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Abstract. This paper is concerned with the oscillatory behavior of second order neutral differ-
ence equations. Four oscillation theorems for such equations are established and examples are
given to illustrate the results.

1. Inroduction

In this paper we are concerned with the oscillation problem of second order neutral
type difference equation of the form

Δ
(
an(Δ(xn + pnxτ(n)))

α
)

+qn f (xσ(n+1)) = 0 (1.1)

where n ∈ N(n0) = {n0,n0 + 1, . . .}, n0 is a positive integer and α is a ratio of odd
positive integers. Further, we assume that the following conditions hold.

(H1) {an}, {pn} and {qn} are positive real valued sequences with pn � 1 for all
n ∈ N(n0) , and A(n0) = ∑∞

n=n0
1

a1/α
n

< ∞ ;

(H2) σ(n) and τ(n) are strictly increasing sequences of integers on N(n0) with
limn→∞ σ(n) = limn→∞ τ(n) = ∞ ;

(H3) f : R → R is continuous and there exists a constant L > 0 such that f (x)
xα � L for

all x �= 0.

By a solution of equation (1.1), we mean a real sequence {xn} defined and satisfies
equation (1.1) for all n ∈ N(n0) . We consider only those solutions {xn} of equation
(1.1) which satisfy sup{|xn| : n � N} > 0 for all N ∈ N(n0) . A solution of equation
(1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative,
and otherwise it is called nonoscillatory.

In [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15], the authors studied the oscillatory
behavior of equation of the form (1.1) when 0 � pn < 1 and

either
∞

∑
n=n0

1

a1/α
n

= ∞ or
∞

∑
n=n0

1

a1/α
n

< ∞.
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In [13], the authors consider the following difference equation

Δ(an(Δ(xn + pnxτ(n)))
α)+qnx

β
σ(n) = 0, n ∈ N(n0) (1.2)

and established oscillation criteria for the equation (1.2) for the case

∞

∑
n=n0

1

a1/α
n

< ∞, 0 � pn � p < ∞ and τ ◦σ = σ ◦ τ .

Clearly, the assumptions given in [13] are quite restrictive and now the problem
is how to derive new oscillation tests for equation (1.1) without such conditions. Mo-
tivated by this observation, in this paper we establish some new oscillation criteria for
the equation (1.1). In Section 2, we establish oscillation criteria for the equation (1.1)
and in Section 3, we present some examples to illustrate the main results.

2. Oscillation Results

In this section, we establish four new oscillation results for equation (1.1) when

(H4) τ(n) � n and σ(n+1) � n ;

(H5) σ(n) � τ(n) � n ;

(H6) σ(n+1) � τ(n) � n ;

(H7) τ(n) � n and σ(n+1) � n .

All the occurring functional inequalities are assumed to hold eventually, that is, they
are satisfied for all n large enough. Define

A(n) =
∞

∑
s=n

1

a1/α
s

, R(n) =
n−1

∑
s=n0

1

a1/α
s

,

B(n) =
1

pτ−1(n)

(
1− 1

pτ−1(τ−1(n))

)
,

C(n) =
1

pτ−1(n)

(
1− 1

pτ−1(τ−1(n))

A(τ−1(τ−1(n)))
A(τ−1(n))

)
,

D(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( α
α +1

)α+1 Aα2−1(n)
Aα2(n+1)

1

a1/α
n

if α � 1

( α
α +1

)α+1 1
A(n+1)

1

a1/α
n

if α � 1,

E(n) =
1

pτ−1(n)

(
1− R(τ−1(τ−1(n)))

pτ−1(τ−1(n))R(τ−1(n))

)
,
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where τ−1 is the inverse function of τ ,

Qn = qnB
α(σ(n)), Qn = qnC

α(σ(n)).

Define
zn = xn + pnxτ(n). (2.1)

We begin with the following lemma.

LEMMA 1. Let zn be defined by (2.1) with zn > 0, Δzn > 0 and Δ(an(Δzn)α ) � 0
for all n ∈ N(n0) . Then for τ(n) � n and B(n) > 0 , we have

xn � B(n)zτ−1(n), n ∈ N(n0).

