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OF MULTI–POINT BOUNDARY VALUE PROBLEMS

QINGKAI KONG AND THOMAS E. ST. GEORGE

(Communicated by Johnny Henderson)

Abstract. In this paper, we study the nonlinear boundary value problem consisting of the equa-
tion y′′ + w(t) f (y) = 0 on [a,b] and two multi-point boundary conditions. We establish the
existence of various nodal solutions of this problem by matching the solutions of two boundary
value problems, each of which involves one separated boundary condition and one multi-point
boundary condition, at some point in (a,b) . We also obtain conditions for this problem not to
have certain types of nodal solutions.

1. Introduction

We study the nonlinear boundary value problem (BVP) consisting of the equation

y′′ +w(t) f (y) = 0, t ∈ (a,b), (1.1)

where a,b ∈ R with a < b ; and the multi-point boundary condition (BC)

y(a)−
l

∑
j=1

h jy(ξ j) = 0, y(b)−
m

∑
i=1

kiy(ηi) = 0. (1.2)

Throughout this paper and without further mention we assume the following:

(H1) w ∈C1[a,b] such that w(t) > 0 on [a,b] ;
(H2) f ∈ C(R) such that y f (y) > 0 for y �= 0, f (−y) = − f (y) , and f is locally
Lipschitz on (−∞,0)∪ (0,∞) ;
(H3) there exist extended real numbers f0, f∞ ∈ [0,∞] such that

f0 = lim
y→0

f (y)/y and f∞ = lim
|y|→∞

f (y)/y;

(H4) a < η1 < .. . < ηm < b and ki ∈ R for i = 1, . . . ,m ;

(H5) a < ξ1 < .. . < ξl < b and h j ∈ R for j = 1, . . . , l .
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The existence of solutions, especially positive solutions, of BVPs with multi-point
BCs have been studied extensively, see [2, 5, 8, 9, 10, 18, 19, 30] and the references
therein. In this paper, we study the existence of nodal solutions, i.e., solutions with
a specific zero-counting property in (a,b) , of the multi-point BVP (1.1), (1.2). Great
progress has been made to the study of such solutions for nonlinear BVPs consisting
of Eq. (1.1) (and more general forms of equations) and two-point separated BCs, see
[11, 12, 14, 21, 24, 25, 26]. The existence of nodal solutions of BVPs with nonlocal
BCs has also received a lot of attention in research. We refer the reader to [1, 3, 4,
6, 11, 13, 20, 22, 23, 27, 28, 29] for some recent work on this topic. In particular,
many researchers have been working on the existence of nodal solutions of the BVP
consisting of Eq. (1.1) and the separated–multi-point BC

cosα y(a)− sinα y′(a) = 0, α ∈ [0,π),
y(b)−∑m

i=1 kiy(ηi) = 0,
(1.3)

where a,b ∈ R with a < b . However, due to the complexity of BC (1.3), the majority
of the results are only for a special case of BVP (1.1), (1.3). In fact, Ma [22], Ma and
O’Regan [23], Rynne [27], Xu [28], and Xu, Sun, and O’Regan [29] studied the special
case of BVP (1.1), (1.3) with w≡ 1, α = 0, and [a,b] = [0,1] , i.e., the BVP consisting
of the equation

− y′′ = f (y), t ∈ (0,1), (1.4)

and the BC

y(0) = 0, y(1)−
m

∑
i=1

kiy(ηi) = 0. (1.5)

The main approach was to use the Rabinowitz global bifurcation method to estab-
lish the existence of nodal solutions of BVP (1.4), (1.5) by relating it to the eigenvalues
of the corresponding linear Sturm-Liouville problem (SLP) with the multi-point BC
(1.5). By extending and improving the work in Ma and O’Regan [23], Rynne [27]
showed that the associated SLP consisting of the equation y′′ + λy = 0 and BC (1.5)
has a strictly increasing sequence of simple eigenvalues {λn}∞

n=0 with eigenfunctions
φn(t) = sin(

√
λnt) . Let N0 = {0,1,2, . . .} . The following is a brief sketch of the results

in [27] on the existence of nodal solutions of BVP (1.4), (1.5).

PROPOSITION 1.1. Let f ∈C1(R) and ki > 0 for i = 1, . . . ,m such that
∑m

i=1 ki < 1 .

(a) Assume f0, f∞ < ∞ , and (λn− f0)(λn− f∞) < 0 for some n ∈ N0 . Then BVP (1.4),
(1.5) has solutions y± whose derivatives have exactly n+ 1 zeros in (0,1) such that
±y±(t) > 0 in a right-neighborhood of 0 .

(b) Assume f∞ = ∞ and λn > f0 for some n ∈ N0 . Then for any i � n, BVP (1.4),
(1.5) has solutions y± whose derivatives have exactly i + 1 zeros in (0,1) such that
±y±(t) > 0 in a right-neighborhood of 0 .

The establishment of these results relies heavily on the direct computations of the
eigenvalues and eigenfunctions of the SLP associated with BVP (1.4), (1.5), and hence
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cannot be extended to the general BVP (1.1), (1.3) with a variable w and general BC
parameter α by the same approach. The difficulty lies in the fact that the existence of
such eigenvalues is to be established and their algebraic multiplicities are proved to be
1.

Kong, Kong, and Wong [13] studied BVP (1.1), (1.3) in a different way: they
obtained conditions for the existence of nodal solutions by comparing f0 and f∞ with
the eigenvalues {λn}∞

n=0 of the SLP consisting of the equation

− y′′ = λw(t)y, t ∈ (a,b), (1.6)

and the two-point BC

cosα y(a)− sinα y′(a) = 0, α ∈ [0,π),
y′(b) = 0.

