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Abstract. We use Karamata regular variation theory to study the exact asymptotic behavior of
large solutions near the boundary to a class of quasilinear elliptic equations with convection terms

⎧⎨
⎩

Δpu±|∇u|q(p−1) = b(x) f (u), x ∈ Ω,

u(x) = +∞, x ∈ ∂Ω,

where Ω is a smooth bounded domain in R
N . The weight function b(x) is a non-negative

continuous function in the domain, f (u) ∈ C2[0,+∞) is increasing on [0,∞) , and regularly
varying at infinity with index ρ > p−1 .

1. Introduction and main results

In this paper, we will investigate the exact asymptotic behavior of large solutions
near the boundary for the following quasilinear elliptic problems:

⎧⎨
⎩

Δpu±|∇u|q(p−1) = b(x) f (u), x ∈ Ω,

u(x) = +∞, x ∈ ∂Ω,
(P±)

where Ω is a smooth bounded domain of R
N(N > 2) with smooth boundary ∂Ω ,

1 < p < ∞ , Δpu = div(|∇u|p−2∇u) is the p -Laplacian. The nonlinear terms f and
b(x) satisfy:

( f1) f ∈C2[0,+∞), f (0) = 0, f is increasing on [0,+∞) ;

(b1) b(x) ∈C(Ω) is a non-negative function .
A large(or explosive) of (P±) we mean that u(x) → +∞ as d(x) = dist(x,∂Ω) →

0+. Such problem arise in the study of the subsonic motion of a gas [26], the electric
potential in some bodies [19], and Riemannian geometry [5].
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The study of large solution goes back many years. Various authors have investi-
gated the existence, asymptotic boundary behavior and uniqueness of solution to the
problem: ⎧⎨

⎩
Δu = g(x) f (u), in Ω,

u(x) → ∞, as x → ∂Ω.
(1.1)

See references [2, 3, 7, 8, 18, 20, 24, 29, 30]. Still, let us review the following model⎧⎨
⎩

Δpu = g(x) f (u), in Ω,

u(x) → ∞, as x → ∂Ω.
(1.2)

This problem also has been studied by several authors, see e.g. [12, 13, 23] and the
references therein. Gladiali and Porru [13] study boundary asymptotic of solutions of
this equation under some condition on f and when g(x) ≡ 1. Related problems on
asymptotic behavior and uniqueness and also studies in [12]. Ahmed Mohammed in
[23] establish boundary asymptotic estimate for solution of this equation under appro-
priate conditions on g and the nonlinearity f . They still allow g to be unbounded on
Ω or to vanish on ∂Ω .

More recently, many authors studied the exact asymptotic behavior of solution
near the boundary to the following model:

⎧⎨
⎩

Δpu+ λ |∇u|q(p−1) = k(x) f (u), x ∈ Ω

u(x) = +∞, x ∈ ∂Ω,
(1.3)

when k(x) = eu(x) , by a perturbation method and by constructing comparison functions,
C.L.Liu and Z.D.Yang [21] show the exact asymptotic behavior of solution near the
boundary of problem (1.3). Furthermore, under suitable growth assumptions on k near
the boundary and on f both at zero at infinity, the authors [22] show the existence
of at least one solution in C1(Ω) base on the method of explosive sub-supersolutions,
which permits positive weights k(x) which are unbounded and/or oscillatory near the
boundary.

In a different direction, F.C. Cı̂rstea [6] opened a unified new approach, they using
the Karamata regular variation theory to study the uniqueness and asymptotic behav-
ior of large solutions to the semilinear elliptic equation Δu+ au = b(x) f (u) where f
Γ−varying at ∞ they show that when f grows faster than any up(p > 1) then the van-
ishing rate of b at ∂Ω enters into the completion with the grows of f at ∞ . Still in
[8, 9, 10, 25] many authors concerned with the existence, uniqueness and exact asymp-
totic behavior of solutions for the following quasilinear elliptic problem⎧⎨

⎩
−Δu = λg(u)−b(x) f (u), in Ω

u = +∞, on ∂Ω.
(1.4)

The uniqueness of such solution for a large class of functions f (u) (including up or
eu as a special case and more general function ) follows as a consequence of the exact
blow-up rate.
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More recently, the following model:⎧⎨
⎩
−Δu+ |∇u|q = b(x) f (u), x ∈ Ω

u = +∞, x ∈ ∂Ω
(1.5)

were studied widely. When b(x) = 1, by the ordinary differential equation theory and
the comparison principle,Bandle and Giarrusso [1] studied the existence and asymptotic
boundary behavior of solution to (1.5) with two classical nonlinearities f (u) = up, p >
1 and f (u) = eu . In [15], S.B.Huang and Q.Y.Tian use Karamata regular variation
theory, a perturbation method and constructing comparison function to show the exact
asymptotic behavior of large solutions to the problem (1.5).

