EXISTENCE OF POSITIVE SOLUTION FOR A SINGULAR SYSTEM INVOLVING GENERAL QUASILINEAR OPERATORS

FRANCISCO JULIO S.A. CORRÊA, AMANDA SUellen S.C. LEÃO AND GIOVANY M. FIGUEIREDO

(Communicated by Peter L. Simon)

Abstract. In this paper we study a result of existence of positive solution the following class of singular system:

\[
\begin{align*}
-\text{div}(a_1(|\nabla u|^{p_1})|\nabla u|^{p_1-2}\nabla u) &= h_1(x)v^{-\gamma_1} + k_1(x)v^{\alpha_1} \quad \text{in } \Omega, \\
-\text{div}(a_2(|\nabla v|^{p_2})|\nabla v|^{p_2-2}\nabla v) &= h_2(x)u^{-\gamma_2} + k_2(x)u^{\alpha_2} \quad \text{in } \Omega, \\
u, v &> 0 \quad \text{in } \Omega, \\
u = v = 0 &\quad \text{on } \partial \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded smooth domain in \(\mathbb{R}^N \) with \(N \geq 3, 2 \leq p_1, p_2 < N \). For \(i = 1, 2 \), \(\alpha_i, \gamma_i \in (0, p_i - 1) \) and \(h_i \) and \(k_i \) are continuous functions. The hypotheses on the functions \(a_i : \mathbb{R}^+ \to \mathbb{R}^+ \) allow to show that (P) includes a large class of systems. We use topological arguments to show the main result.

1. Introduction

This paper concerns with the existence of solution of singular elliptic systems of the type

\[
\begin{align*}
-\text{div}(a_1(|\nabla u|^{p_1})|\nabla u|^{p_1-2}\nabla u) &= h_1(x)v^{-\gamma_1} + k_1(x)v^{\alpha_1} \quad \text{in } \Omega, \\
-\text{div}(a_2(|\nabla v|^{p_2})|\nabla v|^{p_2-2}\nabla v) &= h_2(x)u^{-\gamma_2} + k_2(x)u^{\alpha_2} \quad \text{in } \Omega, \\
u, v &> 0 \quad \text{in } \Omega, \\
u = v = 0 &\quad \text{on } \partial \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded smooth domain in \(\mathbb{R}^N \) with \(N \geq 3, 2 \leq p_1, p_2 < N \). For \(i = 1, 2 \), \(\alpha_i, \gamma_i \in (0, p_i - 1) \), \(a_i : \mathbb{R}^+ \to \mathbb{R}^+ \) is a \(C^1 \) function and \(h_i \) and \(k_i \) are continuous functions. More precisely, we will suppose that the functions \(h_i, k_i \) and \(a_i \) satisfy the following assumptions:

Keywords and phrases: p&\(q \)-Laplacian, singular problem, global continuum.
This research is supported by CNPq/PQ-Brazil-301807/2013-2, CNPq/PQ-Brazil-141779/2010-1 and PROMEP/MCT/PRO-CAD/CASADINHO: 552101/2011-7, CNPq/PQ 301242/2011-9.
There are real constants $\xi_0 > 0$, $\xi_1, \xi_2, \xi_3 \geq 0$ and $p_i < q_i < N$ for $(i = 1, 2)$ such that

$$\xi_0 + H(\xi_3)\xi_1 t^{q_1/p_1} \leq a_i(t) \leq \xi_2 + \xi_3 t^{q_1/p_1}, \quad \forall t \geq 0$$

where $H : [0, +\infty) \rightarrow \{0, 1\}$ is the function given by

$$H(t) = \begin{cases} 1 & \text{if } t > 0 \\ 0 & \text{if } t = 0. \end{cases}$$

(A2) The mapping $g_i : \mathbb{R}^+ \rightarrow \mathbb{R}^+$, given by $g_i(t) = a_i(t^{p_i})t^{p_i-2}$, is increasing, for $i = 1, 2$.

(A3) The mappings $h_i, k_i : \Omega \rightarrow (0, +\infty)$ are continuous functions, for $i = 1, 2$.