Proof. From (2.1), we have

zn = xn + pnxτ(n)

or

xn =
1

pτ−1(n)

(
zτ−1(n)− xτ−1(n)

)
.

Since {zn} is nondecreasing and xτ(n) < 1
pn

zn , we obtain

xn � B(n)zτ−1(n).

This completes the proof.

LEMMA 2. Let zn be defined by (2.1) with zn > 0, Δzn < 0 and Δ(an(Δzn)α ) � 0
for all n ∈ N(n0) . Then for A(n0) < ∞, τ(n) � n and C(n) > 0 , we have

xn � C(n)zτ−1(n), n ∈ N(n0).

Proof. From Δ(an(Δzn)α) � 0 for all n ∈ N(n0) , we have

Δzs � a1/α
n Δzn

a1/α
s

for s � n � n0.

Summing the last inequality from � to n and then letting � → ∞ , we obtain

0 � zn +a1/α
n A(n)Δzn

or
Δ
( zn

A(n)

)
� 0 for n ∈ N(n0).

From (2.1), we have

xn =
1

pτ−1(n)

(
zτ−1(n) − xτ−1(n)

)
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� 1
pτ−1(n)

(
zτ−1(n) −

1
pτ−1(τ−1(n))

A(τ−1(τ−1(n)))
A(τ−1(n))

zτ−1(τ−1(n))

)

� C(n)zτ−1(n).

This completes the proof.

LEMMA 3. Let zn be defined by (2.1) with zn > 0, Δzn > 0 and Δ(an(Δzn)α)� 0
for all n ∈ N(n0) . Then for τ(n) � n and E(n) > 0 , we have

xn � E(n)zτ−1(n), n ∈ N(n0).

Proof. From the proof of Lemma 1, we have

xn =
1

pτ−1(n)

(
zτ−1(n)− xτ−1(n)

)
.

On the otherhand

zn = zn0 +
n−1

∑
s=n0

(
as(Δzs)α

)1/α

a1/α
s

�
(
a1/α

n

n−1

∑
s=n0

1

a1/α
s

)
Δzn.

Hence

Δ
( zn

R(n)

)
=

R(n)Δzn− zn
a
1/α
n

R(n)R(n+1)
� 0.

Thus zn
R(n) is nonincreasing. Further

xτ−1(n) � 1
pτ−1(τ−1(n))

zτ−1(τ−1(n))

� R(τ−1(τ−1(n)))
pτ−1(τ−1(n))

zτ−1(n)

R(τ−1(n))
.

Therefore,

xn � 1
pτ−1(n)

(
1− R(τ−1(τ−1(n)))

pτ−1(τ−1(n))R(τ−1(n))

)
zτ−1(n),

or
xn � E(n)zτ−1(n).

This completes the proof.
First we establish oscillation criteria for equation (1.1) when τ(n) � n .

THEOREM 1. Assume conditions (H1)-(H4) hold. If there exists a positive non-
deccreasing function {ρn} such that

∞

∑
n=n0

[
LρnQn− 1

(α +1)α+1

(Δρn)α+1

ρα
n

aτ−1(σ(n))

]
= ∞ (2.2)
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and
∞

∑
n=n0

[
LAα(n+1)Qn−D(n)

]
= ∞ (2.3)

then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of
generality, we may assume that xσ(n) > 0 for all n � n1 ∈ N(n0) . Then it follows from
equation (1.1) that

Δ
(
an(Δzn)α

)
� −Lqnx

α
σ(n+1) � 0, n ∈ N(n1). (2.4)

Hence {an(Δzn)α} has one sign for all n � n1 . If Δzn > 0 for all n � n1 , then from
(2.1), we have from Lemma 1, that

xn � B(n)zτ−1(n), n � n1. (2.5)

It follows from (2.4) and (2.5) that

Δ(an(Δzn)α )+LqnB
α(σ(n+1))zα

τ−1(σ(n+1)) � 0, n ∈ N(n1). (2.6)