(1.7)

The results in [13] are good because they work with a variable w and a general BC
parameter α , and f0, f∞ are allowed to be 0 and ∞ . Moreover, the eigenvalues of SLP
(1.6), (1.7) are guaranteed to exist, easy to compute numerically, and are algebraically
simple. The ideas in [13] have been applied in [3, 4, 11] to deal with other BVPs
with one separated BC and one multi-point or integral BC. However, we note that the
shooting method, which was used in [13] to deal with nodal solutions, fails to work
alone on BVPs with double multi-point BC (1.2).

Recently, Genoud and Rynne [6] discussed the double multi-point BVP (1.1),
(1.2). By establishing the existence of eigenvalues of the corresponding linear SLP
(1.6), (1.2) and using the Rabinowitz global bifurcation theorem, they obtained results
on the existence of nodal solutions. This work is significant since it made the first
progress in the existence of nodal solutions of double multi-point BVPs. However,
their results were derived under certain assumptions which can be roughly stated as
follows:

(a) For sufficiently small δ ∈ (0,1)

m

∑
i=1

|ki| < δ and
l

∑
j=1

|h j| < δ , (1.8)

(b) the function f satisfies that f (x)/x ∈C1(R) and 0 < f0, f∞ < ∞ .

It is required that the δ in Assumption (a) be small, but it fails to determine how
small this δ should be. Actually, the implicit function theorem, which was used in
the proofs to guarantee the existence of δ , does not provide its magnitude. Therefore,
although the work in [6] is of theoretical importance, it is practically difficult in im-
plementation. Moreover, the restrictions on f given in Assumption (b) exclude the
possibility for f to be superlinear or sublinear.

In this paper, we will further develop the methods used in [13] for BVPs with
separated–multi-point BCs to BVPs with double multi-point BCs. More specifically,
we will show that the nodal solutions for BVPs with the separated–multi-point BCs

y′(c) = 0, y(b)−
m

∑
i=1

kiy(ηi) = 0
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and

y(a)−
l

∑
j=1

h jy(ξ j) = 0, y′(d) = 0,

respectively, will meet at some c = d ∈ (a,b) and hence produce nodal solutions for
BVPs (1.1), (1.2). Our results are under explicit conditions and f is allowed to be
superlinear and sublinear. We will also obtain conditions for the nonexistence of certain
types of nodal solutions.

This paper is structured as follows: we present the main results of the paper in
Section 2 and then give the proofs in Section 3 after several technical lemmas are es-
tablished.

2. Main results

We aim to study solutions of BVP (1.1), (1.2) which fall into certain classes defined
as follows.

DEFINITION 2.1. Let n ∈ N0 := {0,1,2, . . .} . Then a solution y of BVP (1.1),
(1.2) is said to belong to a class T γ

n for γ ∈ {+,−} if

(i) y and y′ have only simple zeros in [a,b] ,

(ii) y′ has exactly n+1 zeros in (a,b) ,

(iii) γy(t) � 0 in a right-neighborhood of a .

REMARK 2.1. One can easily see that for y ∈ T γ
n with n ∈ N0 and γ ∈ {+,−} ,

y may have n , n+1, or n+2 zeros in (a,b) .

To establish criteria for BVP (1.1), (1.2) to have various nodal solutions, we need
to use the eigenvalues of the SLP consisting of the equation

y′′ + λw(t)y = 0, t ∈ (a,b), (2.1)

and the two-point BC
y′(a) = y′(b) = 0. (2.2)

It is well-known that the spectrum of SLP (2.1), (2.2) consists of an infinite number
of real simple eigenvalues {λn}∞

n=0 satisfying that

0 = λ0 < λ1 < · · · < λn < · · · , and λn → ∞;

and any eigenfunction associated with λn has exactly n zeros in (a,b) for n ∈ N0 , see
[31, Theorem 4.3.2].

Let F(y) =
∫ y
0 f (ξ )dξ for y∈R and denote w′±(t) := max{±w′(t),0} along with

γ+
j =

∫ ξ j

a

w′
+(t)

w(t)
dt, j = 1, . . . , l, and γ−i =

∫ b

ηi

w′−(t)
w(t)

dt, i = 1, . . . ,m.
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By (H2), F is strictly increasing on [0,∞) and strictly decreasing on (−∞,0] . Let F−1
+

and F−1
− be the inverses of F on [0,∞) and (−∞,0] , respectively. Clearly, since f is

an odd function on R , then F−1
+ = −F−1

− . Thus we may define

F−1 := F−1
+ = −F−1

− .

THEOREM 2.1. Let n ∈ N0 . Assume either (i) f0 � λ	n/2
 and f∞ = ∞ , or (ii)
f∞ � λ	n/2
 and f0 = ∞ , where 	n/2
 is the integer part of n/2 . Suppose that for any
r > 0 ,

m

∑
i=1

|ki|F−1
(

reγ−i

w(ηi)

)
< F−1

(
r

w(b)

)
(2.3)

and
l

∑
j=1

|h j|F−1
(

reγ+
j

w(a+b− ξ j)

)
< F−1

(
r

w(a)

)
(2.4)

hold. Then BVP (1.1), (1.2) has a solution yγ
n ∈ T

γ
n for γ ∈ {+,−} .

Note that when n = 0 or 1, the assumptions of Theorem 2.1 imply that either
f0 = 0 or f∞ = 0.