Our main result is the following:

Theorem 1. Assume that conditions (A1), (A2), (A3), $2 \leq p_1, p_2 < N$ and $\alpha_i, \gamma_i \in (0, p_i - 1)$ hold true. Then problem (P) has a solution.

A considerable effort has been devoted during the last years in studying singular elliptic problems, as it can be seen, for instance, in [1], [2], [3], [5], [6], [10], [12], [16], [17], [19], [20] and references therein. This is due to their significance in applications (fluid mechanics pseudoplastics flow, chemical heterogeneous catalysts, non-Newtonian fluids, biological pattern formation) as well as to their mathematical relevance. Some of these applications can be seen in [1] and the references therein.

Theorem 1 is related to results of [1] and [20]. In [1] the authors studies the system

$$\begin{align*}
-\Delta_p u &= v^{-\gamma_1} + v^{\alpha_1} \quad \text{in } \Omega, \\
-\Delta_q v &= u^{-\gamma_2} + u^{\alpha_2} \quad \text{in } \Omega, \\
u, v &> 0 \quad \text{in } \Omega, \\
u = v = 0 \quad \text{on } \partial\Omega,
\end{align*}$$

and shows the existence of solution by using theorem a due to Rabinowitz [13] (see Proposition 3.1) and a Hardy-Sobolev inequality (see Proposition 2.1).

In [20] the author studies the system

$$\begin{align*}
-\Delta u &= u^{-p} v^{-q} \quad \text{in } \Omega, \\
-\Delta v &= u^{-r} v^{-s} \quad \text{in } \Omega, \\
u, v &> 0 \quad \text{in } \Omega, \\
u = v = 0 \quad \text{on } \partial\Omega,
\end{align*}$$

and shows some existence, nonexistence and uniqueness results for different values of p, q, r, s and using sub-supersolution methods.

We have completed the studies found in [1] and [20] because, in this work, we have more general operators than those considered in these articles.

Just to illustrate the degree of generality of the problem (P) let us consider some special cases, depending on the functions a_i, that are covered in this article, i.e., a_i satisfies assumptions $(A_1) - (A_2)$.
EXAMPLE 1. If $a_i \equiv 1$ with $i = 1, 2$, then
\[-\text{div}(a_i(|\nabla w_i|^{p_i})|\nabla w_i|^{p_i-2}\nabla w_i) = -\Delta_{p_i}w_i,\]
where $\xi_0 = \xi_1 = 1$ and $\xi_3 = 0$ and $\xi_2 > 0$.

EXAMPLE 2. If $a_i(t) = 1 + t^{q_i-p_i}$ with $i = 1, 2$, we obtain
\[-\text{div}(a_i(|\nabla w_i|^{p_i})|\nabla w_i|^{p_i-2}\nabla w_i) = -\Delta_{p_i}w_i - \Delta_{q_i}w_i\]
with $\xi_0 = \xi_1 = \xi_2 = \xi_3 = 1$.

EXAMPLE 3. Taking
\[a_i(t) = 1 + \frac{1}{(1 + t)^{\frac{p_i-2}{p_i}}},\]
with $i = 1, 2$, we get
\[-\text{div}(a_i(|\nabla w_i|^{p_i})|\nabla w_i|^{p_i-2}\nabla w_i) = -\text{div} \left(|\nabla w_i|^{p_i-2}\nabla w_i + \frac{|\nabla w_i|^{p_i-2}\nabla w_i}{(1 + |\nabla w_i|^{p_i})^{\frac{p_i-2}{p_i}}} \right)\]
with $\xi_0 = 1, \xi_1 = 2, \xi_3 = 0$ and $\xi_2 > 0$.

EXAMPLE 4. We now consider
\[a_i(t) = 1 + t^{q_i-p_i} + \frac{1}{(1 + t)^{\frac{p_i-2}{p_i}}},\]
with $i = 1, 2$ to obtain
\[-\text{div}(a_i(|\nabla w_i|^{p_i})|\nabla w_i|^{p_i-2}\nabla w_i) = -\Delta_{p_i}w_i - \Delta_{q_i}w_i - \text{div} \left(\frac{|\nabla w_i|^{p_i-2}\nabla w_i}{(1 + |\nabla w_i|^{p_i})^{\frac{p_i-2}{p_i}}} \right),\]
where $\xi_0 = 1, \xi_1 = 2$ and $\xi_3 = \xi_2 = 1$.

