\{u_n\}$ be a Palais-Smale sequence of I_λ, namely,

$$I_\lambda(u_n) \to c \quad \text{and} \quad \| I'_\lambda(u_n) \|_{W^*} \to 0 \quad \text{as } n \to \infty$$

for some $c \in \mathbb{R}$. It is sufficient to prove the boundedness of $\{u_n\}$ in $W^{1,p}(\Omega)$ because the operator A defined in Proposition 5 has the $(S)_+$ property and the inclusion from $W^{1,p}(\Omega)$ to $L^p(\Omega)$ is compact. Then, by noting the following inequality

$$\frac{C_0}{p(p - 1)} \sqrt[p]{\| \nabla u_n \|_p^p} \leq \int_\Omega G(x, \nabla u_n) \, dx = I_\lambda(u_n) + \frac{\lambda}{p} \int_\Omega m \|u_n\|^p \, dx + \int_\Omega h \, u_n \, dx \leq I_\lambda(u_n) + \lambda \| m \|_{\infty} \| u_n \|_p^p / p + \| h \|_{\infty} \| u_n \|_1$$

(4.15)

by (2.2), it is sufficient to prove only the boundedness of $\{u_n\}$ in $L^p(\Omega)$. We shall prove it by contradiction. So, we may assume $\| u_n \|_p \to \infty$ by choosing a subsequence. Put $v_n := u_n / \| u_n \|_p$. Then, we may suppose that there exists a $v \in W^{1,p}(\Omega)$ such that

$$v_n \rightharpoonup v \quad \text{in } W^{1,p}(\Omega) \quad \text{and hence} \quad v_n \to v \quad \text{in } L^p(\Omega)$$
since (4.15) ensures the boundedness of \(\{v_n\} \) in \(W^{1,p}(\Omega) \). By taking the limit inferior in the following inequality

\[
\frac{C_0}{p-1} \|\nabla v_{n+}\|_p^p \leq \int_{\Omega} A(x, \nabla u_n) \frac{\nabla u_{n+}}{\|u_n\|_p^p} \, dx
\]

\[
= \lambda \int_{\Omega} mv_{n+}^p \, dx + \int_{\Omega} h \frac{v_{n+}}{\|u_n\|_p^p} \, dx + \left\langle I'_\lambda(u_n), \frac{v_{n+}}{\|u_n\|_p^p} \right\rangle
\]

(where we use Remark 1 (iii) in the first inequality), we have

\[
\frac{C_0}{p-1} \|\nabla v_{n+}\|_p^p \leq \lambda \int_{\Omega} mv_{n+}^p \, dx. \tag{4.16}
\]

Similarly, we also get

\[
\frac{C_0}{p-1} \|\nabla v_-\|_p^p \leq \lambda \int_{\Omega} mv_{n-}^p \, dx. \tag{4.17}
\]

Here, we note that it is sufficient to prove the two inequalities \(\int_{\Omega} mv_{n+}^p \, dx > 0 \) and \(\int_{\Omega} mv_{n-}^p \, dx > 0 \). Indeed, if we can show the above inequalities, then we can define a continuous path \(\gamma_0 \in \Sigma(m) \) (see (2.10) for the definition of \(\Sigma(m) \)) by

\[
\gamma_0(t) := \frac{(1-t)v_+ - tv_-}{((1-t)p \int_{\Omega} mv_{n+}^p \, dx + t p \int_{\Omega} mv_{n-}^p \, dx)^{1/p}}.
\]

For this continuous path, by an easy estimate with (4.16) and (4.17), we have

\[
\tilde{J}(\gamma_0(t)) = \|\nabla \gamma_0(t)\|_p^p \leq \frac{p-1}{C_0} \lambda < c(m) \quad \text{for every } t \in [0,1],
\]

where \(\tilde{J} \) is the functional defined by (2.8). This contradicts to the definition of \(c(m) \).

So, we shall prove

\[
\int_{\Omega} mv_{n+}^p \, dx > 0 \quad \text{and} \quad \int_{\Omega} mv_{n-}^p \, dx > 0
\]

in each case of (i) \(\sim \) (iii) by noting (4.16) and (4.17).