REMARK 2.2. (a) We comment that (2.3) implies that

m

∑
i=1

|ki| < 1. (2.5)

In fact, since w′−(t) � −w′(t) ,

γ−i �
∫ b

ηi

−w′(t)
w(t)

dt = ln
w(ηi)
w(b)

.

Hence
m

∑
i=1

|ki|F−1
(

reγ−i

w(ηi)

)
�

m

∑
i=1

|ki|F−1
(

r
w(b)

)
.

Then (2.5) follows from (2.3). Similarly, (2.4) implies that

l

∑
j=1

|h j| < 1. (2.6)

On the other hand, when w(t) ≡ 1, (2.3) reduces to (2.5), and (2.4) reduces to (2.6).

(b) If f (y) = |y|q−1y for q > 0, then (2.3) reduces to

m

∑
i=1

|ki|
(

w(b)eγ−i

w(ηi)

)1/(q+1)

< 1;
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and, (2.4) reduces to

l

∑
j=1

|h j|
(

w(b)eγ+
j

w(a+b− ξ j)

)1/(q+1)

< 1.

As a consequence of Theorem 2.1 we have the corollary below.

COROLLARY 2.1. Assume inequalities (2.3) and (2.4) hold and

either f0 = 0 and f∞ = ∞, or f∞ = 0 and f0 = ∞.

Then

(a) BVP (1.1), (1.2) has positive and negative solutions in T γ
0 for γ ∈ {+,−} if ki � 0

for i = 1, . . . ,m and h j � 0 for j = 1, . . . , l .

(b) BVP (1.1), (1.2) has solutions in T γ
0 for γ ∈ {+,−} with exactly one zero in (a,b)

if either ki � 0 for i = 1, . . . ,m and h j � 0 for j = 1 . . . , l such that ∑l
j=1 h j < 0 ; or

h j � 0 for j = 1, . . . , l and ki � 0 for i = 1, . . . ,m such that ∑m
i=1 ki < 0 .

(c) BVP (1.1), (1.2) has solutions in T
γ

0 for γ ∈ {+,−} with exactly two zeros in (a,b)
if ki � 0 for i = 1, . . . ,m such that ∑m

i=1 ki < 0 and h j � 0 for j = 1 . . . , l such that

∑l
j=1 h j < 0 .

Let {ζ 1
n }∞

n=0 and {ζ 2
n }∞

n=0 be the eigenvalues of SLPs consisting of the equation

y′′ + ζw(t)y = 0, t ∈ (a,b), (2.7)

and the BC

y(a) = 0, y′(b) = 0 (2.8)

and

y′(a) = 0, y(b) = 0, (2.9)

respectively. Then the following is about the nonexistence of certain types of nodal
solutions of BVP (1.1), (1.2).

THEOREM 2.2. (i) Assume f (y)/y < ζ 1
n for some n ∈ N0 and all y �= 0 . Then

BVP (1.1), (1.2) has no solution in T γ
i for all i � n+1 and γ ∈ {+,−} ;

Assume f (y)/y > ζ 1
n+1 for some n ∈ N0 and all y �= 0 . Then BVP (1.1), (1.2) has

no solution in T
γ

i for all i � n and γ ∈ {+,−} .

(ii) Assume f (y)/y < ζ 2
n for some n ∈ N0 and all y �= 0 . Then BVP (1.1), (1.2)

has no solution in T
γ

i for all i � n+1 and γ ∈ {+,−} ;
Assume f (y)/y > ζ 2

n+1 for some n ∈ N0 and all y �= 0 . Then BVP (1.1), (1.2) has
no solution in T γ

i for all i � n and γ ∈ {+,−} .
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3. Proofs of the main results

In order to prove Theorems 2.1-2.2, we first consider the BVPs consisting of Eq.
(1.1) and one of the BCs

y′(c) = 0, y(b)−
m

∑
i=1

kiy(ηi) = 0 (3.1)

and

y(a)−
l

∑
j=1

h jy(ξ j) = 0, y′(d) = 0, (3.2)

where c ∈ [a,b) and d ∈ (a,b] are arbitrary. We classify the solutions of the above
BVPs into the following classes, as extensions of the class defined in Definition 2.1.

DEFINITION 3.1. Let n ∈ N0 .

(a) For any c∈ [a,b) , a solution y of BVP (1.1), (3.1) is said to belong to class T γ
n [c,b]

for γ ∈ {+,−} if

(i) y and y′ have only simple zeros in [c,b] ,
(ii) y′ has exactly n zeros in (c,b) ,
(iii) γy(c) > 0.

(b) For any d ∈ (a,b] , a solution y of BVP (1.1), (3.2) is said to belong to class T γ
n [a,d]

for γ ∈ {+,−} if

(i) y and y′ have only simple zeros in [a,d] ,
(ii) y′ has exactly n zeros in (a,d) ,
(iii) γy(d) > 0.

For any c∈ [a,b) and d ∈ (a,b] , we let {μn(c)}∞
n=0 and {νn(d)}∞

n=0 be the eigen-
values of the SLPs consisting of Eq. (2.1) and the two-point BCs

y′(c) = 0, y′(b) = 0 (3.3)

and
y′(a) = 0, y′(d) = 0, (3.4)

respectively. It is well-known that {μn(c)}∞
n=0 and {νn(d)}∞

n=0 satisfy that

0 = μ0(c) < μ1(c) < · · ·μn(c) < · · · , and μn(c) → ∞,

and
0 = ν0(d) < ν1(d) < · · ·νn(d) < · · · , and νn(d) → ∞;

and any eigenfunction associated with μn(c) or νn(d) has exactly n simple zeros in
(c,b) or (a,d) , respectively, for n ∈ N0 , see [31, Theorem 4.3.2].