Other combinations can be made with the functions presented in the examples above, generating very interesting elliptic systems from the mathematical point of view and applications.

Due to the presence of the general operator some more estimates refined are need, such as in Lemmas 1, 2 and 3.

This class of operators was studied in [8], [9] and some reference given there.

The plan of this paper is as follows. In the section 2 we show some preliminary results on the general operator and a comparison principle. In the section 3 we show an existence result for an auxiliary problem. We prove the main result in section 4.
2. Preliminary results

We define \(X = W_0^{1, \beta_1}(\Omega) \times W_0^{1, \beta_2}(\Omega) \) equipped with the norm

\[
\|(u, v)\| = \|u\|_{1, \beta_1} + \|v\|_{1, \beta_2},
\]

where

\[
\|u\|_{1, \beta_i} = \|u\|_{1, \pi_i} + H(\xi_3)\|u\|_{1, \alpha_i}.
\]

In this text \(|.|_{\infty}\) denotes the norm in \(L^\infty(\Omega)\). Moreover, we say that the pair \((u, v) \in X\) is a solution of the problem \((P)\) if

\[
\int_{\Omega} a_1(|\nabla u|^{p_1})|\nabla u|^{p_1-2}\nabla u \nabla \phi \, dx = \int_{\Omega} \left[\frac{h_1(x)}{v^\gamma} + k_1(x) v^{\alpha_1} \right] \phi \, dx,
\]

and

\[
\int_{\Omega} a_2(|\nabla v|^{p_2})|\nabla v|^{p_2-2}\nabla v \nabla \phi \, dx = \int_{\Omega} \left[\frac{h_2(x)}{u^\gamma} + k_2(x) u^{\alpha_2} \right] \phi \, dx,
\]

for all \((\phi, \varphi) \in X\).

In this article we work with the operator \(T_i : W_0^{1, \beta_i}(\Omega) \to W_0^{1, \beta_i}(\Omega)'\) such that \(i = 1, 2\), \(\langle T_i w_i, \phi_i \rangle\) is given by

\[
\langle T_i w_i, \phi_i \rangle = \int_{\Omega} a_i(|\nabla w_i|^{p_i})|\nabla w_i|^{p_i-2}\nabla w_i \nabla \phi_i \, dx.
\]

A straightforward calculation shows that \(T_i\) is continuous. In what follows we prove that \(T_i\) is monotone and coercive.

Lemma 1. The operator \(T_i\) satisfies the following conditions:

\[
\langle T_i u_i - T_i v_i, u_i - v_i \rangle > 0 \text{ for all } u_i, v_i \in W_0^{1, \beta_i}(\Omega) \text{ with } u_i \neq v_i
\]

and

\[
\lim_{\|u_i\|_{1, \beta_i} \to \infty} \frac{\langle T_i u_i, u_i \rangle}{\|u_i\|_{1, \beta_i}} = +\infty.
\]

Proof. To prove the first part, it is enough to show the inequality below:

\[
C|x - y|^{p_i} \leq \langle a_i(|x|^{p_i})|x|^{p_i-2}x - a_i(|y|^{p_i})|y|^{p_i-2}y, x - y \rangle,
\]

for all \(x, y \in \mathbb{R}^N\) and \(i = 1, 2\). Indeed, firstly note that

\[
\langle a_i(|x|^{p_i})|x|^{p_i-2}x - a_i(|y|^{p_i})|y|^{p_i-2}y, x - y \rangle = \sum_{j=1}^N \langle a_i(|x|^{p_i})|x|^{p_i-2}x_j - a_i(|y|^{p_i})|y|^{p_i-2}y_j, x_j - y_j \rangle
\]