Define

un = ρn
an(Δzn)α

zα
τ−1(σ(n))

, n � n1

then

Δun � −ρnLqnB
α(σ(n+1))+

Δρn

ρn+1
un+1− ρn

ρn+1
un+1

Δzα
τ−1(σ(n))

zα
τ−1(σ(n))

, n � n1. (2.7)

By Mean Value Theorem

Δzα
τ−1(σ(n)) �

⎧⎪⎨
⎪⎩

αzα−1
τ−1(σ(n+1))Δzτ−1(σ(n)) if α � 1

αzα−1
τ−1(σ(n))Δzτ−1(σ(n)) if α � 1.

Using the last inequality in (2.7) and then using the nonincreasing nature of Δzτ−1(σ(n))

and the nondecreasing nature of a1/α
τ−1(σ(n))zτ−1(σ(n)) we obtain

Δun � −LρnqnB
α(σ(n+1))+

Δρn

ρn+1
un+1− αρn

ρ1+1/α
n+1

u(α+1)/α
n+1

a1/α
τ−1(σ(n))

, n � n1. (2.8)

By using the inequality

AV −BV 1+1/α � ααAα+1

(α +1)α+1Bα for A � 0, B > 0 and V > 0,
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we obtain

Δun � −LρnqnB
α(σ(n+1))+

1
(α +1)α+1

(Δρn)α+1

ρα
n

aτ−1(σ(n)), n � n1.

Summing the last inequality from n1 to n and then letting n → ∞ , we obtain

∞

∑
n=n1

[
LρnqnB

α(σ(n+1))− 1
(α +1)α+1

(Δρn)α+1

ρα
n

aτ−1(σ(n))

]
� un1 < ∞

which contradicts the assumption (2.2). Next, consider the case Δzn < 0 for all n ∈
N(n1) . Define

wn =
an(Δzn)α

zα
n

, n � n1. (2.9)

Then wn < 0 for n � n1 . Since Δ(an(Δzn)α) � 0, we have

a1/α
s Δzs � a1/α

n Δzn, s � n � n1.

Dividing the last inequality by a1/α
s and then summing the resulting inequality from n

to � , we obtain

z�+1 � zn +a1/α
n Δzn

�

∑
s=n

1

a1/α
s

, � � n � n1. (2.10)

Letting � → ∞ in (2.10), we obtain

a1/α
n ΔznA(n)

zn
� −1, n � n1. (2.11)

From (2.9) and (2.11), we obtain

−1 � wnA
α(n) � 0, n � n1. (2.12)

Also from (2.11), we have

Δzn

zn
� − 1

A(n)a1/α
n

, n � n1. (2.13)

From Lemma 2, we have

xn � C(n)zτ−1(n), n � n1. (2.14)

From (2.4) and (2.14), we obtain

Δ
(
an(Δzn)α

)
+LqnC

α(σ(n+1))zα
τ−1(σ(n+1)) � 0, n � n1. (2.15)

From (2.9) and (2.15) we have

Δwn � −LQn−wn
Δzα

n

zα
n+1
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� −LQn−
α

a1/α
n

w1+1/α
n , n � n1. (2.16)

Multiplying (2.16) by Aα(n + 1) and summing from n1 to n− 1 and then using the
summation by parts formula, we obtain

n−1

∑
s=n1

LAα(s+1)Qs � Aα(n1)−Aα(n)wn

+
n−1

∑
s=n1

[
ΔAα(s)ws − αAα(s+1)

a1/α
s

w(α+1)/α
s

]
. (2.17)

By Mean Value Theorem, we have

ΔAα(s)ws �

⎧⎪⎪⎨
⎪⎪⎩

αAα−1(s)

a
1/α
s

(−ws) if α � 1

αAα−1(s+1)

a1/α
s

(−ws) if α < 1.