Motivated by the results of the above cited papers, we use Karamata regular varia-
tion theory to further deal with the boundary blow-up rate of large solutions of (P±) for
more general nonlinear term f (u) , the results of the semilinear equation are extended
to the quasilinear ones.

This paper is organized as follows. In the next section, we give some useful defi-
nitions and prove some properties from regular variation theory. The proof of the main
Theorem carried out in the third section.

Before give out our main theorem, now we introduce a class of functions used
to describe the behavior of weight function b(x) . Let κ1 denote (as in [14, 23]) the
set of all positive, monotonic functions k ∈ L1(0,τ)

⋂
C1(0,τ), for some τ > 0, which

satisfy:

lim
t→0+

K(t)/k(t) = 0, lim
t→0+

d
dt

(
K(t)/k(t)

)
= l, where K(t) =

∫ t

0
k(s)ds.

We point out that l ∈ [0,1] if k is non-decreasing and l ∈ [1,∞) if k is non-increasing.
For more propositions of κ1 refer to [7, 11]. Some examples of functions k ∈ κ1 are:

(1) k(t) = tq for q > −1 with l = 1
1+q ;

(2) k(t) = (−lnt)q for q < 0 with l = 1;

(3)k(t) = exp(−tq) for q < 0 with l = 0.

DEFINITION. A positive measurable function f defined on [A,∞) for some A > 0
is called regularly varying (at infinity) with index ρ ∈ R (written f ∈ RVρ ) if for all
ξ > 0, lim

u→∞
f (ξu)/ f (u) = ξ ρ .

We modify the methods developed in [15], which give the following theorems

THEOREM 1.1. Let f ∈ RVρ(ρ > p− 1) with q(p− 1) < ρ satisfy ( f1 ), b(x)
satisfy (b1 ).

(1) If b(x) satisfies

(b2 ) lim
d(x)→0

b(x)

kp
(
d(x)

) = c0 > 0 , for k(x) ∈ κ1 with 0 < l < ∞ , and

0 < q <
pp−1[p−1+ l(ρ +1− p)]

p+ l(ρ +1− p)
(1.6)
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then every solution u± ∈C1(Ω) to problem (P± ) satisfies

lim
d(x)→0+

u±(x)
φ
(
d(x)

) = ξ1, (1.7)

where φ is uniquely determined by

f
(
φ(t)

)
Kp(t) = φ p−1(t), (1.8)

and

ξ1 =
[ pp−1(p−1)(p− l p+ lρ + l)

c0(ρ +1− p)p

] 1
ρ+1−p

.

(2) If b(x) satisfies

(b3 ) lim
d(x)→0

b(x)

kq(p−1)
(
d(x)

) = cq > 0, for k(x) ∈ κ1 with 0 < l < ∞ , and q satisfies

q(p−1)− p+
q(p−1)[1−q(p−1)]

l
[
q(p−1)−ρ

] > 0 and q(p−1) < ρ , (1.9)

then every solution u+ ∈C1(Ω) to problem (P+ ) satisfies

lim
d(x)→0+

u+(x)/ϕ
(
d(x)

)
= ξ2, (1.10)

where ϕ is uniquely determined by

f
(
ϕ(t)

)
Kq(p−1) = ϕq(p−1)(t), (1.11)

and

ξ2 =
[ 1
cq

( q(p−1)
ρ −q(p−1)

)q(p−1)
] 1

ρ−q(p−1)

(3) If b(x) satisfies (b3) and q satisfies

1 < q <
p

p−1
and ραl +q(p−1)(p−1− l)> q(p−1)(α − p+1). (1.12)

then every solution u− ∈C1(Ω) to problem (P− ) satisfies

lim
d(x)→0+

u−(x)d−α(x) = ξ3, (1.13)

where α = q(p−1)−p
q(p−1)−p+1 and

ξ3 =
[ (α −1)(p−1)

α(q−1)(p−1)

] 1
(q−1)(p−1)

REMARK. When b(x)satisfies conditions b1 and b2 , for example, we can choose
b(x) = c0kp

(
d(x)

)
+ o

(
kp(d(x))

)
; When b(x) satisfies conditions b1 and b3 , we can

choose b(x) = cqkq(p−1)(d(x)
)
+o

(
kq(p−1)(d(x))

)
.
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2. Preliminaries

In this section we give some preliminary considerations on various assumptions
and properties needed for our main result. We start with some basic definitions and
properties of regular variation theory which was initiated by Jovan and Karamata in
a well-known paper of [16] in 1930. For detailed accounts of the theory of regular
variation, its extensions and many of its applications, we refer the interested reader to
[4, 17, 27, 28].

DEFINITION 2.1. A positive measurable function L defined on [A,+∞) for some
A > 0 is called slowly varying at infinity if for all ξ > 0, lim

u→∞
L(ξu)/L(u) = 1.

