
D ifferential
Equations

& Applications

Volume 6, Number 2 (2014), 287–294 doi:10.7153/dea-06-15

ROBUSTNESS OF INSTABILITY OF TWO–LAYER
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Abstract. In this article, we investigate the instability of two-layer quasi-geostrophic equations,
which is a prototypical geophysical fluid model. It is proved that any equilibrium which is
sufficiently close to an unstable equilibrium is also unstable.

1. Introduction

One of the simplest useful models in geophysical fluid dynamics that takes into
consideration rotation and stratification is the two layer model for quasi-geostrophic
flows without external forces (cf.[5] and [13]):

∂Pi

∂ t
+ J(Φi,Pi) = 0, (1.1)

Pi = ΔΦi +(−1)i+1Fi(Φ2 −Φ1)+ βx2, i = 1,2, (1.2)

where Φ1 and Φ2 are stream functions for the upper and lower layer of fluids respec-
tively, J( f ,g) = ∇⊥ f ·∇g is the Jacobi operator, where ∇⊥ is a normal vector of ∇ .
And

Fi =
f 2
0 L2

g(ρ2−ρ1
ρ0

)Di
, i = 1,2,

where f0 and β are the Coriolis parameters, L is a typical horizontal length scale, g is
the gravity acceleration, Di is the depth of the i-th layer, ρ0 is the characteristic fluid
density, the densities ρ1 and ρ2 are different constants.

The domain Ω under consideration is a compact 2D Riemannian manifold with
C2 boundary. And the boundary condition are the usual ones of no normal flow in each
layer, i.e.

∇⊥Φi ·�n|∂Ω = Ui ·�n|∂Ω = 0, i = 1,2, (1.3)

where Ui = ∇⊥Φi is the velocity in i-th layer (cf. [13]). For instance, the channel
geometry R/lZ× [0,1] , where all unknowns are periodic in the zonal (longitude x1 )
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direction with periodic l and no penetration/ no flow boundary condition in the merid-
ional (x2 ) direction, belongs to that kind of domain. Such a set of boundary conditions
is more appealing than the usual doubly periodic boundary conditions. Physically the
no-penetration in the latitudinal direction is closer to physics for flows on mid-latitude
beta planes than the periodic boundary conditions, and the channel geometry allows us
to derive conservation in time of the maximum modulus of the potential vorticity in the
undamped/unforced environment (cf. [9]).

The stability and instability of quasi-geostrophic equations have been studied by
many authors. In [10] and [11], Mu et al. investigated and derived the nonlinear sta-
bility criteria of quasi-geostrophic equations, which is analogous to Arnol’d’s second
theorem. The results establish rigorous upper bounds on both the energy and potential
enstrophy of finite-amplitude disturbance to steady basic states, which are expressed in
terms of the initial disturbance fields. These bounds hold uniformly in time, and tend to
zero uniformly as the initial disturbance amplitude decreases to zero. In [7], Lin proved
one-layer quasi-geostrophic flow is nonlinearly unstable if the linearized equation has
an exponentially growing solution.

In this paper, we devote to the investigation of instability by operator theory. In
general, it is a complicated but important job to deal with the linear instability. Only for
some special cases, we can use normal modes or variational methods to get the unstable
eigenvalue. This short paper demonstrates that an equilibrium sufficiently close to an
unstable equilibrium is also unstable, which is indirect to partially do with the linear
instability problem.

This paper is divided into four sections. After this introduction, which consti-
tutes Section 1, we give some notations in Section 2. In Section 3, some properties of
operators are stated. In the last section, we give the proof of the main result.

2. Preliminaries

In this section, we state some notations.
Initially, let us follow [2] and [4] to derive the definition of the classical Lyapunov

exponent in Ω . Let X0(x,t) be the flow induced by the steady velocity field u0 , that is

∂X0

∂ t
= u0(X0), X0(x,0) = x, (2.1)

and ∂X0
∂x denotes the 2×2 matrix (∂Xi

0/∂x j) with

∣∣∣∂X0

∂x

∣∣∣ =
(

∑
i, j=1,2

∣∣∣∂Xi
0

∂x j

∣∣∣2)
1
2
. (2.2)