(2.18)

From (2.17) and (2.18) we obtain for n � n1 ,

n−1

∑
s=n1

LAα(s+1)Qs � Aα(n1)+1

+
n−1

∑
s=n1

[αAα−1(s)

a1/α
s

(−ws)− αAα(s+1)

a1/α
s

(−ws)(α+1)/α
]

(2.19)

for α � 1, and for 0 < α < 1, we have for n � n1 ,

n−1

∑
s=n1

LAα(s+1)Qs � Aα(n1)+1

+
n−1

∑
s=n1

[αAα−1(s+1)

a1/α
s

(−ws)− αAα(s+1)

a1/α
s

(−ws)(α+1)/α
]
. (2.20)

By using the inequality

AV −BV (α+1)/α � ααAα+1

(α +1)α+1Bα for A � 0, B > 0 and V > 0,

we obtain from (2.19) and (2.20) that

n−1

∑
s=n1

[
LAα(s+1)Qs −D(s)

]
� Aα(n1)+1.

Letting n → ∞ in the last inequality, we obtain a contradiction with (2.3). This com-
pletes the proof.
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THEOREM 2. Assume conditions (H1)-(H3) and (H5) hold. If there exists a pos-
itive nondecreasing function {ρn} such that

∞

∑
n=n0

[
LρnQn − 1

(α +1)α+1

(Δρn)α+1

ρα
n

an

]
= ∞ (2.21)

and
∞

∑
n=n0

[
LAα(n+1)Qn

(A(τ−1(σ(n+1))
A(n+1)

)α −D(n)
]

= ∞ (2.22)

then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Proceeding as in
the proof of Theorem 1, we have (2.4), and thus there exist two possible cases of the
sign of {Δzn} . If Δzn > 0, then by Lemma 1, we obtain

Δ
(
an(Δzn)α

)
+LqnB

α(σ(n+1))zα
τ−1(σ(n+1)) � 0. (2.23)

Define

un = ρn
an(Δzn)α

zα
n

.

Similar as in the proof of Theorem 1 we obtain a contradiction to (2.21).
If Δzn < 0, then by using Lemma 2, we obtain

xn � C(n)zτ−1(n)). (2.24)

Next, define wn by (2.9) and then by (2.24) we obtain

Δwn =
Δ
(
an(Δzn)α

)

zα
n+1

− an(Δzn)α

zα
n zα

n+1
Δzα

n

� −Lqn

Cα (σ(n+1))zα
τ−1(σ(n+1))

zα
n+1

− α
a1/α

n

w1+1/α
n , n � n1.

Since { zn
A(n)} is nondecreasing, we have from the last inequality

Δwn � −LqnC
α(σ(n+1))

Aα(τ−1(σ(n+1)))
Aα(n+1)

− α
a1/α

n

w1+1/α
n , n � n1.

The rest of the proof is similar to that of Theorem 1 and so is omitted. The proof is now
complete.

Now we shall establish some oscillation results for equation (1.1) for the case
τ(n) � n .
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THEOREM 3. Assume conditions (H1)-(H3) and (H6) hold. If there exists a pos-
itive nondecreasing function {ρn} such that

∞

∑
n=n0

[
LρnqnE

α(σ(n+1))− 1
(α +1)α+1

(Δρn)α+1

ρα
n

aτ−1(σ(n))

]
= ∞ (2.25)

and
∞

∑
n=n0

[
LqnA

α(n+1)Bα(σ(n+1))−D(n)
]
= ∞ (2.26)

hold, then every solution of equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of
generality, we may assume that xn > 0, xτ(n) > 0,and xσ(n+1) > 0 for all n � n1 ∈
N(n0) . From equation (1.1), we have (2.4). Hence there are two possible cases for the
sign of {Δzn} . If Δzn > 0 for all n � n1 , then by Lemma 3, we obtain

xn � E(n)zτ−1(n). (2.27)

From (2.4) and (2.27), we have

Δ
(
an(Δzn)α

)
+LqnE

α(σ(n+1))zα
τ−1(σ(n+1)) � 0, n � n1.

Define

vn =
ρnan(Δzn)α

zα
τ−1(σ(n))

.