Case (i): If \(\int_{\Omega} mv_{n+}^p \, dx = 0 \), then \(v_+ \) is a constant function by (4.16). Moreover, because of \(\int_{\Omega} m \, dx > 0 \), we see that \(v_+ \equiv 0 \), and so \(v \leq 0 \) in \(\Omega \). Then, by the equality

\[
o(1) = \left\langle I'_\lambda(u_n), \frac{1}{\|u_n\|_p^{p-1}} \right\rangle = \lambda \int_{\Omega} m|v_n|^{p-2}v_n \, dx + \int_{\Omega} h / \|u_n\|_p^{p-1} \, dx,
\]

we have

\[
\int_{\Omega} m|v|^{p-2}v \, dx = - \int_{\Omega} mv_{n+}^{p-1} = 0
\]

(note \(\lambda > 0 \)). This yields that \(m(x)v_{n+}^{p-1}(x) = 0 \) for a.e. \(x \in \Omega \) (note \(m \geq 0 \) in \(\Omega \)). Thus, \(m(x)v_{n+}^p(x) = 0 \) for a.e. \(x \in \Omega \). Therefore, (4.17) shows that \(v_- \) is a constant function, and so

\[
v = -v_- \equiv 0 \quad \text{by} \quad \int_{\Omega} mv_{n-}^p \, dx = 0.
\]
This contradicts to $\|v\|_p = 1$. Hence, we have $\int_\Omega mv_+^p \, dx > 0$. Similarly, we see that $\int_\Omega mv_-^p \, dx > 0$.

Case (ii): First, let $\int_\Omega mv_-^p \, dx = 0$ occur. Then, by the same argument as in case (i), we have $v \leq 0$ in Ω and

$$\int_\Omega m|v|^{p-2}v \, dx = - \int_\Omega mv_-^{p-1} = 0.$$

If $\int_\Omega mv_-^p \, dx > 0$ holds, then $v_-/ (\int_\Omega mv_-^p \, dx)^{1/p} \in X(m)$ and we have

$$\frac{\|\nabla v_\rho\|_p^p}{\int_\Omega mv_-^p \, dx} \leq (p - 1) \frac{\lambda}{C_0} \lambda_X(m)$$

by (4.17). This contradicts to the definition of $\lambda_X(m)$.

On the other hand, if $\int_\Omega mv_-^p \, dx = 0$, then v_- is a constant function by (4.17). Hence we obtain a contradiction in this case also since

$$0 = \int_\Omega mv_-^p \, dx = v_-^p \int_\Omega m \, dx = \frac{1}{|\Omega|} \int_\Omega m \, dx > 0$$

(note $\|v\|_p = 1$ and also that v_- is a constant function). Consequently, we have shown $\int_\Omega mv_-^p \, dx > 0$.

Similarly, we can prove that $\int_\Omega mv_+^p \, dx > 0$ by a similar argument above with v_+ instead of v_-.

Case (iii): We consider by dividing into the following three cases:

(a) $\int_\Omega mv_+^p \, dx = 0 = \int_\Omega mv_-^p \, dx$;

(b) $\int_\Omega mv_+^p \, dx > 0 = \int_\Omega mv_-^p \, dx$;

(c) $\int_\Omega mv_+^p \, dx > 0 < \int_\Omega mv_-^p \, dx$.

In the case of (a), it follows from (4.16) and (4.17) that v is a constant function. Thus, $v = 1/|\Omega|^{1/p}$ or $v = -1/|\Omega|^{1/p}$ occurs. First, we shall deal with the case of $v = 1/|\Omega|^{1/p} > 0$. Thus, we may assume that $u_n \geq \|u_n\|_p/2|\Omega|^{1/p}$ in $\overline{\Omega}$ for sufficiently large n (note $N < p$ and so $W^{1,p}(\Omega) \hookrightarrow C(\overline{\Omega})$ is compact). So, we obtain

$$\|\nabla (1/u_n^{p-1})\|_p \leq \frac{2^p(p - 1)}{|\Omega|\|u_n\|_p^{p-1}} \|\nabla v_n\|_p$$

and

$$\| (1/u_n^{p-1})\|_p \leq \frac{2^p(p - 1)|\Omega|}{\|u_n\|_p^{p-1}}.$$ (4.18)