From [26], it follows that any initial value problem (IVP) associated with Eq.
(1.1) has a unique solution which exists on [a,b] . As a result, the solution depends
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continuously on the initial condition (IC) and parameters. Let c ∈ [a,b) . For γ ∈
{+,−} , let y(t,ρ) be the solution of the IVP consisting of the Eq. (1.1) and the initial
conditions

y(c) = γρ and y′(c) = 0, (3.5)

where ρ > 0 is a parameter. Let θ (t,ρ) be the Prüfer angle of y(t,ρ) , ie, θ (t,ρ) is a
continuous function on [a,b] such that

tanθ (t,ρ) = y(t,ρ)/y′(t,ρ) and θ (c,ρ) = π/2.

By the continuous dependence of solutions on parameters, we have that θ (t,ρ) is con-
tinuous in ρ on [0,∞) for any t ∈ [a,b] . We note that the following two lemmas are
minor extensions of Lemmas 4.1, 4.2, 4.4, and 4.5 in [14]. Here, we assume c ∈ [a,b) .

LEMMA 3.1. (i) Assume f0 � μn(c) for some n ∈ N0 . Then for any ε > 0 , there
exists ρ∗ > 0 such that θ (b,ρ) � nπ + π/2+ ε for all ρ ∈ (0,ρ∗] .

(ii) Assume μn(c) � f∞ for some n ∈ N0 . Then for any ε > 0 , there exists ρ∗ > 0
such that θ (b,ρ) � nπ + π/2− ε for all ρ ∈ [ρ∗,∞) .

LEMMA 3.2. (i) Assume f∞ � μn(c) for some n ∈ N0 . Then for any ε > 0 , there
exists ρ∗ > 0 such that θ (b,ρ) � nπ + π/2+ ε for all ρ ∈ [ρ∗,∞) .

(ii) Assume μn(c) � f0 for some n ∈ N0 . Then for any ε > 0 , there exists ρ∗ > 0
such that θ (b,ρ) � nπ + π/2− ε for all ρ ∈ (0,ρ∗] .

Based on Lemmas 3.1 and 3.2, we establish the following result which is an im-
provement of [13, Theorem 2.1].

LEMMA 3.3. Assume either (i) f0 � μn(c) and μn+1(c) < f∞ , or (ii) f∞ � μn(c)
and μn+1(c) < f0 , for some n∈ N0 . Suppose that (2.3) holds for any r > 0 . Then BVP
(1.1), (3.1) has a solution yγ

n ∈ T γ
n [c,b] for γ ∈ {+,−} .

Note that the assumption f0 = μn(c) or f∞ = μn(c) is allowed in Lemma 3.3, but
not in Theorem 2.1 in [13].

Proof of Lemma 3.3. Consider the case when f0 � μn(c) and μn+1(c) < f∞ . Without
loss of generality, assume γ = + . The case for when γ = − is done similarly. Let
y(t,ρ) be the solution of Eq. (1.1) satisfying (3.5) with γ = + and θ (t,ρ) its Prüfer
angle. By Lemma 3.1, for any small ε > 0, there exists 0 < ρ∗ < ρ∗ < ∞ such that

θ (b,ρ) � nπ + π/2+ ε for all ρ ∈ (0,ρ∗]

and
θ (b,ρ) � (n+1)π + π/2− ε for all ρ ∈ [ρ∗,∞).

By the continuity of θ (t,ρ) in ρ , there exists ρ∗ � ρn < ρn+1 � ρ∗ such that

θ (b,ρn) = nπ + π/2+ ε and θ (b,ρn+1) = (n+1)π + π/2− ε, (3.6)
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and
θ (b,ρn) < θ (b,ρ) < θ (b,ρn+1) for ρn < ρ < ρn+1. (3.7)

Defining an energy function for y(t,ρ) by

E(t,ρ) =
1
2
[y′(t,ρ)]2 +w(t)F(y(t,ρ)) for t ∈ [a,b] and ρ > 0.

Then by Eq. (1.1)

E ′(t,ρ) = w′(t)F(y(t,ρ)) � −w′−(t)
w(t)

E(t,ρ).

Thus we have that for i = 1, . . . ,m,

ln
E(b,ρ)
E(ηi,ρ)

=
∫ b

ηi

E ′(t,ρ)
E(t,ρ)

dt � −
∫ b

ηi

w′−(t)
w(t)

dt = −γ−i .

Hence
E(ηi,ρ) � eγ−i E(b,ρ) for i = 1,2, . . . ,m. (3.8)

Note that for ρ = ρn and ρ = ρn+1 ,

E(ηi,ρ) � w(ηi)F(y(ηi,ρ)) for i = 1,2, . . . ,m. (3.9)

It is seen from (3.6) that as ε → 0

y′(b,ρ) = o(1) and |y(b,ρ)| = ρ +o(1)

and hence

E(b,ρ) = w(b)F(y(b,ρ))+o(1) = w(b)F(y(b,ρ))[1+o(1)].

Since F has a continuous inverse F−1 , it follows that for ρ = ρn and ρ = ρn+1

|y(b,ρ)| = F−1
(

E(b,ρ)
w(b)

)
(1+o(1)) as ε → 0; (3.10)

and it follows from (3.9) that for i = 1, . . . ,m ,

y(ηi,ρ) � F−1
(

E(ηi,ρ)
w(ηi)

)
if y(ηi,ρ) � 0

and

−y(ηi,ρ) � F−1
(

E(ηi,ρ)
w(ηi)

)
if y(ηi,ρ) � 0.