and for all \(z, \xi \in \mathbb{R}^N\) we get
\[
\sum_{k,j=1}^{N} \frac{\partial}{\partial z_k} (a_i(|z|^{p_i})|z|^{p_i-2} z_j) \xi_k \xi_j = (p_i - 2) |z|^{p_i-4} \sum_{k,j=1}^{N} a_i(|z|^{p_i}) z_k z_j \xi_k \xi_j \\
+ \sum_{k,j=1}^{N} a_i(|z|^{p_i})|z|^{p_i-2} \delta_{k,j} \xi_k \xi_j + p_i \sum_{k,j=1}^{N} a_i(|z|^{p_i}) |z|^{2p_i-4} z_k z_j \xi_k \xi_j.
\]

Hence
\[
\sum_{k,j=1}^{N} \frac{\partial}{\partial z_k} (a_i(|z|^{p_i})|z|^{p_i-2} z_j) \xi_k \xi_j = (p_i - 2) |z|^{p_i-4} a_i(|z|^{p_i}) \sum_{k,j=1}^{N} z_k z_j \xi_k \xi_j \\
+ a_i(|z|^{p_i})|z|^{p_i-2}|\xi|^2 + p a_i'(|z|^{p_i})|z|^{2p_i-4} \sum_{k,j=1}^{N} z_k z_j \xi_k \xi_j.
\]

Since
\[
\sum_{k,j=1}^{N} z_k z_j \xi_k \xi_j = \left(\sum_{j=1}^{N} z_j \xi_j \right)^2,
\]

we have
\[
\sum_{k,j=1}^{N} \frac{\partial}{\partial z_k} (a_i(|z|^{p_i})|z|^{p_i-2} z_j) \xi_k \xi_j \\
= \left(\sum_{j=1}^{N} z_j \xi_j \right)^2 |z|^{p_i-4} \left[(p_i - 2)a_i(|z|^{p_i}) + p_i a_i'(|z|^{p_i})|z|^{p_i} \right] \\
+ a_i(|z|^{p_i})|z|^{p_i-2}|\xi|^2.
\]

By \(A_2\), we derive
\[
\sum_{k,j=1}^{N} \frac{\partial}{\partial z_k} (a_i(|z|^{p_i})|z|^{p_i-2} z_j) \xi_k \xi_j \geq a_i(|z|^{p_i})|z|^{p_i-2}|\xi|^2.
\]

Moreover, if \(|y| \geq |x|\), we have \(\frac{1}{2}|x - y| \leq |y|\) and for \(t \in [0, \frac{1}{4}]\) we get
\[
|y + t(x - y)| \geq |y| - t|x - y| \geq \frac{1}{4}|x - y|.
\]

Making \(z = x - y\) and \(\xi = x - y\), from direct calculations we get
\[
\sum_{j=1}^{N} (a_i(|x|^{p_i})|x|^{p_i-2} x_j - a_i(|y|^{p_i})|y|^{p_i-2} y_j)(x_j - y_j)
\]
\[= \int_{0}^{1} \sum_{k,j=1}^{N} \frac{\partial}{\partial z_k} (a_i(|z|^{p_i})|z|^{p_i-2} z_j) \xi_k \xi_j \ dt.
\]

Using (2.1) we get
\[
\langle a_i(|x|^{p_i})|x|^{p_i-2}x - a_i(|y|^{p_i})|y|^{p_i-2}y, x - y \rangle \\
\geq a_i(|y + t(x - y)|^{p_i})|y + t(x - y)|^{p_i-2}|x - y|^2
\]

By (A1) we conclude
\[
\langle a_i(|x|^{p_i})|x|^{p_i-2}x - a_i(|y|^{p_i})|y|^{p_i-2}y, x - y \rangle \geq \frac{\tilde{\varepsilon}_0}{4} |x - y|^{p_i-2}|x - y|^2 = \frac{\tilde{\varepsilon}_0}{4} |x - y|^{p_i}.
\]

The second part follows by using the growth of the operator \(T_i\) given by hypothesis (A1). \(\square\)

Lemma 1 provides the monotonicity and coerciveness of the operator \(T_i\). Thus, by Minty-Browder’s Theorem [4, Teorema V. 15], given \(f_i \in W^{1,\beta_i}_0(\Omega)’\) with \(i = 1, 2\), there exists a unique \(u_i \in W^{1,\beta_i}_0(\Omega)\) enjoying
\[
\begin{cases}
-\text{div}(a_i(|\nabla u_i|^{p_i})|\nabla u_i|^{p_i-2}\nabla u_i) = f_i \text{ in } \Omega, \\
u_i = 0 \text{ on } \partial \Omega,
\end{cases}
\]
in the weak sense.