Thus, the classical Lyapunov exponent is defined by

σ = sup
x∈Ω

lim
t→∞

1
t

ln
∣∣∣∂X0

∂x

∣∣∣(x,t) = lim
t→∞

1
t

sup
x∈Ω

ln
∣∣∣∂X0

∂x

∣∣∣(x,t). (2.3)
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We consider the equilibrium of (1.1) and (1.2), (Ψi(x),Qi(x)) , independent on t ,
where

Qi = ΔΨi +(−1)i+1Fi(Ψ2 −Ψ1)+ βx2, ui = ∇⊥Ψi. (2.4)

A finite-amplitude disturbance (ψi,qi) to the steady basic state is defined according to

Φi = Ψi + ψi, Pi = Qi +qi, (2.5)

with ⎧⎨
⎩

q1 = Δψ1 +F1(ψ2−ψ1),
q2 = Δψ2−F2(ψ2−ψ1),
ψ1|∂Ω = ψ2|∂Ω = 0.

(2.6)

Here, for purposes of simplification, we only consider the case that the boundary values
are zero, since by (1.3), ψi are some constants on the boundary of Ω and the nonzero
boundary problem can be transformed into the zero boundary problem with a C2 func-
tion (cf. [3]). According to the L2 theory of elliptic equations (cf. [1] and [3]), the
operator S can be defined by

S

(
q1

q2

)
=

(
ψ1

ψ2

)
. (2.7)

Linearizing the system (1.1) and (1.2) at the equilibrium (Ψi,Qi) , we get

∂
∂ t

(
q1

q2

)
= −

(
u1 ·∇ 0
0 u2 ·∇

)(
q1

q2

)
−

(
∇Q1 ·∇⊥ 0
0 ∇Q2 ·∇⊥

)
S

(
q1

q2

)
. (2.8)

It is convenient to define the operator

A = −
(

u1 ·∇ 0
0 u2 ·∇

)
, K =

(
∇Q1 ·∇⊥ 0
0 ∇Q2 ·∇⊥

)
S. (2.9)

For the sake of simplification, let L = A−K , and q = (q1,q2)� .
At last, we recall the Sobolev space of vector-valued functions. The Hk norm of

any vector (u1,u2)� is defined by ‖(u1,u2)�‖Hk = (‖u1‖2
Hk + ‖u2‖2

Hk)
1
2 , for k � 0.

And we will use the same notation Hk for the norm of in the vector-value case without
any confusion.

3. Some properties of operators

In order to study the properties of operators in §2, we give the following lemma,
see [8].

LEMMA 1. For a smooth flow which is incompressible the following three condi-
tions are equivalent:

(a) a flow is volume preserving,
(b) ∇ ·u0 = 0 ,
(c) det( ∂X0

∂x ) = 1 .
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Next, we state the following lemmas about the transport PDE.

LEMMA 2. The operator eAt is an isometry on L2(Ω) and the generator A has a
purely imaginary spectrum on L2(Ω) .

Proof. Let Xi be the flows on Ω corresponding to the vector field −ui (i = 1, 2),
∇ ·ui = 0:

∂Xi

∂ t
= −ui(Xi), Xi(x,0) = x, x ∈ Ω, t ∈ R.

Thus, the group eAt is given by the following formula for fi ∈ L2(Ω)(i =1, 2),

eAt
(

f1(x)
f2(x)

)
=

(
f1(X1(x, t))
f2(X2(x, t))

)
. (3.1)

Due to Lemma 1, we can obtain

‖ fi(Xi(x,t))‖2
L2 = ‖ fi(x)‖2

L2 .

So, by spectral mapping theorems (cf. [12]), we can complete the proof.

LEMMA 3. Suppose that σ(−u1) = σ(−u2) = 0 . Then

lim
t→∞

1
t

ln‖eAt‖L (H1) = 0,

and the spectrum of its generator A on H1(Ω) can’t appear on the right half-plane .