From the above definition we easily deduce that if L varies slowly, then uρL(u) ∈
RVρ .

DEFINITION 2.2. A function f (u) defined for u > A is called a normalized reg-
ularly varying function of index ρ (in short f ∈ NRVρ ) if it is C1 and satisfies

lim
u→∞

u f
′
(u)

f (u)
= ρ .

The concept of normalized regular variation can be applied at zero as follows:

DEFINITION 2.3. We say that f is normalized regularly varying at (the right of)
zero with index ρ ∈ R (written f ∈ NRVρ(0+)) if u→ f (1/u) is normalized regularly
varying at ∞ with index −ρ .

PROPOSITION 2.1. If L is slowly varying, then:

(1) For any α > 0 , uαL(u) → ∞ , u−αL(u) → 0 as u → ∞ .

(2)
(
L(u)

)α
varies slowly for every α ∈ R.

(3) If L1 varies slowly, so do L(u)L1(u) and L(u)+L1(u) .

PROPOSITION 2.2. (Representation theorem) The function L(u) is slowly vary-
ing if and only if it can be written in the form

L(u) = M(u)exp
{∫ u

B

ω(t)
t

dt
}

(u � B),

for some B > 0, where ω ∈C[B,∞) satisfies lim
u→∞

ω(u) = 0 and M(u) is measurable

on [B,∞) such that lim
u→∞

M(u) = M0 ∈ (0,∞).

PROPOSITION 2.3. (see [21] Weak Comparison Principle) Let Ω be a bounded
domain in R

N(N > 2) with a smooth boundary ∂Ω where ϕ : (0,a) → (0,a) is con-
tinuous and non-decreasing. Let u1,u2 ∈W 1,p(Ω) satisfy

∫
Ω
|∇u1|p−1∇u1∇ψdx+

∫
Ω

ϕu1ψdx �
∫

Ω
|∇u2|p−1∇u2∇ψdx+

∫
Ω

ϕu2ψdx
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for all non-negative ψ ∈W 1,p
0 (Ω) . Then the inequality

u1 � u2, on ∂Ω

implies that
u1 � u2, in ∂Ω.

LEMMA 2.1. The function φ given by (1.8) is well defined and

(1) lim
t→0

tφ
′
(t)

φ(t) = p
l(p−1−ρ) ;

(2) lim
t→0

[
φ ′

(t)
]q(p−1)−p+2

φ ′′ (t)
= 0;

(3) lim
t→0

φ ′
(t)

φ ′′ (t)
= lim

t→0

φ(t)
φ ′ (t)

= lim
t→0

φ(t)
φ ′′ (t)

= 0;

(4) lim
t→0

|φ ′
(t)|p−2φ ′′

(t)

kp(t) f
(

φ(t)
) = pp−1[p−l p−lρ+l]

(ρ+1−p)p .

Proof. (1) As f ∈ RVρ(ρ > p− 1) with q(p− 1) < ρ satisfy ( f1 ),it is easy to
know that the function φ given by (1.8) is well defined. By (1.8), we find

(p−1)φ p−2(t)φ
′
(t) = f

′(
φ(t)

)
Kp(t)φ

′
(t)+ p f

(
φ(t)

)
Kp−1(t)k(t)

Thus

φ
′
(t) =

f
′(φ(t)

)
Kp(t)φ ′

(t)
(p−1)φ p−2(t)

+
p f

(
φ(t)

)
Kp−1(t)k(t)

(p−1)φ p−2(t)
. (2.1)

Then

lim
t→0

tφ ′
(t)

φ(t)
= lim

t→0

1
p−1

f
′(φ(t)

)
f
(
φ(t)

) tφ ′
(t)

φ(t)
+

p
p−1

lim
t→0

tk(t)
K(t)

From this, we obtain that

lim
t→0

tφ ′
(t)

φ(t)
=

p
l(p−1−ρ)

. (2.2)

(2) By a direct calculation of (2.1), we have

(p−1)φ p−2(t)φ
′′
(t)+ (p−1)(p−2)φ p−3(t)

[
φ

′
(t)

]2

= f
′′(

φ(t)
)
Kp(t)

[
φ

′
(t)

]2 +2p f
′(

φ(t)
)
Kp−1(t)k(t)φ

′
(t)

+ f
′(

φ(t)
)
Kp(t)φ

′′
(t)+ p(p−1) f

(
φ(t)

)
Kp−2(t)k2(t)

+ p f
(
φ(t)

)
Kp−1(t)k

′
(t),

which implies that
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φ
′′
(t) =

1

(p−1)φ p−2(t)− f ′
(
φ(t)

)
Kp(t)

[
f
′′
(φ(t))Kp(t)[φ

′
(t)]2

+2p f
′
(φ(t))Kp−1(t)k(t)φ

′
(t)+ p(p−1) f (φ(t))Kp−2(t)k2(t)

