EXISTENCE OF POSITIVE SOLUTIONS FOR A QUASILINEAR ELLIPTIC SYSTEM OF \(p \)-KIRCHHOFF TYPE

QIN LI AND ZUODONG YANG

(*) Communicated by Chun-Lei Tang

Abstract. In this paper, we consider the existence of positive solutions to the following \(p \)-Kirchhoff-type system

\[
\begin{align*}
- M \left(\int_{\Omega} |\nabla u|^p \, dx \right) \Delta_p u &= g(x) |u|^{q-2} u + \frac{\alpha}{\alpha + \beta} |u|^{\alpha-2} |v|^\beta, \quad x \in \Omega, \\
- M \left(\int_{\Omega} |\nabla v|^p \, dx \right) \Delta_p v &= h(x) |v|^{q-2} v + \frac{\beta}{\alpha + \beta} |u|^{\alpha} |v|^{\beta-2} v, \quad x \in \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \), \(M(s) = a + bs^k \), \(\Delta_p u = \text{div}(\nabla u |\nabla u|^{p-2}) \) is the \(p \)-Laplacian operator, \(\alpha > 1, \beta > 1 \), and \(1 < p < q < \alpha + \beta < p^* = \frac{Np}{N-p} \).

1. Introduction

In this paper, we deal with the nonlocal elliptic system of the \(p \)-Kirchhoff type given by

\[
\begin{align*}
- M (\int_{\Omega} |\nabla u|^p \, dx) \Delta_p u &= g(x) |u|^{q-2} u + \frac{\alpha}{\alpha + \beta} |u|^{\alpha-2} |v|^\beta, \quad x \in \Omega, \\
- M (\int_{\Omega} |\nabla v|^p \, dx) \Delta_p v &= h(x) |v|^{q-2} v + \frac{\beta}{\alpha + \beta} |u|^{\alpha} |v|^{\beta-2} v, \quad x \in \Omega, \\
u &= v = 0, \quad x \in \partial \Omega,
\end{align*}
\]

where \(\Delta_p u = \text{div}(\nabla u |\nabla u|^{p-2}) \) is the \(p \)-Laplacian operator, \(\alpha > 1, \beta > 1 \) and \(1 < p < q < \alpha + \beta < p^* = \frac{Np}{N-p} \).

In recent years, there have been many papers concerned with the existence of positive solutions for Kirchhoff equation

\[
\begin{align*}
- M (\int_{\Omega} |\nabla u|^2 \, dx) \Delta u &= f(x, u) \quad x \in \Omega, \\
u &= 0 \quad x \in \partial \Omega,
\end{align*}
\]

which is related to the stationary analogue of the Kirchhoff equation

\[
u_{tt} - M (\int_{\Omega} |\nabla u|^2 \, dx) \Delta u = f(x, t)
\]

Keywords and phrases: existence, quasilinear elliptic system, \(p \)-Kirchhoff type.

This research is supported by the National Natural Science Foundation of China (No.11171092); the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.08KJB110005).
where $M(s) = a + bs$, $a > 0$, $b > 0$. It was proposed by Kirchhoff [2] as an extension of the classical D’Alembert’s wave equation for free vibrations of elastic strings.

Some interesting studies of problem (1.2) by variational methods can be found in [1,3,6,7,9,10]. As for quasilinear problems, [3] studied the following equation of the classical D’Alembert’s wave equation for free vibrations of elastic strings.

\[
\begin{cases}
-M \left(\int_\Omega |\nabla u|^p dx \right) \Delta_p u = f(x,u) & x \in \Omega, \\
u = 0 & x \in \partial \Omega,
\end{cases}
\]

(1.3)

where $M(s) = a + bs^k$, $f(x,u) = \lambda h_1(x)|u|^{q-2}u + h_2(x)|u|^{r-2}u + h_3(x)$, $1 < q < p < r < p^*$, $0 \leq k < \frac{p}{N-p}$, $p(k+1) < r$. The authors proved (1.3) has at least two nontrivial weak solutions when $\|h_3\|_\mu < m_0$.