Hence

|y(ηi,ρ)| � F−1
(

E(ηi,ρ)
w(ηi)

)
. (3.11)
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Define

Γ(ρ) = y(b,ρ)−
m

∑
i=1

kiy(ηi,ρ). (3.12)

Let n = 2k with k ∈ N0 . Since y(b,ρ2k) > 0 and y(b,ρ2k+1) < 0, by (3.10), (3.11),
(3.8), and (2.3) we have for ε > 0 sufficiently small

Γ(ρ2k) = y(b,ρ2k)−
m

∑
i=1

kiy(ηi,ρ2k)

� y(b,ρ2k)−
m

∑
i=1

|ki||y(ηi,ρ2k)|

� F−1
(

E(b,ρ2k)
w(b)

)
(1+o(1))−

m

∑
i=1

|ki|F−1
(

E(ηi,ρ2k)
w(ηi)

)

� F−1
(

E(b,ρ2k)
w(b)

)
−

m

∑
i=1

|ki|F−1
(

eγ−i E(b,ρ2k)
w(ηi)

)
+o(1) > 0

and

Γ(ρ2k+1) = y(b,ρ2k+1)−
m

∑
i=1

kiy(ηi,ρ2k+1)

� y(b,ρ2k+1)+
m

∑
i=1

|ki||y(ηi,ρ2k+1)|

� −F−1
(

E(b,ρ2k+1)
w(b)

)
(1+o(1))+

m

∑
i=1

|ki|F−1
(

E(ηi,ρ2k+1)
w(ηi)

)

� −F−1
(

E(b,ρ2k+1)
w(b)

)
+

m

∑
i=1

|ki|F−1
(

eγ−i E(b,ρ2k+1)
w(ηi)

)
+o(1) < 0.

By the continuity of Γ(ρ) , there exists ρ ∈ (ρ2k,ρ2k+1) such that Γ(ρ) = 0. Sim-
ilarly, for n = 2k+1 with k ∈ N0 , there exists ρ ∈ (ρ2k+1,ρ2k+2) such that Γ(ρ) = 0.
In both cases, since ε > 0 in (3.7) we see that

nπ + π/2 < θ (b,ρ) < (n+1)π + π/2.

Since

θ ′(t,ρ) = cos2 θ (t,ρ)+w(t)
f (y(t,ρ))y(t,ρ)

r2(t,ρ)
,

where r =(y2+y′2)1/2 , we have that θ (·,ρ) is strictly increasing on [c,b] . We note that
y(t) = 0 if and only if θ (t,ρ) = 0 (mod π) and y′(t) = 0 if and only if θ (t,ρ) = π/2
(mod π) . Thus, y′ has exactly n zeros in (c,b) and y has exactly one zero strictly
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between any two consecutive zeros of y′ . Initial condition (3.5) implies that y(t,ρ) > 0
in a right-neighborhood of c . Therefore, y(t,ρ) ∈ T +

n [c,b] .
The proof for the case when f∞ � μn(c) and μn+1(c) < f0 is essentially the same

as above except that the discussion is based on Lemma 3.2 instead of Lemma 3.1. �

The next lemma follows from Lemma 3.3 for the case where d ∈ (a,b] .

LEMMA 3.4. Assume (i) f0 � νn(d) and νn+1(d) < f∞ , or (ii) f∞ � νn(d) and
νn+1(d) < f0 , for some n ∈ N0 . Suppose that (2.4) holds for any r > 0 . Then BVP
(1.1), (3.2) has a solution yγ

n ∈ T γ
n [a,d] for γ ∈ {+,−} .

Proof. Consider the following transformation: t = a+b−τ , d = a+b−c . Then
BVP (1.1), (3.2) becomes the problem consisting of the equation

d2y
dτ2 +w(a+b− τ) f (y) = 0, τ ∈ (a,b), (3.13)

and BC
dy
dτ

(c) = 0, y(b)−
l

∑
j=1

h jy(a+b− ξ j) = 0. (3.14)

Clearly, c ∈ [a,b) , a � a+b− ξ j < b for j = 1,2, . . . , l and

∫ b

a+b−ξ j

[w(a+b− τ)]′−
w(a+b− τ)

dτ =
∫ b

a+b−ξ j

[−w′(a+b− τ)]−
w(a+b− τ)

dτ

=
∫ b

a+b−ξ j

w′
+(a+b− τ)

w(a+b− τ)
dτ =

∫ ξ j

a

w′
+(t)

w(t)
dt = γ+

j .

Hence inequality (2.4) implies that inequality (2.3) holds for the transformed BVP
(3.13), (3.14). Also note that {νn}∞

n=0 are eigenvalues of the SLP involving the equa-
tion

d2y
dτ2 + λw(a+b− τ)y = 0, τ ∈ (a,b),

and BC (3.3). Thus the conclusion follows from Lemma 3.3.
The Lemmas below play critical roles in the proof of Theorem 2.1.

LEMMA 3.5. Assume (2.3) holds for any r > 0 and c ∈ [a,b) . Let {μi(c)}∞
i=0 be

the eigenvalues of SLP (2.1), (3.3). Let i ∈ N0 .

(i) Suppose f0 � μi(c) and f∞ = ∞ and let yi(t;c) ∈ T +
i [c,b] be the solution of BVP

(1.1), (3.1) given by Lemma 3.3. Then lim
c→b−

yi(c;c) = ∞ .