and so $1/u_n^{p-1} \in W^{1,p}(\Omega)$ for such sufficiently large n. Here, we fix any $\varphi \in C^1(\overline{\Omega})$ such that $\varphi > 0$ in Ω. By taking the limit in the following inequality

$$A_p\|\nabla \varphi\|_p^p \geq \int_\Omega A(x, \nabla u_n)\nabla \left(\frac{\varphi^p}{u_n^{p-1}} \right) \, dx$$

$$= \lambda \int_\Omega m\varphi \, dx + \int_\Omega \frac{h \varphi^p}{u_n^{p-1}} \, dx + \langle f, \varphi^p / u_n^{p-1} \rangle$$
(note \(\|\varphi^p / u_n^{p-1}\| = o(1)\) by (4.18)), where the first inequality is shown by Proposition 2, we have
\[
A_p \|\nabla \varphi\|_p^p \geq \lambda \int_{\Omega} m \varphi^p \, dx
\]
for every \(\varphi \in C^1(\overline{\Omega})\) with \(\varphi \geq 0\) in \(\Omega\). Since \(C^1(\overline{\Omega})\) is dense in \(W^{1,p}(\Omega)\), we obtain
\[
A_p \|\nabla \varphi\|_p^p \geq \lambda \int_{\Omega} m \varphi^p \, dx
\]
for every \(\varphi \in W^{1,p}(\Omega)\) with \(\varphi \geq 0\) in \(\Omega\). Because we can choose \(\varphi_k \in W^{1,p}(\Omega)\) such that \(\varphi_k \geq 0\) in \(\Omega\), \(\int_{\Omega} m \varphi_k^p \, dx = 1\) and \(\|\nabla \varphi_k\|_p^p < \lambda^*(m) + 1/k\) (we consider \(|\varphi_k|\) instead of \(\varphi_k\) if necessary), we have a contradiction.

In the case of \(v = -1/|\Omega|^{1/p} < 0\) also, we have a contradiction by using \(-u_n\) instead of \(u_n\) as in the above argument (note that \(A\) is odd in the second variable).

In the case of (b), it is easily seen that \(v = v_+ \geq 0\) holds by (4.17) and
\[
\int_{\Omega} mv_+^p \, dx = 0 < \int_{\Omega} mv_n^p \, dx.
\]
Since we obtain
\[
\frac{\|\nabla v_+\|_p^p}{\int_{\Omega} mv_+^p \, dx} \leq (p - 1) \frac{\lambda}{C_0} < \tilde{\lambda}(m)
\]
by (4.16) and \(\int_{\Omega} mv_n^p \, dx > 0\), it follows that \(v_+\) has no zero points in \(\overline{\Omega}\) from the definition of \(\tilde{\lambda}(m)\). This means that \(v > 0\) in \(\Omega\). Thus, we may assume that \(u_n \geq \delta \|u_n\|_p^p/2\) in \(\overline{\Omega}\) for sufficiently large \(n\), where \(\delta = \min_{\Omega} v(x)\) because the inclusion of \(W^{1,p}(\Omega)\) to \(C(\overline{\Omega})\) is compact. So, we can get a contradiction by the same argument as in the case of (b) under \(v > 0\).

In the case of (c), we see that \(v < 0\) in \(\overline{\Omega}\) by a similar argument to the case of (b). This yields a contradiction by a similar argument to the case of (a) under \(v < 0\).

To deal with the case of \((AH)\), we prepare the following result.

Lemma 17. Assume \((AH)\) and let \(\{u_n\} \subset W^{1,p}(\Omega)\) be a Palais-Smale sequence for \(I_\lambda\) with \(\|u_n\|_p \to \infty\) as \(n \to \infty\). Then, \(v_n := u_n/\|u_n\|_p\) has a subsequence strongly convergent to a solution \(v\) for
\[
- \text{div} \left(a_\infty(x)|\nabla v|^{p-2} \nabla v \right) = \lambda m|v|^{p-2}v \quad \text{in } \Omega, \quad \frac{\partial v}{\partial v} = 0 \quad \text{on } \partial \Omega, \tag{4.19}
\]
where \(a_\infty\) is the positive function as in \((AH)\).