In [4], the authors established the existence of a weak solution for the following system

\[
\begin{cases}
-\left[M_1 \left(\frac{1}{\Omega} |\nabla u|^p dx \right)^{p-1} \Delta_p u \right] = f(u,v) + \rho_1(x) & x \in \Omega, \\
d_{\frac{\partial u}{\partial \eta}} = \frac{\partial v}{\partial \eta} = 0 & x \in \partial \Omega,
\end{cases}
\]

(1.4)

where $M_1(t), M_2(t) \geq m_0 > 0$.

Motivated by the results of the above cited papers, we shall attempt to treat problem (1.1) and extend the results of the literature [4].

In this paper, we make the following assumptions:

(A1) $M(s) = a + bs^k$, $a, b > 0$, $k > 0$;

(A2) $1 < p < q < \alpha + \beta < p^*$, $p(k+1) < q$;

(A3) $h(x), H(x) \in L^{\delta+\gamma}(\Omega)$ are nonnegative with $\delta = \frac{p^*}{p^*-q}$ and γ is a small positive number.

Our main result is given as follows.

Theorem 1. Under assumptions (A1) – (A3), problem (1.1) admits at least one positive solution $(u_0, v_0) \in W^{1,p}_0(\Omega) \times W^{1,p}_0(\Omega)$.

2. Preliminaries

Let $X = W^{1,p}_0(\Omega) \times W^{1,p}_0(\Omega)$ be the Sobolev space endowed with the norm

$$
\|(u,v)\| = \left(\int_\Omega (|\nabla u|^p + |\nabla v|^p) dx \right)^{\frac{1}{p}}
$$

and $|u|_r$ denotes the norm in $L^r(\Omega)$, i.e.

$$
|u|_r = \left(\int_\Omega |u|^r dx \right)^{\frac{1}{r}}
$$

We shall look for solutions of (1.1) by finding critical points of the energy functional $I : X \rightarrow \mathbb{R}$ given by

...
\[
I(u,v) = \frac{1}{p} \hat{M}(\int_{\Omega} |\nabla u|^p \, dx) + \frac{1}{p} \hat{M}(\int_{\Omega} |\nabla v|^p \, dx) - \frac{1}{\alpha + \beta} \int_{\Omega} |u|^\alpha |v|^\beta \, dx - \frac{1}{q} \int_{\Omega} (g(x)|u|^q + h(x)|v|^q) \, dx,
\]
where \(\hat{M}(t) = \int_0^t M(s) \, ds = at + \frac{b}{k+1} t^{k+1} \). It is well known that the functional \(I(u,v) \in C^1(X, \mathbb{R}) \). For any \((\varphi_1, \varphi_2) \in X\), there holds
\[
\langle I'(u,v), (\varphi_1, \varphi_2) \rangle = M\left(\int_{\Omega} |\nabla u|^p \, dx\right) \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi_1 \, dx
+ M\left(\int_{\Omega} |\nabla v|^p \, dx\right) \int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla \varphi_2 \, dx
- \int_{\Omega} (g(x)|u|^{q-2} u \varphi_1 + h(x)|v|^{q-2} v \varphi_2) \, dx
- \frac{\alpha}{\alpha + \beta} \int_{\Omega} |u|^{\alpha-2} u |v|^\beta \varphi_1 \, dx
- \frac{\beta}{\alpha + \beta} \int_{\Omega} |u|^{\alpha} |v|^{\beta-2} v \varphi_2 \, dx.
\]
Consider the Nehari manifold
\[
N = \{(u,v) \in X \setminus \{(0,0)\} | \langle I'(u,v), (u,v) \rangle = 0\}.
\]
Thus, \((u,v) \in N\) if and only if
\[
M\left(\int_{\Omega} |\nabla u|^p \, dx\right) \int_{\Omega} |\nabla u|^p \, dx + M\left(\int_{\Omega} |\nabla v|^p \, dx\right) \int_{\Omega} |\nabla v|^p \, dx
- \int_{\Omega} (g(x)|u|^q + h(x)|v|^q) \, dx - \int_{\Omega} |u|^{\alpha} |v|^{\beta} \, dx = 0.
\]
Note that the Nehari manifold \(N\) contains all nontrivial weak solutions of \((1.1)\).
Denote
\[
S_{\alpha,\beta} = \inf_{u,v \in W_0^{1,p}(\Omega) \setminus \{0\}} \frac{||I(u,v)||^p}{(\int_{\Omega} |u|^{\alpha} |v|^{\beta} \, dx)^{\frac{p}{\alpha+\beta}}},
\]
\(S\) is the best Sobolev constant defined by
\[
S = \inf_{u \in W_0^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^p \, dx}{(\int_{\Omega} |u|^p \, dx)^{\frac{p}{p}}} > 0.
\]
Note that \(I\) is not bounded from below on \(X\). But from the following lemma, we have that \(I\) is bounded from below on the Nehari manifold \(N\).