(ii) Suppose f∞ � μi(c) and f0 = ∞ and let yi(t;c) ∈ T +
i [c,b] be the solution of BVP

(1.1), (3.1) given by Lemma 3.3. Then lim
c→b−

yi(c;c) = 0 .
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Proof. (i) Assume the contrary. Then there exists a sequence {ck}∞
k=1 ⊂ [a,b)

such that ck → b− and yi(ck;ck) → l for some l ∈ [0,∞) .
(a) Assume first l ∈ (0,∞) . Let y(t) be the solution of Eq. (1.1) satisfying the IC

y(b) = l and y ′(b) = 0. (3.15)

Note that for k ∈ N

yi(ck;ck) → y(b) as ck → b−

and
y′i(ck;ck) = y ′(b) = 0.

By the continuous dependence of solutions of IVPs on the ICs and parameters, we have

lim
k→∞

yi(t;ck) = y(t) uniformly for all t ∈ [a,b].

Since for each k , yi(t;ck) satisfies

y(b)−
m

∑
i=1

kiy(ηi) = 0, (3.16)

then y(t) satisfies (3.16). Define an energy function for y(t) by

E(t) =
1
2
[y ′(t)]2 +w(t)F(y(t)), t ∈ [a,b]. (3.17)

It follows that (3.8) holds with E(·,ρ) replaced by E(·) and so does (3.11). Addition-
ally, with y ′(b) = 0 we have

E(b) = w(b)F(y(b)),

and so

|y(b)| = F−1
(

E(b)
w(b)

)
. (3.18)

Since y(b) = l > 0, by (3.11), (3.18), (3.8), and (2.3) we have

y(b)−
m

∑
i=1

ki y(ηi) � |y(b)|−
m

∑
i=1

|ki||y(ηi)|

� F−1
(

E(b)
w(b)

)
−

m

∑
i=1

|ki|F−1
(

E(ηi)
w(ηi)

)

� F−1
(

E(b)
w(b)

)
−

m

∑
i=1

|ki|F−1
(

eγ−i E(b)
w(ηi)

)
> 0.

However, this contradicts that y(t) satisfies (3.16).
(b) Now assume l = 0. Since yi(ck;ck) �= 0, let zi(t;ck) = yi(t;ck)/yi(ck,ck) . It

follows that zi(t;ck) is a solution of

z′′ +w(t)gk(z)z = 0,
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where

gk(z) :=

⎧⎪⎨
⎪⎩

f (yi(ck;ck)z)
yi(ck;ck)z

, for z �= 0,

f0, for z = 0;
(3.19)

and gk(z) is a continuous function for z ∈ R since f0 < ∞ . Note that as k → ∞ ,
gk(z) → f0 . Also note that

zi(ck;ck) = 1 and z′i(ck,ck) = 0.

Let z(t) be the solution of the IVP

z′′ + f0w(t)z = 0, z(b) = 1, z ′(b) = 0. (3.20)

By the continuous dependence of solutions of IVPs on parameters, we see that

lim
k→∞

zi(t;ck) = z(t) uniformly for all t ∈ [a,b].

Since yi(t;ck) satisfies (3.16) for each k , then zi(t;ck) satisfies (3.16) for each k and
so does z(t) .
If f0 = 0 then z(t) ≡ 1. It follows from (3.16) that ∑m

i=1 ki = 1 which implies that
∑m

i=1 |ki| � 1. This contradicts (2.5) and hence contradicts (2.3) by Remark 2.2.
If f0 > 0, define an energy function for z(t) by

E(t) =
1
2
[z ′(t)]2 +

f0
2

w(t)[z(t)]2, t ∈ [a,b]. (3.21)

Then

E ′(t) =
f0
2

w′(t)[z(t)]2 � −w′−(t)
w(t)

E(t).

So we have,

ln

(
E(b)
E(ηi)

)
=

∫ b

ηi

E ′(t)
E(t)

dt � −γ−i .

So,
E(ηi) � eγ−i E(b), for i = 1,2, . . . ,m.

Additionally,

E(ηi) � f0
2

w(ηi)[z(ηi)]2, for i = 1,2, . . . ,m,

and

E(b) =
f0
2

w(ηi)[z(b)]2.

Hence,

|z(ηi)| �
√

2E(ηi)
f0w(ηi)

and |z(b)| =
√

2E(b)
f0w(b)

.
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From the assumption that (3.16) holds, we have

z(b)−
m

∑
i=1

kiz(ηi) � |z(b)|−
m

∑
i=1

|ki||z(ηi)| (3.22)

�
√

2E(b)
f0w(b)

−
m

∑
i=1

|ki|
√

2E(ηi)
f0w(ηi)

(3.23)

�
√

2E(b)
f0

(
1

w(b)
−

m

∑
i=1

|ki| eγ−i /2√
w(ηi)

)
> 0, (3.24)

contradicting z(t) satisfying (3.16).

(ii) Assume the contrary. Then there exists {ck}∞
k=1 ⊂ [a,b) such that ck → b− and

y0(ck;ck) → l for l ∈ (0,∞] .
(a) Assume l ∈ (0,∞) . Then the argument follows similarly to that in part (i), (a)

above and is omitted.
(b) Assume l = ∞ . Since f∞ < ∞ , then by replacing f0 by f∞ , the argument

follows similarly to that in part (i), (b) above and is omitted.
The next lemma for BVP (1.1), (3.2) is a parallel result to Lemma 3.5 with a

similar proof.

LEMMA 3.6. Assume (2.4) holds for any r > 0 and d ∈ (a,b] . Let {ν j(d)}∞
j=0

be the eigenvalues of SLP (2.1), (3.4). Let j ∈ N0 .