Proof. By the same argument as in the proof of Proposition 6, we can show the boundedness of \(\|v_n\|\) and obtain the inequality
\[
\frac{C_0}{p-1} \|\nabla v_n\|_p^p \leq \lambda \int_{\Omega} m|v_n|^p \, dx + o(1) \quad \text{as } n \to \infty. \tag{4.20}
\]
Therefore, we obtain above inequality, we can get since \(\| \) by (4.20), because the \(p \)-Laplace operator has the \((S)_+\) property. To obtain (4.21), we shall get the following

\[
\lim_{n \to \infty} \int_\Omega |\nabla v_n|^{p-2} \nabla v_n \nabla (v_n - v) \, dx = 0 \tag{4.21}
\]

because the \(p \)-Laplace operator has the \((S)_+\) property. To obtain (4.21), we shall get the following

\[
\lim_{n \to \infty} \left| \frac{1}{\| u_n \|_p^{p-1}} \int_\Omega \tilde{a}(x, |\nabla u_n|) \nabla u_n \nabla (v_n - v) \, dx \right| = 0, \tag{4.22}
\]

where \(\tilde{a} \) is the function as in \((AH)\). Here, we fix an any \(\varepsilon > 0 \). By the property of the function \(\tilde{a} \), there exist \(R > 0 \) and \(C > 0 \) such that

\[
|\tilde{a}(x, t)| \leq \varepsilon |t|^{p-2} \text{ if } |t| \geq R \text{ and } |\tilde{a}(x, t)| \leq C \text{ if } |t| \leq R. \tag{4.23}
\]

Therefore, we obtain

\[
\left| \int_\Omega \frac{\tilde{a}(x, |\nabla u_n|) \nabla u_n \nabla (v_n - v) \, dx}{\| u_n \|_p^{p-1}} \right| \leq \int_{|\nabla u_n| \geq R} \varepsilon (|\nabla v_n|^p + |\nabla v_n|^{p-1} |\nabla v|) \, dx + \int_{|\nabla u_n| \leq R} \frac{C|\nabla u_n|}{\| u_n \|_p^{p-1}} (|\nabla v_n| + |\nabla v|) \, dx
\]

\[
\leq \varepsilon (|\nabla v_n|^p + |\nabla v_n|^{p-1} |\nabla v|_p) + RC (|\nabla v_n|_p + |\nabla v|_p) \frac{|\Omega|^{(p-1)/p}}{\| u_n \|_p^{p-1}}
\]

\[
\leq \frac{2\varepsilon \lambda |(p-1)m|_\infty}{C_0} + o(1) + RC \left(\frac{2\lambda |(p-1)m|_\infty}{C_0} + o(1) \right)^{1/p} \frac{|\Omega|^{(p-1)/p}}{\| u_n \|_p^{p-1}}
\]

by (4.20). \(\| v_n \|_p = 1 \) and Hölder’s inequality. Thus, by taking the limit superior in the above inequality, we can get

\[
\limsup_{n \to \infty} \left| \frac{1}{\| u_n \|_p^{p-1}} \int_\Omega \tilde{a}(x, \nabla u_n) \nabla u_n \nabla (v_n - v) \, dx \right| \leq \frac{2\varepsilon \lambda |(p-1)m|_\infty}{C_0}
\]

since \(\| u_n \|_p \to \infty \) as \(n \to \infty \). This implies (4.22) because \(\varepsilon > 0 \) is arbitrary. By taking the limit in the following and noting (4.22)

\[
o(1) = \langle \mathcal{L}^*(u_n), v_n - v \rangle / \| u_n \|_p^{p-1}
\]

\[
= \int a_c |\nabla v_n|^{p-2} \nabla v_n \nabla (v_n - v) \, dx + \int_\Omega \frac{\tilde{a}(x, |\nabla u_n|) \nabla u_n}{\| u_n \|_p^{p-1}} \nabla (v_n - v) \, dx
\]

\[
- \lambda \int_\Omega m |v_n|^{p-2} v_n (v_n - v) \, dx - \int_\Omega \frac{h}{\| u_n \|_p^{p-1}} (v_n - v) \, dx,
\]
we have the inequality (4.21) (note \(\inf_{\Omega} a > 0 \)), whence \(v_n \to v \) in \(W^{1,p}(\Omega) \).