Now using the Lemma 1 and arguing as [14, Lemma A2] and [14, Hopf Lemma] we get next two results.

Lemma 2. If \(\Omega\) is a bounded domain and if \(u_i, v_i \in W^{1,\beta_i}_0(\Omega)\) satisfy
\[
\begin{cases}
-\text{div}(a_i(|\nabla u_i|^{p_i})|\nabla u_i|^{p_i-2}\nabla u_i) \leq -\text{div}(a_i(|\nabla v_i|^{p_i})|\nabla v_i|^{p_i-2}\nabla v_i) \text{ in } \Omega, \\
u_i \leq v_i \text{ on } \partial \Omega,
\end{cases}
\]
then \(u_i \leq v_i \text{ a.e in } \Omega\).

Lemma 3. Let \(\Omega\) be a bounded domain with smooth boundary and \(i = 1, 2\). If \(u_i \in C^1(\overline{\Omega}) \cap W^{1,\beta_i}_0(\Omega)\) and
\[
\begin{cases}
-\text{div}(a_i(|\nabla u_i|^{p_i})|\nabla u_i|^{p_i-2}\nabla u_i) \geq 0 \\
u_i > 0 \text{ in } \Omega, \\
u_i = 0 \text{ on } \partial \Omega,
\end{cases}
\]
then \(\frac{\partial u_i}{\partial \eta} < 0 \text{ on } \partial \Omega\), where \(\eta\) is the outward normal to \(\partial \Omega\).

Next, we recall the Hardy-Sobolev inequality which will play a key role in the proof of our main result:

Proposition 2.1. (Hardy-Sobolev inequality) If \(u \in C^1(\overline{\Omega}) \cap W^{1,p}_0(\Omega)\) with \(1 < p \leq N\), \(u = 0\) on \(\partial \Omega\) and \(\frac{\partial u}{\partial \eta} < 0\), then
\[
\frac{u}{C d_x^\tau} \in L^r(\Omega), \text{ for } \frac{1}{r} = \frac{1}{p} - \frac{1 - \tau}{N}, 0 \leq \tau \leq 1, \text{ and }
\]
\[
\|u\|_{C d_x^\tau} \leq \|\nabla u\|_{L^p},
\]
where \(d_x = \text{dist}\{x, \partial \Omega\}\), \(C\) is a positive constant, which does not depend on \(x\). See [11].
3. The Approximate Problem

In what follows, we are going to show an existence result for an approximate problem.

Our first existence theorem rests heavily on the following result due to Rabinowitz [13].

Proposition 3.1. Let E be a Banach space and $T : \mathbb{R}^+ \times E \to E$ a continuous and compact mapping so that $T(0,u) = 0$, for all $u \in E$. Then the equation

$$u = T(\lambda,u)$$

possesses an unbounded continuum $\mathcal{C} \subset \mathbb{R}^+ \times E$ of solutions with $(0,0) \in \mathcal{C}$.

For each $\varepsilon > 0$, let us consider the problem

$$\begin{aligned}
\left\{
& -\operatorname{div}(a_1(|\nabla u|^{p_1})|\nabla u|^{p_1-2}\nabla u) = \frac{h_1(x)}{(\varepsilon + |v|)^{\alpha_1}} + k_1(x)|v|^{\alpha_1} \quad \text{in } \Omega, \\
& -\operatorname{div}(a_2(|\nabla v|^{p_2})|\nabla v|^{p_2-2}\nabla v) = \frac{h_2(x)}{(\varepsilon + |u|)^{\alpha_2}} + k_2(x)|u|^{\alpha_2} \quad \text{in } \Omega, \\
& u, v > 0 \quad \text{in } \Omega, \\
& u = v = 0 \quad \text{on } \partial \Omega,
\end{aligned}$$

\((P_\varepsilon)\)

For the approximate problem we have the following result

Theorem 2. For each $\varepsilon > 0$ and $\alpha_i, \gamma_i \in (0, p_i - 1)$ with $i = 1, 2$, problem \((P_\varepsilon)\) possesses a solution.