Proof. For any f = ( f1, f2)� ∈ H1 and any t � 0, by (3.1) and Lemma 1,

‖eAtf‖2
H1 � ∑

i=1,2

∫
Ω
| fi(Xi(x,t))|2 + |∇ fi(Xi(x,t))|2

∣∣∣∂Xi

∂x

∣∣∣2dx

� ∑
i=1,2

max
{

1,sup
x∈Ω

∣∣∣∂Xi

∂x

∣∣∣2}
∫

Ω
| fi(Xi(x,t))|2 + |∇ fi(Xi(x, t))|2dx

= ∑
i=1,2

‖ fi‖2
H1 max

{
1,sup

x∈Ω

∣∣∣∂Xi

∂x

∣∣∣2}. (3.2)

By the definition of classical Lyapunov exponent (2.3) and (3.2), for all ε > 0, there
exists a T > 0 such that

‖eAt‖L (H1) � eεt , t � T.

Since ε is arbitrary, this implies lim
t→∞

1
t ln‖eAt‖L (H1) = 0, and the spectrum of eAt on

H1(Ω) is contained in the unit circle. By spectral mapping theorems, the real part of the
spectrum of its generator will be less than 0 or equal to 0. Thus, the proof is completed.
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Let λ be an eigenvalue of L in L2(Ω) with Reλ > 0, i.e. there exists a nonzero
vector q ∈ L2(Ω) such that

λq = Lq. (3.3)

After knowing the distribution of the the spectrum of the operator A, we rewrite (3.3)
in terms of the resolvent of A. We define

Mq := M(λ ,ui)q := −(λ −A)−1Kq. (3.4)

LEMMA 4. M is a compact operator from L2 to L2 , and depends analytically on
λ for Reλ > 0 .

Proof. According to elliptic regularity theory (cf. [3]) and the smoothness of Qi ,
K is a compact operator from L2 to L2 since the domain Ω is compact (cf. [1]). By
Lemma 3.2, the operator −(λ −A)−1 is a bounded linear operator from L2 to L2 . M
is the composition of the above continuous linear operators. Hence, M is a compact
operator from L2 to L2 . We rewrite −(λ −A)−1 in the integral form:

−(λ −A)−1 = −
∫ ∞

0
e−(λ−A)tdt,

which converges in the operator norm and is analytic in the half-plane Reλ > 0, where
M is also analytic.

LEMMA 5. Let ui,vi ∈ C3(Ω)(i = 1, 2) satisfy the same conditions as Lemma 3.
For ∀ε > 0 , there exists a constant C > 0 , which depends on ε , β , and ‖ui‖C3 , such
that

sup
Reλ�ε

‖M(λ ,ui)−M(λ ,vi)‖L (L2) � C‖ui− vi‖C2 . (3.5)

Proof. For q ∈ L2(Ω) ,

M(λ ,ui)q−M(λ ,vi)q
= − (λ −A(ui))−1K(ui)q+(λ −A(vi))−1K(vi)q
= − (λ −A(vi))−1(K(ui)−K(vi))q

+ (λ −A(vi))−1diag((u1− v1) ·∇,(u2− v2) ·∇)(λ −A(ui))−1K(ui)q
= I + II. (3.6)

Now, we estimate I and II . By Lemma 2,

‖I‖L2 � C(ε)‖(K(ui)−K(vi))q‖L2

= C(ε)‖(∇(Q1
1 −Q2

1) ·∇⊥ψ1,∇(Q1
2 −Q2

2) ·∇⊥ψ2)�‖L2

� C(ε)max
i=1,2

‖ui− vi‖C2‖(ψ1,ψ2)�‖H1
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� C(ε)max
i=1,2

‖ui− vi‖C2‖q‖L2 , (3.7)

where
Qj

i = ΔΨ j
i +(−1)iF(Ψ j

2−Ψ j
1)+ βx2,

and
ui = ∇⊥Ψ1

i , vi = ∇⊥Ψ2
i .

Due to Lemma 2 and Lemma 3, we get (λ −A)−1 is a bounded linear operator from
L2 to L2 and from H1 to H1 , for Reλ > 0. Thus,

‖II‖L2 � C(ε)‖diag((u1− v1) ·∇,(u2− v2) ·∇)(λ −A(ui))−1K(ui)q‖L2

� C(ε)max
i=1,2

‖ui− vi‖C0‖(λ −A(ui))−1K(ui)q‖H1

� C(ε)max
i=1,2

‖ui− vi‖C0‖K(ui)q‖H1

� C(ε)max
i=1,2

‖ui− vi‖C0(max
i=1,2

‖ui‖C3 + β )‖q‖L2 . (3.8)

This completes the proof.