+ p f
(
φ(t)

)
Kp−1(t)k

′
(t)− (p−1)(p−2)φ p−3(t)[φ

′
(t)]2

]
. (2.3)

Taking into account (2.1), we still have

φ
′
(t) =

p f
(
φ(t)

)
Kp−1(t)k(t)

(p−1)φ p−2(t)− f ′
(
φ(t)

)
Kp(t)

,

it follows that

φ
′′
(t) =

f
′′(φ(t)

)
K(t)

[
φ ′

(t)
]3

p f
(
φ(t)

)
k(t)

+
2 f

′(φ(t)
)
[φ ′

(t)]2

f
(
φ(t)

) +
(p−1)k(t)φ ′

(t)
K(t)

+
k
′
(t)φ ′

(t)
k(t)

− (p−1)(p−2)φ p−3(t)
[
φ ′

(t)
]3

p f
(
φ(t)

)
Kp−1(t)k(t)

.

Thus

φ ′′
(t)[

φ ′(t)
]q(p−1)−p+2

=
f
′′(φ(t)

)
K(t)

[
φ ′

(t)
]q−qp+p+1

p f
(
φ(t)

)
k(t)

+
2 f

′(φ(t)
)[

φ ′
(t)

]q−qp+p

f
(
φ(t)

)

+
(p−1)k(t)

[
φ ′

(t)
]q−qp+p−1

K(t)
+

k
′
(t)

[
φ ′

(t)
]q−qp+p−1

k(t)

− (p−1)(p−2)φ p−3(t)
[
φ ′

(t)
]q−qp+p+1

p f
(
φ(t)

)
Kp−1(t)k(t)

= E1 +E2 +E3 +E4−E5.

By (1.8), we get

lim
t→0

E1 =
1
p

lim
t→0

φ2(t) f
′′(φ(t)

)
f
(
φ(t)

) ( tφ ′
(t)

φ(t)
)q−qp+p+1 K(t)

tk(t)
φq−qp+p−1(t)t−(q−qp+p)

Thanks to Proposition 2.2, f ∈ RVρ , which is equivalent to f (u) being of the form

f (u) = M(u)uρexp
{∫ u

B

ω(t)
t

dt
}

(u � B),

where ω ∈C[B,∞) satisfies lim
u→∞

ω(u) = 0 and M(u) is measurable on [B,∞) such that

lim
u→∞

M(u) = M0 ∈ (0,∞). This fact implies that

lim
t→0

φ2(t) f
′′(φ(t)

)
f
(
φ(t)

) = ρ(ρ −1). (2.4)
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So,

lim
t→0

E1 = ρ(ρ −1)l
[ p
l(p−1−ρ)

]q−qp+p+1
lim
t→0

φq−qp+p−1(t)t−(q−qp+p), (2.5)

Similarly, we have:

lim
t→0

E2 = 2 lim
t→0

φ(t) f
′(φ(t)

)
f
(
φ(t)

) ( tφ ′
(t)

φ(t)

)q−qp+p
φq−qp+p−1(t)t−(q−qp+p)

= 2ρ
[ p
l(p−1−ρ)

]q−qp+p
lim
t→0

φq−qp+p−1(t)t−(q−qp+p), (2.6)

lim
t→0

E3 =
p−1

l

[ p
l(p−1−ρ)

]q−qp+p−1
lim
t→0

φq−qp+p−1(t)t−(q−qp+p), (2.7)

lim
t→0

E4 = (1− l)
[ p
l(p−1−ρ)

]q−qp+p−1
lim
t→0

φq−qp+p−1(t)t−(q−qp+p), (2.8)

lim
t→0

E5 =
l(p−1)(p−2)

p

[ p
l(p−1−ρ)

]q−qp+p+1
lim
t→0

φq−qp+p−1(t)t−(q−qp+p). (2.9)

On the other hand, (1.6) and Proposition 2.1 show that

lim
t→0

φq−qp+p−1(t)t−(q−qp+p) = ∞.

Taking into account (2.6)-(2.9), we have

lim
t→0

φ ′′
(t)[

φ ′(t)
]q(p−1)−p+2

= lim
t→0

E1 + lim
t→0

E2 + lim
t→0

E3 + lim
t→0

E4− lim
t→0

E5 = ∞.

That is,

lim
t→0

[
φ ′

(t)
]q(p−1)−p+2

φ ′′(t)
= 0.

(3) As lim
t→0

tφ
′
(t)

φ(t) = p
l(p−1−ρ) , this implies that

lim
t→0

φ(t)
φ ′(t)

= 0. (2.10)

By lim
t→0

[
φ ′

(t)
]q(p−1)−p+2

φ ′′ (t) = 0 and (1.6), we get

lim
t→0

φ ′
(t)

φ ′′(t)
= 0, (2.11)
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using (2.10)-(2.11), we obtain

lim
t→0

φ(t)
φ ′′(t)

= lim
t→0

φ(t)
φ ′(t)

φ ′
(t)

φ ′′(t)
= 0.