Finally, we shall show that \(v \) is a solution for (4.19). So, we fix any \(\varphi \in W^{1,p}(\Omega) \). Then, by considering \(\varphi \) instead of \((v_n - v) \) in (4.24), we have the following inequality for every \(\varepsilon > 0 \):

\[
\left| \int_{\Omega} \tilde{a}(x,|\nabla u_n|) \nabla u_n \nabla \varphi \, dx \right| \leq \varepsilon \| \nabla v_n \|_p^{p-1} \| \nabla \varphi \|_p + \frac{C R \| \nabla \varphi \|_p |\Omega|^{(p-1)/p}}{\| u_n \|_p^{p-1}} \| \nabla \varphi \|_p + \left(\frac{\lambda (p-1)}{C_0} \right)^{(p-1)/p} \| \nabla \varphi \|_p + \frac{C R \| \nabla \varphi \|_p |\Omega|^{(p-1)/p}}{\| u_n \|_p^{p-1}} \| \nabla \varphi \|_p.
\]

This gives

\[
\lim_{n \to \infty} \int_{\Omega} \tilde{a}(x,|\nabla u_n|) \nabla u_n \nabla \varphi \, dx = 0 \quad (4.25)
\]

since \(\varepsilon > 0 \) is arbitrary. By taking the limit in

\[
o(1) = \frac{\langle I'_\lambda(u_n), \varphi \rangle}{\| u_n \|_p^{p-1}},
\]

we have

\[
\int_{\Omega} a_\infty |\nabla \varphi|^{p-2} \nabla \varphi \, dx = \lambda \int_{\Omega} m |\nabla \varphi|^{p-2} \varphi \, dx
\]

by (4.25), \(v_n \to v \) in \(W^{1,p}(\Omega) \) and \(\| u_n \|_p \to \infty \) as \(n \to \infty \). Because \(\varphi \) is any function in \(W^{1,p}(\Omega) \), our conclusion is shown.

Now, we state the result in the case of \((AH) \).

Proposition 7. Assume \((AH) \) and \(\lambda \) is not an eigenvalue of

\[
- \text{div} \left(a_\infty(x)|\nabla u|^{p-2} \nabla u \right) = \lambda m |\nabla u|^{p-2} u \quad \text{in } \Omega, \quad \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial \Omega, \quad (4.26)
\]

where \(a_\infty \) is the positive function as in \((AH) \). Then, \(I_\lambda \) satisfies the Palais-Smale condition.

Proof. Let \(\{u_n\} \) be a Palais-Smale sequence of \(I_\lambda \), namely,

\[
I_\lambda(u_n) \to c \quad \text{and} \quad \| I'_\lambda(u_n) \|_{W^*} \to 0 \quad \text{as } n \to \infty
\]

for some \(c \in \mathbb{R} \). It is sufficient to prove only the boundedness of \(\| u_n \|_p \) by the same reason as in the proof of Proposition 6. So, by contradiction, we may suppose that \(\| u_n \|_p \to \infty \) as \(n \to \infty \) by choosing a subsequence. Set \(v_n := u_n/\| u_n \|_p \). Then, it follows from Lemma 17 that \(\{v_n\} \) has a subsequence strongly convergent to a non-trivial solution \(v \) for (4.26) with \(\| v \|_p = 1 \). This is a contradiction because \(\lambda \) is not an eigenvalue of (4.26).
Remark 8. Concerning the existence of a solution, under the Dirichlet boundary condition also, we can similar results to the ones as in section 4 by using several constants corresponding to the Dirichlet problem.

Acknowledgements. The author would like to express her sincere thanks to Professor Shizuo Miyajima for helpful comments and encouragement. The author thanks the referee for his helpful comments and suggestions.

References

(Received December 7, 2011)

Mieko Tanaka
Department of Mathematics
Tokyo University of Science
Kagurazaka 1-3, Shinjyuku-ku, Tokyo 162-8601
Japan
e-mail: tanaka@ma.kagu.tus.ac.jp