Proof. Let us construct an operator. For each fixed $\varepsilon > 0$, let us construct the operator $T(\lambda,u,v)$ satisfying the assumptions imposed in Proposition 3.1. For this, let $\lambda \geq 0$ be and consider the problem

$$\begin{aligned}
\left\{
& -\operatorname{div}(a_1(|\nabla u|^{p_1})|\nabla u|^{p_1-2}\nabla u) = \lambda \left[\frac{h_1(x)}{(\varepsilon + |v|)^{\alpha_1}} + k_1(x)|v|^{\alpha_1} \right] \quad \text{in } \Omega, \\
& -\operatorname{div}(a_2(|\nabla v|^{p_2})|\nabla v|^{p_2-2}\nabla v) = \lambda \left[\frac{h_2(x)}{(\varepsilon + |u|)^{\alpha_2}} + k_2(x)|u|^{\alpha_2} \right] \quad \text{in } \Omega, \\
& u = v = 0 \quad \text{on } \partial \Omega.
\end{aligned}$$

\((\bar{P})\)

By Lemma 1, the operator $T_i : W^{1,\beta_i}_0 \to (W^{1,\beta_i}_0)'$ is monotone, continuous and coercive for $i = 1, 2$. Thus, by the Minty-Browder’s Theorem [4, Teorema V. 15] we have uniqueness of solution to the problems

$$\begin{aligned}
& -\operatorname{div}(a_1(|\nabla u|^{p_1})|\nabla u|^{p_1-2}\nabla u) = \lambda \left[\frac{h_1(x)}{(\varepsilon + |f|)^{\alpha_1}} + k_1(x)|f|^{\alpha_1} \right] \quad \text{in } \Omega, \\
& u = 0 \quad \text{on } \partial \Omega
\end{aligned}$$

\((*)\)

and

$$\begin{aligned}
& -\operatorname{div}(a_2(|\nabla v|^{p_2})|\nabla v|^{p_2-2}\nabla v) = \lambda \left[\frac{h_2(x)}{(\varepsilon + |g|)^{\alpha_2}} + k_2(x)|g|^{\alpha_2} \right] \quad \text{in } \Omega, \\
& v = 0 \quad \text{on } \partial \Omega
\end{aligned}$$

\((***)\)
where \(f \in W^{1,\beta_1}_0(\Omega) \) and \(g \in W^{1,\beta_2}_0(\Omega) \).

Then, we can define the operator

\[
T : \mathbb{R}^+ \times X \to X
\]

\[
(\lambda, f, g) \mapsto T(\lambda, f, g) = (u, v),
\]

where \(u, v \) are the unique solutions of problems (*) and (**) respectively.

Let us show that \(T \) is a compact operator. For, let \((\lambda_n, f_n, g_n) \in \mathbb{R}^+ \times X \) be a bounded sequence and set \(T(\lambda_n, f_n, g_n) = (u_n, v_n) \). It follows from the definition of the operator \(T \) that \((u_n, v_n) \) satisfies

\[
\begin{aligned}
&-\text{div}(a_1(|\nabla u_n|^{p_1})|\nabla u_n|^{p_1-2}\nabla u_n) = \lambda_n \left[\frac{h_1(x)}{|1 + f_n|^\gamma_1} + k_1(x)|f_n|^\alpha_1 \right] \quad \text{in } \Omega, \\
&-\text{div}(a_2(|\nabla v_n|^{p_2})|\nabla v_n|^{p_2-2}\nabla v_n) = \lambda_n \left[\frac{h_2(x)}{|1 + g_n|^\gamma_2} + k_2(x)|g_n|^\alpha_2 \right] \quad \text{in } \Omega, \\
\end{aligned}
\]

\(u_n = v_n = 0 \) on \(\partial\Omega \).