(4) By (1.8) and (2.3), we get

lim
t→0

|φ ′
(t)|p−2φ ′′

(t)
kp(t) f

(
φ(t)

) = lim
t→0

|φ ′
(t)|p−2[φ ′

(t)]3 f
′′(φ(t)

)
K(t)

p f 2
(
φ(t)

)
kp+1(t)

+ lim
t→0

2|φ ′
(t)|p f

′(φ(t)
)

f 2
(
φ(t)

)
kp(t)

+ lim
t→0

(p−1)
|φ ′

(t)|p−2φ ′
(t)

kp−1(t)K(t) f
(
φ(t)

) + lim
t→0

|φ ′
(t)|p−2φ ′

(t)k
′
(t)

kp+1(t) f
(
φ(t)

)

− lim
t→0

(p−1)(p−2)|φ ′
(t)|p−2

[
φ ′

(t)
]3[φ(t)

]p−3

pkp+1(t) f 2
(
φ(t)

)
Kp−1(t)

= F1 +F2 +F3 +F4−F5.

F1 = lim
t→0

φ2(t) f
′′(φ(t)

)
p f

(
φ(t)

) ∣∣∣ tφ
′
(t)

φ(t)

∣∣∣p−2( tφ ′
(t)

φ(t)

)3(K(t)
tk(t)

)p+1

= −ρ(ρ −1)
p

[ p
ρ +1− p

]p+1
. (2.12)

Similarly,

F2 = 2ρ
[ p

ρ +1− p

]p
, (2.13)

F3 = −(p−1)
[ p

ρ +1− p

]p−1
, (2.14)

F4 = −(1− l)
[ p

ρ +1− p

]p−1
, (2.15)

F5 = − (p−1)(p−2)
p

[ p
ρ +1− p

]p+1
. (2.16)

Thus, taking into account (2.12)-(2.16), we get

lim
t→0

|φ ′
(t)|p−2φ ′′

(t)
kp(t) f

(
φ(t)

) = F1 +F2 +F3 +F4−F5 =
pp−1[p− l p− lρ + l]

(ρ +1− p)p .

The proof of Lemma 2.1 is now complete. �
In a similar way we can prove that:

LEMMA 2.2. The function φ given by (1.11) is well defined and

(1) lim
t→0

tϕ ′
(t)

ϕ(t) = q(p−1)

l
[
q(p−1)−ρ

] ;
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(2) lim
t→0

ϕ ′
(t)

ϕ ′′ (t)
= lim

t→0

ϕ(t)
ϕ ′ (t)

= lim
t→0

ϕ(t)
ϕ ′′ (t)

= 0;

(3) lim
t→0

|ϕ ′
(t)|p−2ϕ ′′

(t)

kq(p−1)(t) f
(

ϕ(t)
) = 0.

(4) lim
t→0

|ϕ ′
(t)|q(p−1)

kq(p−1)(t) f
(

ϕ(t)
) =

[ q(p−1)
ρ−q(p−1)

]q(p−1)
.

3. Proof of the Main Theorem

In this section, we are now ready to present the proof of Theorem 1.1.

Proof. Give δ > 0,∀β ∈ (0,δ ), denote

Ωδ = {x ∈ Ω,0 < d(x) < δ}, ∂Ωδ = {x ∈ Ω,d(x) = δ},

Ω−
β = Ω2δ \Ωβ , Ω+

β = Ω2δ−β .

Proof of (1): Case 1: k is non-decreasing, then l ∈ (0,1].
Refer to the reference [21] and [30], we can choose a δ > 0 sufficiently small such

that

(1) d(x) ∈C2(Ω2δ ), and |∇d(x)| = 1 in Ω2δ ;

(2) k(x) is non-decreasing on (0,2δ ) ;
(3) c0kp

(
d(x)− β

)
< b(x) < c0kp

(
d(x)+ β

)
for all x ∈ Ω2δ with β ∈ (0,δ ) being

arbitrary.
Set u±β (x) = ξ±φ

(
d(x)±β

)
,x ∈ Ω±

β , where

ξ± =
[ pp−1(p−1)(p− l p+ lρ + l)

(c0± ε)(ρ +1− p)p

] 1
ρ+1−p ,

∇u±β = ξ±φ
′(

d(x)±β
)
∇d(x),

and

div(|∇u±β |p−2∇u±β ) = (ξ±)p−1[(p−1)|φ ′(
d(x)±β

)|p−2φ
′′(

d(x)±β
)|∇d(x)|p

+ |φ ′(
d(x)±β

)|p−2φ
′(

d(x)±β
)
Δpd(x)

]
.