Lemma 1. The energy functional \(I\) is bounded from below on \(N\).

Proof. For any \((u,v) \in N\), we have
\[
I(u,v) = \frac{a}{p} ||(u,v)||^p + \frac{b}{p(k+1)} \left(\int_{\Omega} |\nabla u|^p \, dx \right)^{k+1} + \left(\int_{\Omega} |\nabla v|^p \, dx \right)^{k+1}
\]
Thus, \(I \) is bounded from below on \(N \). □

Then, we define

\[
\theta = \inf_{(u,v) \in N} I(u,v).
\]

Lemma 2. (i) There are \(\rho, r_0 > 0 \) such that \(I(u,v) \geq r_0 \) for \(\| (u,v) \| = \rho \).

(ii) There exists \((\overline{\pi}, \overline{\tau}) \in X \setminus \{(0,0)\} \) such that \(\| (\overline{\pi}, \overline{\tau}) \| > \rho \) and \(I(\overline{\pi}, \overline{\tau}) < 0 \).

Proof. (i) By Hölder’s inequality \((q_1 = \frac{p^*}{p^*-q}, q_2 = \frac{p^*}{q}, \frac{1}{q_1} + \frac{1}{q_2} = 1) \) and the Sobolev embedding theorem, we have

\[
I(u,v) = \frac{a}{p} \| (u,v) \|^p + \frac{b}{p(k+1)} \left(\int_{\Omega} |\nabla u|^p dx \right)^{k+1} + \frac{1}{q} \int_{\Omega} \left(g(x) |u|^q + h(x) |v|^q \right) dx
\]

\[
\geq \frac{a}{p} \| (u,v) \|^p + \frac{b}{2kp(k+1)} \left(\int_{\Omega} |\nabla u|^p dx + \int_{\Omega} |\nabla v|^p dx \right)^{k+1}
\]

\[
- \frac{1}{\alpha + \beta} \left(\int_{\Omega} |u|^\alpha |v|^\beta dx \right) - \frac{1}{q} \int_{\Omega} \left(g(x) |u|^q + h(x) |v|^q \right) dx
\]

\[
\geq \frac{a}{p} \| (u,v) \|^p + \frac{b}{2kp(k+1)} \| (u,v) \|^p(k+1) - \frac{1}{\alpha + \beta} S \frac{\alpha + \beta}{p^*} \| (u,v) \|^{\alpha + \beta}
\]

\[
- \frac{1}{q} \max \{ \| g \|_\infty, \| h \|_\infty \} |\Omega| \frac{p^*}{p^* - q} S^{-\frac{q}{p}} \| (u,v) \|^q.
\]

Since \(p < p(k+1) < q < \alpha + \beta \), there are \(\rho, r_0 > 0 \) sufficiently small such that \(I(u,v) \geq r_0 \) for \(\| (u,v) \| = \rho \).