4. The main result

Before the proof of main theorem, we state some propositions about the family of
compact operators, which plays an important role in the proof of our theorem. First, we
state the following proposition (cf. [6]).

PROPOSITION 1. Suppose T (z,x) is a family of compact operators analytic in
z and jointly continuous in (z,x) for each (z,x) ∈ Λ×B, where Λ is an open set in
C and B is an interval in R . If I − T (z,x) is somewhere invertible for each x , then
(I−T (z,x))−1 is meromorphic in Λ for each x . If z0 is not a pole of (I−T (z,x0))−1 ,
then (I − T (z,x))−1 is jointly continuous in (z,x) at (z0,x0) . Moreover, the poles of
(I − T (z,x))−1 depend continuously on x and can appear or disappear only at the
boundary of Λ (including ∞ ).

As a special case of the above proposition, the analytic Fredholm theorem asserts
that the set of I−T (z,x) is not invertible in a discrete subset of C and each such z is a
pole of finite multiplicity (cf. [14]).

PROPOSITION 2. Let D be an open connected subset of C . Let f : D→L (H) be
an analytic operator-valued function such that f (z) is compact for each z ∈ D. Then,
either

(a) (I− f (z))−1 exists for no z ∈ D,
or

(b) (I − f (z))−1 exists for all z ∈ D−G where G is a discrete subset of D (i.e.
a set which has no limit points in D). In this case, (I − f (z))−1 is meromorphic in D,
analytic in D−G, the residues at the poles are finite rank operators, and if z ∈ G then
f (z)ψ = ψ has a nonzero solution in H .
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We are now in a position to prove the main theorem.

THEOREM 1. Let ui,vi ∈C3(Ω)(i =1, 2) be the velocities of an steady basic state
of (1.1), (1.2) and (1.3), where σ(−ui) = σ(−vi) = 0 and max

i=1,2
‖ui − vi‖C2 � ε . If ε

is sufficiently small, then the two steady basic states have the same property of linear
instability.

Proof. First, we define the family of operators

T (λ ,s) = (1− s)M(λ ,ui)+ sM(λ ,vi) (4.1)

for Reλ > 0 and s ∈ [0,1] . By (3.3) and (3.4), λ is the eigenvalue of L if and only
if 1 is the eigenvalue of M . According to Lemma 3.4 and Proposition 4.2, the set of
such λ in the right half-plane is discrete. The operators T (λ ,s) are also compact on
L2 , analytic in λ by Lemma 3.4. Due to Lemma 3.5, T (λ ,s) satisfy the following
estimate

‖T (λ ,s)−T (λ ,0)‖L (L2) = |s|‖M(λ ,ui)−M(λ ,vi)‖L (L2) � C‖ui− vi‖C2 = δ ,

where C depends on β , ‖ui‖C3 and sufficiently small ε0 > 0. Suppose Reλ0 > 0 is a
pole of (I−T (·,0))−1 . Let ε be so small that the operator (I−T (·,0))−1 exists on the
circle Γ = {|λ −λ0| = ε} . For all s ∈ [0,1] and sufficiently small δ , (I −T (·,s))−1

also exists on the circle Γ and somewhere within the disk {|λ − λ0| < ε} . Due to
Proposition 4.1, there is a pole λ1 of (I −T (·,1))−1 within the disk {|λ −λ0| < ε} .
So, λ1 is an eigenvalue for the perturbed problem with the equilibrium vi . Hence, the
proof of the theorem completes.

REMARK 1. In [13], by normal mode, the necessary and sufficient condition of
linear instability of the Phillips model was obtain:

|U1−U2|2 >
4β 2F2

K4(4F2 −K4)
, and K2 < 2F,

where, u1 = (U1,0) , and u2 = (U2,0) , U1 and U2 are constants, F1 = F2 = F , K is
the total wave number. By virtue of the above analysis, if ui have small disturbances,
for example, (ε sin(πx2),0) , for sufficiently small ε , the linear instability of the equi-
librium doesn’t vary. By our recent result [15], we know the nonlinear instability for
Phillips model is robust as well.
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