This implies that

Δpu
+
β ±|∇u+

β |q(p−1)−b(x) f (u+
β )

� kp(d(x)+ β
)
f (u+

β )
[
A+

1 (d(x)+ β )+A+
2 (d(x)+ β )Δpd(x)

±A+
3 (d(x)+ β )− c0

]
,
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Δpu
−
β ±|∇u−β |q(p−1)−b(x) f (u−β )

� kp(d(x)−β
)
f (u−β )

[
A−

1 (d(x)−β )+A−
2 (d(x)−β )Δpd(x)

±A−
3 (d(x)−β )− c0

]
,

where we set

A±
1 (t) =

(p−1)(ξ±)p−1|φ ′
(t)|p−2φ ′′

(t)
kp(t) f

(
ξ±φ(t)

)

A±
2 (t) =

(ξ±)p−1|φ ′
(t)|p−2φ ′

(t)
kp(t) f

(
ξ±φ(t)

) , A±
3 (t) =

(ξ±)q(p−1)|φ ′
(t)|q(p−1)

kp(t) f
(
ξ±φ(t)

)

lim
t→0

A±
1 (t) = lim

t→0
(p−1)(ξ±)p−1 f

(
φ(t)

)
f
(
ξ±φ(t)

) |φ ′
(t)|p−2φ ′′

(t)
kp(t) f

(
ξ±φ(t)

)
= (p−1)(ξ±)p−ρ−1pp−1 p− l p+ lρ + l

(p−ρ −1)p ;

and

lim
t→0

A±
2 (t) = lim

t→0

φ ′
(t)

φ ′′(t)
A±

1 (t) = 0;

lim
t→0

A±
3 (t) = lim

t→0
(ξ±)(q−1)(p−1)

(
φ ′

(t)
)q(p−1)−p+2

φ ′′(t)
A±

1 (t) = 0.

This yields
lim
t→0

[
A+

1 (t)+A+
2 (t)Δpd(x)±A+

3 (t)− c0
]
= ε

lim
t→0

[
A−

1 (t)+A−
2 (t)Δpd(x)±A−

3 (t)− c0
]
= −ε

Thus we can choose δ > 0 small enough so that
⎧⎨
⎩

Δpu
+
β ±|∇u+

β |q(p−1)−b(x) f (u+
β ) � 0, x ∈ Ω+

β ,

Δpu
−
β ±|∇u−β |q(p−1)−b(x) f (u−β ) � 0, x ∈ Ω−

β .

Set M(δ ) = maxd(x)=2δ u±(x), N(δ ) = ξ1φ(2δ ), where u±(x) is a non-negative solu-
tion of problem (P±) . It can be easily seen that

u±(x) � M(δ )+u−β ,x ∈ ∂Ω−
β ,

u+
β � N(δ )+u±(x), x ∈ ∂Ω+

β

Consequently, taking into account ( f1) and proposition 2.3, we obtain

u±(x) � M(δ )+u−β ,x ∈ Ω−
β ,
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u+
β � N(δ )+u±(x), x ∈ Ω+

β .

This implies that

u+
β −N(δ ) � u±(x) � M(δ )+u−β , x ∈ Ω−

β

⋂
Ω+

β

We conclude that, for all x ∈ Ω−
β

⋂
Ω+

β ,

u+
β

φ
(
d(x)±β

) − N(δ )
φ
(
d(x)±β

) � u±(x)
φ
(
d(x)±β

) � M(δ )
φ
(
d(x)±β

) +
u−β

φ
(
d(x)±β

) . (3.1)

Recall that,

x ∈ Ω−
β

⋂
Ω+

β = (Ω2δ \Ωβ )
⋂

Ω2δ−β = Ω2δ−β \Ωβ .

So d(x) → 0 implies β → 0. Letting d(x) → 0 and ε → 0 in (3.1), we have thus
proven that (1.7) holds.

Case 2: k is non-increasing, then l ∈ [1,+∞) .
In order to prove Theorem 1.1, in this case, we define φ1(t) as

f
(
φ1(t)

)
t p = φ p−1

1 (t). (3.2)

It can be easily seen that φ1(K(t)) = φ(t) . Diminish δ > 0, such that

(1) d(x) ∈C2(Ω2δ ), and |∇d(x)| = 1 in Ω2δ ;

(2) k(x) is non-decreasing on (0,2δ ) ;
(3) (c0− ε)kp

(
d(x)

)
< b(x) < (c0 + ε)kp

(
d(x)

)
for all x ∈ Ω2δ with β ∈ (0,δ ) being

arbitrary.
Define u±β (x) = ξ±φ1

(
K(d(x)

)
+K(β )), x ∈ Ω±

β , here

ξ± =
[ pp−1(p−1)(p+ l− pl + pρ)

(c0±2ε)(p−ρ −1)p

] 1
ρ−p+1 .