(ii) Let \((u,v) \in X \setminus \{(0,0)\} \), we have

\[
I(tu, tv) = \frac{at^p}{p} \| (u,v) \|^p + \frac{bt^{p(k+1)}}{p(k+1)} \left(\int_{\Omega} |\nabla u|^p dx \right)^{k+1} + \frac{t^q}{q} \int_{\Omega} \left(g(x) |u|^q + h(x) |v|^q \right) dx
\]

\[
\leq \frac{at^p}{p} \| (u,v) \|^p + \frac{bt^{p(k+1)}}{p(k+1)} \| (u,v) \|^{p(k+1)} - \frac{t^{\alpha + \beta}}{\alpha + \beta} \int_{\Omega} |u|^\alpha |v|^\beta dx
\]
\[
- \frac{t^q}{q} \int_{\Omega} (g(x)|u|^q + h(x)|v|^q)dx
\]

Since \(p < p(k + 1) < q < \alpha + \beta \), we have \(I(tu, tv) \rightarrow -\infty \) as \(t \rightarrow +\infty \). Then, for fixed \((u, v) \in X \setminus \{(0, 0)\}\), there exists \(T > 0 \) such that \(||(tu, tv)|| > \rho \) and \(I(tu, tv) < 0 \). Let \((\tilde{u}, \tilde{v}) = (tu, tv)\), then we finish the proof. \(\square \)

Lemma 3. There exists a \((PS)_\theta\)-sequence \(\{(u_n, v_n)\} \subset N\) for \(I\).

Proof. By Lemma 2, \(I\) satisfies the conditions of the Mountain Pass Lemma. Thus, by applying Ekeland’s variational principle and using the same argument as in Cao and Zhou [8] or Tarantello [5], we can easily find a \((PS)_\theta\)-sequence \(\{(u_n, v_n)\} \subset N\) for the functional \(I\). \(\square \)

Next, we will show that \(I\) satisfies the \((PS)_\theta\)-condition in \(X\).

Lemma 4. Let \(\{(u_n, v_n)\} \subset X\) be an arbitrary \((PS)_\theta\)-sequence for \(I\). That is, \(I(u_n, v_n) \rightarrow \theta\) and \(I'(u_n, v_n) \rightarrow 0\) in \(X^{-1}\). Then \(\{(u_n, v_n)\}\) has a convergent subsequence.

Proof. First, we prove that \(\{(u_n, v_n)\}\) is bounded in \(X\). In fact, we have

\[
\theta + c_n + \frac{d_n ||(u_n, v_n)||}{q} \geq I(u_n, v_n) - \frac{1}{q} \langle I'(u_n, v_n), (u_n, v_n) \rangle
\]

\[
= a \frac{||(u_n, v_n)||^p}{p} + \frac{b}{p(k + 1)} \left[\left(\int_{\Omega} |\nabla u_n|^p dx \right)^{k+1} + \left(\int_{\Omega} |\nabla v_n|^p dx \right)^{k+1} \right]
\]

\[
- \frac{1}{\alpha + \beta} \int_{\Omega} |u_n|^\alpha |v_n|^\beta dx - \frac{1}{q} \int_{\Omega} (g(x)|u_n|^q + h(x)|v_n|^q)dx
\]

\[
- \frac{a}{q} ||(u_n, v_n)||^p - \frac{b}{q} \left[\left(\int_{\Omega} |\nabla u_n|^p dx \right)^{k+1} + \left(\int_{\Omega} |\nabla v_n|^p dx \right)^{k+1} \right]
\]

\[
+ \frac{a}{q} \int_{\Omega} |u_n|^\alpha |v_n|^\beta dx + \frac{1}{q} \int_{\Omega} (g(x)|u_n|^q + h(x)|v_n|^q)dx
\]

\[
= \left(\frac{a}{p} - \frac{a}{q} \right) ||(u_n, v_n)||^p + \left(\frac{b}{p(k + 1)} - \frac{b}{q} \right) \left[\left(\int_{\Omega} |\nabla u_n|^p dx \right)^{k+1} + \left(\int_{\Omega} |\nabla v_n|^p dx \right)^{k+1} \right]
\]

\[
+ \left[\frac{1}{q} - \frac{1}{\alpha + \beta} \right] \int_{\Omega} |u_n|^\alpha |v_n|^\beta dx
\]

\[
\geq \frac{aq - ap}{pq} ||(u_n, v_n)||^p
\]