(i) Suppose f0 � ν j(d) and f∞ = ∞ and let y j(t;d) ∈ T +
j [a,d] be the solution of BVP

(1.1), (3.2) given by Lemma 3.4. Then lim
d→a+

y j(d;d) = ∞ .

(ii) Suppose f∞ � ν j(d) and f0 = ∞ and let y j(t;d) ∈T +
j [a,d] be the solution of BVP

(1.1), (3.2) given by Lemma 3.4. Then lim
d→a+

y j(d;d) = 0 .

REMARK 3.1. Lemmas 3.5 and 3.6 are for the existence of nodal solutions for
BVPs (1.1), (3.1) and (1.1), (3.2) in the classes T

γ
i [c,b] and T

γ
j [a,d] , respectively,

with γ = + . Parallel results hold for γ = − .

REMARK 3.2. (a) For n∈N0 and c∈ [a,b) , Lemma 3.3 establishes the existence
of a solution yn(t;c) of BVP (1.1), (3.1) in T +

n [c,b] . However, the uniqueness of such
solutions are not guaranteed. We claim that for each n ∈ N0 , there is at least one
continuous curve Λc

n in the ρ -c plane which satisfies that

(i) for each (ρ ,c) ∈ Λc
n , c ∈ [a,b) and ρ = yn(c;c) ;

(ii) for each c ∈ [a,b) , there is at least one point (ρ ,c) ∈ Λc
n .

This is shown as follows:
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Note that the solution y of Eq. (1.1) used to define the function Γ in (3.12) satisfies
the IC (3.5) and as a result, y and Γ have continuous dependence on the initial point c .
To emphasize such dependence, we rewrite (3.12) as

Γ(ρ ,c) = yc(b,ρ)−
m

∑
i=1

kiyc(ηi,ρ).

Then Γ is a continuous function of (ρ ,c) . Since for any n∈ N0 and c ∈ [a,b) , yn(c;c)
is a root of Γ(ρ ,c) , then ρ = yn(c;c) if and only if (ρ ,c) is on the intersection set
I of the continuous surfaces z = Γ(ρ ,c) and z = 0. From the proof of Lemma 3.3
we see that when n = 2k , Γ(ρ2k) > 0 and Γ(ρ2k+1) < 0 for all c ∈ [a,b) . Therefore,
the intersection set I must contain a continuous curve in the ρ -c plane which starts at
c = a and ends up with c = b . Similarly for the case when n = 2k+1.

(b) For n∈N0 and d ∈ (a,b] , Lemma 3.4 establishes the existence of a solution yn(t;d)
of BVP (1.1), (3.2) in T +

n [a,d] . With the same argument as above, for each n ∈ N0 ,
there is at least one continuous curve Λd

n in the ρ -d plane which satisfies that

(i) for each (ρ ,d) ∈ Λd
n , d ∈ (a,b] and ρ = yn(d;d) ;

(ii) for each d ∈ (a,b] , there is at least one point (ρ ,d) ∈ Λd
n .

Now we prove our main result, Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality, we consider the case where γ = + ,
f0 � λ	n/2
 and f∞ = ∞ . The other cases can be proved similarly. For any c ∈ [a,b)
and d ∈ (a,b] , let μn(c) be the n -th eigenvalue of SLP (2.1), (3.3) and νn(d) the n -th
eigenvalue of SLP (2.1), (3.4). We note that μn(a) and νn(b) are the n -th eigenvalues
for SLP (2.1), (2.2), and hence λn = μn(a) = νn(b) .

For n ∈ N0 , let i = 	n/2
 , j = n− i . Clearly j � i . From [17, Theorem 4.1] and
[16, Theorem 2.2] we see that for i, j � 1, μi(c) is strictly increasing and lim

c→b−
μi(c) =

∞ , and ν j(d) is strictly decreasing and lim
d→a+

ν j(d) = ∞ . We note that μ0(c) = ν0(d) =

0 for any c∈ [a,b) and d ∈ (a,b] . It follows from the assumptions that for any c∈ [a,b)
and d ∈ (a,b]

f0 � μi(a) � μi(c) and μi+1(a) < μi+1(c) < f∞,

and
f0 � ν j(b) � ν j(d) and ν j+1(b) < ν j+1(d) < f∞.

Since (2.3) and (2.4) hold, by Lemmas 3.3, 3.4 we have that BVPs (1.1), (3.1) and

(1.1), (3.2) have solutions y[1]
i ∈T +

i [c,b] and y[2]
j ∈T +

j [a,d] , respectively. Therefore,
by Lemma 3.5, (i) and Lemma 3.6, (i)

lim
c→b−

y[1]
i (c;c) = ∞ and lim

d→a+
y[2]

j (d;d) = ∞.

Let ρ [1]
i (c) = y[1]

i (c;c) such that (ρ [1]
i (c),c) is on the continuous curve Λc

i and

ρ [2]
j (d) = y[2]

j (d;d) such that (ρ [2]
j (d),d) is on the continuous curve Λd

j , as defined in
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Remark 3.2. Note that y[1]
i (a;a),y[2]

j (b;b) ∈ (0,∞) . By the continuity of the curves Λc
i

and Λd
j , there exists c∗ = d∗ ∈ (a,b) such that y[1]

i (c∗;c∗) = y[2]
j (d∗;d∗) . Also note that

(y[1]
i )′(c∗,c∗) = 0 and (y[2]

j )′(d∗,d∗) = 0.

By the uniqueness of solutions of IVPs, we have

y[1]
i (t,c∗) ≡ y[2]

j (t,d∗) for t ∈ [a,b] .