A simple calculation yields

∇u±β (x) = ξ±φ
′
1

(
K(d(x))±K(β )

)
k
(
d(x)

)
∇d(x),

and

div(|∇u±β |p−2∇u±β )(x)

= (ξ±)p−1[(p−1)|φ ′
1

(
K(d(x))±K(β )

)|p−2

×φ
′′
1

(
K(d(x))±K(β )

)|k(d(x))|p|∇d(x)|p

+(p−1)|φ ′
1

(
K(d(x))±K(β )

)|p−2

×φ
′
1

(
K(d(x))±K(β )

)|k(d(x))|p−2)k
′
(d(x))|∇d(x)|p
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+ |φ ′
1

(
K(d(x))±K(β )

)|p−2φ
′
1

(
K(d(x))±K(β )

)|k(d(x))|p−2k
(
d(x)

)�pd(x)].

This implies that

Δpu
+
β ±|∇u+

β |q(p−1)−b(x) f (u+
β )

� kp(d(x)
)
f (u+

β )
[
B+

1

(
K(d(x))+K(β )

)
+B+

2

(
K(d(x))+K(β )

)
+B+

3

(
K(d(x))+K(β )

)
Δpd(x)

±B+
4

(
K(d(x))+K(β )

)− (c0 + ε)
]
,

Δpu
−
β ±|∇u−β |q(p−1)−b(x) f (u−β )

� kp(d(x)
)
f (u−β )

[
B−

1

(
K(d(x))−K(β )

)
+B−

2

(
K(d(x))−K(β )

)
+B−

3

(
K(d(x))−K(β )

)
Δpd(x)

±B−
4

(
K(d(x))−K(β )

)− (c0− ε)
]

where we set

B±
1 (t) =

(p−1)(ξ±)p−1|φ ′
1(t)|p−2φ ′′

1 (t)
f
(
ξ±φ1(t)

) ;

B±
2 (t) =

(p−1)(ξ±)p−1|φ ′
1(t)|p−2φ ′

(t)k
′(

d(x)
)

k2
(
d(x)

)
f
(
ξ±φ1(t)

) ;

B±
3 (t) =

(ξ±)p−1|φ ′
1(t)|p−2φ ′

1(t)
k
(
d(x)

)
f
(
ξ±φ1(t)

) ;

B±
4 (t) =

(
ξ±)q(p−1)|φ ′

1(t)|q(p−1)

kp−q(p−1)
(
d(x)

)
f
(
ξ±φ1(t)

) .

It is worth pointing out that here t = K(d(x))±K(β ) , and

lim
d(x)→0

(
K(d(x))±K(β )

)
= 0, x ∈ Ω±

β .

Next, we are going to find

lim
d(x)→0

B±
i (t) (i = 1,2,3,4).

By virtue of (3.2), we have

f
′(

φ1(t)
)
φ

′
1(t)t

p + p f
(
φ1(t)

)
t p−1 = (p−1)φ p−2

1 (t)φ
′
1(t).

Thus, taking into account (3.2) and f ∈ RVρ , we obtain

ρ lim
t→0

tφ ′
1(t)

φ1(t)
+ p = (p−1) lim

t→0

tφ ′
1(t)

φ1(t)
.
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Then

lim
t→0

tφ ′
1(t)

φ1(t)
=

p
p−ρ −1

.

Similar arguments of the proof of φ show that

lim
t→0

|φ ′
1(t)|p−2φ ′′

1 (t)t p

φ p−1
1 (t)

=
pp−1(ρ +1)
(ρ − p+1)p .

So,

lim
d(x)→0

B±
1 (t) = lim

d(x)→0
(p−1)(ξ±)p−1 f

(
φ1(t)

)
f
(
ξ±φ1(t)

) |φ
′
1(t)|p−2φ ′′

1 (t)t p

φ p−1
1 (t)

=
(p−1)pp−1(ρ + l)

(ξ±)ρ+1−p(ρ − p+1)p ;

lim
d(x)→0

B±
2 (t) = lim

t→0
(p−1)(ξ±)p−1 f

(
φ1(t)

)
f
(
ξ±φ1(t)

)[ tφ ′
1(t)

(φ1(t))p−1

]p−1

× d(x)k
′(

d(x)
)

k
(
d(x)

) t

d(x)k
(
d(x)

)
=

(1− l)(p−1)
(ξ±)ρ+1−p

( p
p−1−ρ

)p−1
. (3.3)

In obtaining (3.3), we have used t = K
(
d(x)

)±K(β ) and

lim
d(x)→0

t

d(x)k
(
d(x)

) = lim
d(x)→0

K
(
d(x)

)±K(β )
d(x)k

(
d(x)

) = l

A simple calculation yields

lim
d(x)→0

B±
3 (t) = lim

d(x)→0
B±

4 (t) = 0.