where \(c_n = o_n(1)\), \(d_n = o_n(1)\) as \(n \rightarrow \infty\). From where we get \(\{(u_n, v_n)\}\) is bounded in \(X\). Then, there exist a subsequence (still denoted by \(\{(u_n, v_n)\}\)) and \((u, v) \in X\) such that

\[
u_n \rightharpoonup u, v_n \rightharpoonup v \quad \text{weakly in } W^{1,p}_0(\Omega);
\]
\[u_n \to u, v_n \to v \quad \text{a.e in } \Omega; \]
\[u_n \to u, v_n \to v \quad \text{strongly in } L^s(\Omega), \ 1 \leq s < p^* \]

and \(l'(u, v) = 0 \) in \(X^{-1} \).

Next, we prove that
\[
\int_\Omega g(x)|u_n|^q - 2 u_n(u_n - u)dx \to 0, \quad n \to \infty \tag{2.1}
\]
\[
\int_\Omega h(x)|v_n|^q - 2 v_n(v_n - v)dx \to 0, \quad n \to \infty \tag{2.2}
\]
and
\[
\int_\Omega |u_n|^p - 2 u_n |u_n|^p_t dx \to 0, \quad n \to \infty \tag{2.3}
\]
\[
\int_\Omega |v_n|^p - 2 v_n |v_n|^p_t dx \to 0, \quad n \to \infty \tag{2.4}
\]

By Hölder’s Inequality, we have
\[
\int_\Omega g(x)|u_n|^q - 1 |u_n - u| dx \leq C |g|_{\gamma + \delta} |u_n|^q - 1 |u_n - u| \mu
\]
where \(\frac{1}{\gamma + \delta} + \frac{q - 1}{p^*} + \frac{1}{p} = 1 \). It is easy to show that \(\mu < p^* \) and so \(|u_n - u|_\mu \to 0 \) as \(n \to \infty \).

Since \(\{(u_n, v_n)\} \subset X \) is bounded, there exists \(M_1 > 0 \) such that
\[
|u_n|^q - 1 \leq S^{-q - 1/p} \left(\int_\Omega |\nabla u_n|^p dx \right)^{q - 1/p} \leq S^{-q - 1/p} \|(u_n, v_n)\|^{q - 1} \leq M_1
\]

Then, we can get (2.1). (2.2) can be proved similarly.

By Hölder’s Inequality again, we get
\[
\int_\Omega |u_n|^{\alpha - 1} |u_n - u| |v_n|^\beta dx \leq |u_n|^{\alpha - 1} |v_n|^{\beta} |u_n - u| \eta
\]
here \(\frac{\alpha - 1}{p^*} + \frac{\beta}{p} + \frac{1}{\eta} = 1 \), then \(\eta < p^* \) and \(|u_n - u|_\eta \to 0 \) as \(n \to \infty \). Similarly, there exists \(M_2, M_3 > 0 \) such that \(|u_n|^{\alpha - 1} \leq M_2, \ |v_n|^{\beta} \leq M_3 \) Then,
\[
\int_\Omega |u_n|^{\alpha - 2} u_n(u_n - u) |v_n|^\beta dx \to 0
\]

Similarly,
\[
\int_\Omega |v_n|^{\beta - 2} v_n(v_n - v) |u_n|^\alpha dx \to 0
\]

Finally, we prove \(||(u_n - u, v_n - v)|| \to 0 \) in \(X \). In fact,
\[
M \left(\int_\Omega |\nabla u_n|^p dx \right) \int_\Omega |\nabla u_n|^{p - 2} \nabla u_n - |\nabla u|^{p - 2} \nabla u, \nabla u_n - \nabla u dx
\]
$$+ M \left(\int_\Omega |\nabla v_n|^p \, dx \right) \int_\Omega \langle |\nabla v_n|^{p-2} \nabla v_n - |\nabla v|^{p-2} \nabla v, \nabla v_n - \nabla v \rangle \, dx$$

$$= \langle l'(u_n, v_n), (u_n - u, v_n - v) \rangle - M \left(\int_\Omega |\nabla u_n|^p \, dx \right) \int_\Omega |\nabla u|^{p-2} \langle \nabla u, \nabla u_n - \nabla u \rangle \, dx$$