We denote
yn(t) = y[1]

i (t,c∗) = y[2]
j (t,d∗) on [a,b] .

Thus, we have that yn ∈ T +
i [c∗,b]∩T +

j [a,d∗] . Considering that y′n(c∗) = 0, we see
that y′n has n + 1 zeros in (a,b) . It is easy to see −yn is also a solution of BVP
(1.1), (1.2) since f is an odd function. Thus −y′n has n+ 1 zeros in (a,b) . Clearly,
condition (iii) in Definition 2.1 is satisfied by one of yn and −yn for γ = + and γ =− ,
respectively. Therefore, one of yn and −yn is in T +

n and the other is in T −
n . �

The following Lemma plays an important role in the proof of Corollary 2.1.

LEMMA 3.7. (i) Assume either (a) f0 � μ0(c) and μ1(c) < f∞ or (b) f∞ � μ0(c)
and μ1(c) < f0 and suppose (2.3) holds for any r > 0 . Then the solutions yγ

0 ∈T γ
0 [c,b]

of BVP (1.1), (3.1) obtained from Lemma 3.3 are positive and negative, respectively for
γ = {+,−} .

(ii) Assume either (a) f0 � ν0(d) and ν1(d) < f∞ or (b) f∞ � ν0(d) and ν1(d) <
f0 and suppose (2.4) holds for any r > 0 . Then the solutions yγ

0 ∈ T
γ

0 [a,d] of BVP
(1.1), (3.2) obtained from Lemma 3.4 are positive and negative, respectively for γ =
{+,−} .

Proof of Corollary 2.1. (a) Without loss of generality, we consider the case where
f0 = 0 and f∞ = ∞ and γ = + . The other cases can be proved similarly. Under the
assumptions, from Theorem 2.1, BVP (1.1), (1.2) has a solution y0 := yγ

0 ∈ T
γ

0 . We
claim that y0(t) > 0 on (a,b) . In fact, from the proof of Theorem 2.1,

y0(t) = y[1]
0 (t;c∗) = y[2]

0 (t;d∗) for some c∗ = d∗ ∈ (a,b) ,

where y[1]
0 ∈ T +

0 [c∗,b] and y[2]
0 ∈ T +

0 [a,d∗] . By Lemma 3.7,

y[1]
0 (t) > 0 on [c∗,b] and y[2]

0 (t) > 0 on [a,d∗] .

Therefore, y0(t) > 0 on [a,b] .
The proofs for parts (b) and (c) are similar and hence are omitted. �

The following are needed in the proof of Theorem 2.2 on nonexistence of solutions
of BVP (1.1), (1.2). For α ∈ [0,π) , let {ζ 1

n (α)}∞
n=0 denote the eigenvalues of the SLP

consisting of Eq. (2.7) and the BC{
cosα y(a)− sinα y′(a) = 0, α ∈ [0,π),
y′(b) = 0.
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We note that for n ∈ N0 , ζ 1
n (0) = ζ 1

n , where ζ 1
n is the n -th eigenvalue of SLP

(2.7), (2.8). From [15, Lemma 3.32] and [17, Theorem 4.2] , ζ 1
n (α) is continuous and

ζ 1
n (α) is strictly decreasing in α on [0,π) ; moreover,

lim
α→π− ζ 1

0 (α) = −∞ and lim
α→π− ζ 1

n (α) = ζ 1
n−1(0). (3.25)

Consider the BVP consisting of Eq. (1.1) and the BCs

⎧⎨
⎩

cosα y(a)− sinα y′(a) = 0, α ∈ [0,π),

y(b)−
m
∑
i=1

kiy(ηi) = 0.
(3.26)

The following result from [13, Theorem 2.2] plays a key role in the proof of Theorem
2.2.

LEMMA 3.8. (i) Assume f (y)/y < ζ 1
n (α) for some n ∈ N0 and all y �= 0 . Then

BVP (1.1), (3.26) has no solution with the derivative having i + 1 zeros on (a,b) if
α ∈ [0,π/2) , and has no solution with the derivative having i zeros on (a,b) if α ∈
[π/2,π) , for all i � n.

(ii) Assume f (y)/y > ζ 1
n+1(α) for some n ∈ N0 and all y �= 0 . Then BVP (1.1),

(3.26) has no solution with the derivative having i+1 zeros on (a,b) if α ∈ [0,π/2) ,
and has no solution with the derivative having i zeros on (a,b) if α ∈ [π/2,π) , for all
i � n.

Proof of Theorem 2.2. (i) By contradiction, suppose BVP (1.1), (1.2) has a solution
y ∈ T γ

i for some i � n+1, γ ∈ {+,−} . Then there exists α∗ ∈ [0,π) such that

cosα∗ y(a)− sinα∗ y′(a) = 0.

This means that y(t) is also a solution of BVP (1.1), (3.26) for α = α∗ . From our
assumptions, along with (3.25) and the fact that ζn(α) strictly decreasing in α on
[0,π) , we have that for any α ∈ [0,π)

f (y)/y < ζ 1
n = ζ 1

n (0) < ζ 1
n+1(α).

By Lemma 3.8, (i), BVP (1.1), (3.26) has no solution with the derivative having i or i+
1 zeros, depending on α∗ , on (a,b) for all i � n+1. We have reached a contradiction
to y ∈ T γ

i .
The proof of the second part of Theorem 2.2, (i) is similar to above except that

Lemma 3.8, (ii) instead of Lemma 3.8, (i), is used.
(ii) The proof is similar to part (i) and is omitted. �
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