Similar to the proof of Theorem 1, we obtain a contradiction to (2.25).
If Δzn < 0, then from the definition of zn , we have

xn �
zτ−1(n)

pτ−1(n)
− zτ−1(τ−1(n))

pτ−1(n)pτ−1(τ−1(n))
� 1

pτ−1(n)

(
1− 1

pτ−1(τ−1(n))

)
zτ−1(n).

The remainder of the proof is similar to that of Theorem 1 and hence is omitted. The
proof is now complete.

THEOREM 4. Assume conditions (H1)-(H3) and (H7) hold. If there exists a pos-
itive nondecreasing function {ρn} such that

∞

∑
n=n0

[
LρnqnE

α(σ(n+1))− 1
(α +1)α+1

(Δρn)α+1

ρα
n

an

]
= ∞ (2.28)

and

∞

∑
n=n0

[
LqnA

α(n+1)Cα(σ(n+1))
(A(τ−1(σ(n+1)))

A(n)

)α −D(n)
]

= ∞ (2.29)

hold, then every solution of equation (1.1) is oscillatory.
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Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of
generality, we may assume that xn > 0, xτ(n) > 0,and xσ(n) > 0 for all n � n1 ∈ N(n0) .
From equation (1.1), we have

Δ
(
an(Δzn)α

)
� −Lqnx

α(τ−1(σ(n+1))) � 0, n ∈ N(n1). (2.30)

Therefore, there are two possible cases for the sign of {Δzn} . If Δzn > 0 for all n � n1 ,
then from Lemma 3, we have

xα
σ(n+1) � Eα(σ(n+1))zα

τ−1(σ(n+1)). (2.31)

Define

vn =
ρnan(Δzn)α

zα
n

.

Proceeding as in the proof of Theorem 1, we obtain a contradiction to (2.28).
If Δzn < 0 for n � n1 , then as in the proof of Theorem 3, we obtain

xn � B(n)zτ−1(n).

On the other hand, by the proof of Lemma 1, we see that zn
A(n) is nondecreasing. Thus,

we have
zτ−1(σ(n+1))

zn
� A(τ−1(σ(n+1)))

A(n)
.

The rest of the proof is similar to that of Theorem 1 and hence is omitted. The proof is
now complete.

3. Examples

In this section, we present some examples to illustrate our main results.

EXAMPLE 1. Consider the difference equation

Δ
(
2nΔ(xn +8xn+2)

)
+54(2n)xn2−1 = 0,n � 1. (3.1)

Here α = 1, L = 1, τ(n) = n+2, σ(n+1) = n2−1,

A(n) =
1

2n−1 , Qn = 189(2n−5), Qn = 27(2n−3) and D(n) =
1
4
.

By taking ρn = 1, we see that all conditions of Theorem 2.1 are satisfied and hence
every solution of equation (3.1) is oscillatory. In fact {xn} = {(−1)n} is one such
solution of equation (3.1).
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EXAMPLE 2. Consider the difference equation

Δ
(
2nΔ(xn +8xn−2)

)
+54(2n)xn2−1 = 0,n � 1. (3.2)

Here α = 1, L = 1, τ(n) = n−2, σ(n+1) = n2−1,

E(n) =
1
8

(
1− 1

32
2n+3−1
2n+1−1

)
and A(n) =

1
2n−1 .

By taking ρn = 1, we see that all conditions of Theorem 2.4 are satisfied and hence
every solution of equation (3.2) is oscillatory. In fact {xn} = {(−1)n} is one such
solution of equation (3.2).

We conclude this paper with the following remark.

REMARK 1. The results obtained here improve some of the existing results in the
literature. Also the theorems obtained in [13] cannot be applied to equations (3.1) and
(3.2) since τ ◦σ �= σ ◦ τ .
Further the results obtained in this paper can be extended to

Δ(an|Δzn|α−1Δzn)+qn|xσ(n)|α−1xσ(n) = 0

where α > 0, without any difficulty, and hence the details are left to the reader.

Acknowledgements. The authors thank the referees for their suggestions and com-
ments which improved the content of the paper.
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