$$- M \left(\int_\Omega |\nabla v_n|^p \, dx \right) \int_\Omega |\nabla v|^{p-2} \langle \nabla v, \nabla v_n - \nabla v \rangle \, dx$$

$$+ \frac{\alpha}{\alpha + \beta} \int_\Omega |u_n|^\alpha (u_n - u) |v_n|^\beta \, dx$$

$$+ \frac{\beta}{\alpha + \beta} \int_\Omega |u_n|^\alpha |v_n|^\beta (v_n - v) \, dx$$

$$+ \int_\Omega \left[g(x) |u_n|^{q-2} u_n (u_n - u) + h(x) |v_n|^{q-2} v_n (v_n - v) \right] \, dx.$$

Since $u_n \rightharpoonup u$, $v_n \rightharpoonup v$, we have

$$\int_\Omega |\nabla u|^{p-2} \langle \nabla u, \nabla u_n - \nabla u \rangle \, dx \to 0, \quad n \to \infty$$

$$\int_\Omega |\nabla v|^{p-2} \langle \nabla v, \nabla v_n - \nabla v \rangle \, dx \to 0, \quad n \to \infty.$$

Thus,

$$M \left(\int_\Omega |\nabla u_n|^p \, dx \right) \int_\Omega \langle |\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u, \nabla u_n - \nabla u \rangle \, dx$$

$$+ M \left(\int_\Omega |\nabla v_n|^p \, dx \right) \int_\Omega \langle |\nabla v_n|^{p-2} \nabla v_n - |\nabla v|^{p-2} \nabla v, \nabla v_n - \nabla v \rangle \, dx \to 0.$$

Using the standard inequality

$$\langle |x|^{p-2} x - |y|^{p-2} y, x - y \rangle \geq C_p |x - y|^p, \quad p \geq 2$$

or

$$\langle |x|^{p-2} x - |y|^{p-2} y, x - y \rangle \geq \frac{C_p |x - y|^2}{(|x| + |y|)^{2-p}}, \quad 2 > p > 1$$

We obtain

$$M \left(\int_\Omega |\nabla u_n|^p \, dx \right) \int_\Omega \langle |\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u, \nabla u_n - \nabla u \rangle \, dx$$

$$\geq ac_p \int_\Omega |\nabla u_n - \nabla u|^p \, dx$$

and

$$M \left(\int_\Omega |\nabla v_n|^p \, dx \right) \int_\Omega \langle |\nabla v_n|^{p-2} \nabla v_n - |\nabla v|^{p-2} \nabla v, \nabla v_n - \nabla v \rangle \, dx$$

$$\geq ac_p \int_\Omega |\nabla v_n - \nabla v|^p \, dx$$
which implies that
\[\int_\Omega (|\nabla u_n - \nabla u|^p + |\nabla v_n - \nabla v|^p)dx \to 0, \quad n \to \infty \]
That is, \(|(u_n - u, v_n - v)|| \to 0 \) in \(X \). Then, the proof is finished. □

3. Proof of Theorem 1

By Lemma 3, there is a minimizing sequence \(\{(u_n, v_n)\} \subset N \) for \(I \) satisfying
\[I(u_n, v_n) = \theta + o_n(1) \quad \text{and} \quad I'(u_n, v_n) = o_n(1) \quad \text{in} \quad X^{-1} \]. By Lemma 4, there exist a subsequence (still denoted by \(\{(u_n, v_n)\} \)) and \((u_0, v_0) \in X \) such that \((u_n, v_n) \to (u_0, v_0) \) in \(X \).

It is easy to show that \((u_0, v_0)\) is a nontrivial solution of (1.1) and \(I(u_0, v_0) = \theta \). Using the fact that \(I(u_0, v_0) = I(|u_0|, |v_0|) \) and \((|u_0|, |v_0|) \in N \), we may assume that \(u_0 \geq 0, \quad v_0 \geq 0 \). By the maximum principle, we can get that \(u_0 > 0, \quad v_0 > 0 \) in \(\Omega \). Then, (1.1) admits a positive solution.

REFERENCES