We conclude that

lim
t→0

[
B+

1 (t)+B+
2 (t)+B+

3 (t)Δpd(x)±B+
4 (t)− (c0 + ε)

]
= ε

lim
t→0

[
B−

1 (t)+B−
2 (t)+B−

3 (t)Δpd(x)±B−
4 (t)− (c0− ε)

]
= −ε

Similarly to the proof of Case 1, we can obtain (1.7) holds.

Proof of (2): Case 1: k is non-decreasing, then l ∈ (0,1].
Diminish δ > 0 such that

(1) d(x) ∈C2(Ω2δ ), and |∇d(x)| = 1 in Ω2δ ;

(2) k(x) is non-decreasing on (0,2δ ) ;
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(3) cqkq(p−1)(d(x)−β
)

< b(x) < cqkq(p−1)(d(x)+β
)

for all x ∈ Ω2δ with β ∈ (0,δ )
being arbitrary.

Set u±β (x) = ξ±ϕ
(
d(x)±β

)
,x ∈ Ω±

β ,

ξ± =
[ 1
cq± ε

q(p−1)
ρ −q(p−1)

] 1
ρ−q(p−1) ,

where ϕ appears in (1.11), therefore,

∇u±β = ξ±ϕ
′(

d(x)±β
)
∇d(x),

and

div(|∇u±β |p−2∇u±β ) = (ξ±)p−1[(p−1)|ϕ ′(
d(x)±β

)|p−2ϕ
′′(

d(x)±β
)|∇d(x)|p

+ |ϕ ′(
d(x)±β

)|p−2ϕ
′(

d(x)±β
)
Δpd(x)].

Thus

Δpu
+
β + |∇u+

β |q(p−1)−b(x) f (u+
β )

� kq(p−1)(d(x)+ β
)
f (u+

β )
[
C+

1

(
d(x)+ β

)

+C+
2

(
d(x)+ β

)
Δpd(x)+C+

3

(
d(x)+ β

)− cq

]
,

Δpu
−
β + |∇u−β |q(p−1)−b(x) f (u−β )

� kq(p−1)(d(x)−β
)
f (u−β )

[
C−

1

(
d(x)−β

)

+C−
2

(
d(x)−β

)
Δpd(x)+C−

3

(
d(x)−β

)− cq

]
,

where we set:

C±
1 (t) =

(p−1)(ξ±)p−1|ϕ ′
(t)|p−2ϕ ′′

(t)
kq(p−1)(t) f

(
ξ±ϕ(t)

) ,

C±
2 (t) =

(ξ±)p−1|ϕ ′
(t)|p−2ϕ ′

(t)
kq(p−1)(t) f

(
ξ±ϕ(t)

) , C±
3 (t) =

(ξ±)q(p−1)|ϕ ′
(t)|q(p−1)

kq(p−1)(t) f
(
ξ±ϕ(t)

) .

From Lemma 2, and direct computation shows that:

lim
t→0

C±
1 (t) = 0; lim

t→0
C±

2 (t) = lim
t→0

ϕ ′
(t)

ϕ ′′(t)
C±

1 (t) = 0;

and

lim
t→0

C±
3 (t) = lim

t→0
(ξ±)q(p−1)

[ tϕ ′
(t)

ϕ(t)

]q(p−1)[K(t)
tk(t)

]q(p−1) f
(
ϕ(t)

)
f
(
ξ±ϕ(t)

)
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=
1

(ξ±)ρ −q(p−1)

[ q(p−1)
ρ −q(p−1)

]q(p−1)
.

This yields
lim
t→0

[
C+

1 (t)+C+
2 (t)Δpd(x)+C+

3 (t)− cq
]
= ε

lim
t→0

[
C−

1 (t)+C−
2 (t)Δpd(x)+C−

3 (t)− cq
]
= −ε

Similar arguments of the proof of (1) show that (1.10) holds.

Case 2: k is non-increasing. Then l ∈ [1,+∞) .
Diminish δ > 0, such that

(1) d(x) ∈C2(Ω2δ ), and |∇d(x)| = 1 in Ω2δ ;

(2) k(x) is non-decreasing on (0,2δ ) ;
(3) (cq − ε)kq(p−1)

(
d(x)

)
< b(x) < (cq + ε)kq(p−1)

(
d(x)

)
for all x ∈ Ω2δ with β ∈

(0,δ ) being arbitrary.
Define u±β (x) = ξ±ϕ1

(
K(d(x))±K(β )

)
, x ∈ Ω±

β , here

ξ± =
[ 1
cq±2ε

q(p−1)
ρ −q(p−1)

] 1
ρ−q(p−1)

where ϕ1(t) is given by as f
(
ϕ1(t)

)
tq(p−1) = ϕ p−1

1 (t) .
Since the argument follows the same ideas as for case 2 of (1), we omit the details.
Proof of (3). The proof of (3) is a slight variation of that of (1), therefore it will

not given. �
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