Thus,

\[
\int_{\Omega} a_1(|\nabla u_n|^{p_1})|\nabla u_n|^{p_1-2}\nabla u_n \nabla \phi \, dx
= \lambda_n \int_{\Omega} \left[\frac{h_1(x)}{|1 + f_n|^\gamma_1} + k_1(x)|f_n|^\alpha_1 \right] \phi \, dx, \quad \forall \phi \in W^{1,\beta_1}_0(\Omega)
\]

and

\[
\int_{\Omega} a_2(|\nabla v_n|^{p_2})|\nabla v_n|^{p_2-2}\nabla v_n \nabla \phi \, dx
= \lambda_n \int_{\Omega} \left[\frac{h_2(x)}{|1 + g_n|^\gamma_2} + k_2(x)|g_n|^\alpha_2 \right] \phi \, dx, \quad \forall \phi \in W^{1,\beta_2}_0(\Omega).
\]

Considering, in particular, \(\phi = u_n \) and \(\varphi = v_n \) in the above equations we get

\[
\int_{\Omega} a_1(|\nabla u_n|^{p_1})|\nabla u_n|^{p_1} \, dx = \lambda_n \int_{\Omega} \left[\frac{h_1(x)u_n}{|1 + f_n|^\gamma_1} + k_1(x)|f_n|^\alpha_1 u_n \right] \, dx
\]

and

\[
\int_{\Omega} a_2(|\nabla v_n|^{p_2})|\nabla v_n|^{p_2} \, dx = \lambda_n \int_{\Omega} \left[\frac{h_2(x)v_n}{|1 + g_n|^\gamma_2} + k_2(x)|g_n|^\alpha_2 v_n \right] \, dx.
\]

Since \(\alpha_i, \gamma_i \in (0, p_i - 1) \) with \(i = 1, 2 \), we use Hölder’s inequality with \(\frac{\gamma_i}{\alpha_i} \) and \(\frac{p_i}{p_i - \alpha_i} \), assumption (A1) and Sobolev’s embedding to obtain

\[
\xi_0 \int_{\Omega} |\nabla u_n|^{p_1} \, dx + H(\xi_3) \xi_2 \int_{\Omega} |\nabla u_n|^{q_1} \, dx
\leq \lambda_n \left(C_\varepsilon |h_1|_\infty \|u_n\|_{1,\beta_1} + |k_1|_\infty \|f_n\|_{1,\beta_1}^\alpha \|u_n\|_{1,\beta_1} \right).
\]
Since \((\lambda_n)\) and \((\|f_n\|^\alpha_1)\) are bounded in \(\mathbb{R}^+\), we have \((u_n)\) is bounded in \(W_0^{1,\beta_1}(\Omega)\).

In the same way we may show that \((v_n)\) is bounded in \(W_0^{1,\beta_2}(\Omega)\).

Thus, up to a subsequence, we have

\[u_n \rightharpoonup u \quad \text{for some } u \in W_0^{1,\beta_1}(\Omega), \]

\[u_n \rightarrow u \quad \text{in } L^s(\Omega), \quad \text{for all } 1 \leq s < \beta_1^*, \]

\[v_n \rightharpoonup v \quad \text{for some } v \in W_0^{1,\beta_2}(\Omega), \]

\[v_n \rightarrow v \quad \text{in } L^s(\Omega), \quad \text{for all } 1 \leq s < \beta_2^*, \]

and

\[\lambda_n \rightarrow \lambda \geq 0. \]

Invoking the inequality

\[C|x - y|^{p_1} \leq \left\langle a_1(|x|^{p_1})|x|^{p_1-2}x - a_1(|y|^{p_1})|y|^{p_1-2}y, x - y \right\rangle, \]

for all \(x, y \in \mathbb{R}^N\), we obtain

\[
C\|u_n - u\|_{1,p_1}^{p_1} \leq \int_\Omega a_1(|\nabla u_n|^{p_1})|\nabla u_n|^{p_1} \, dx
\]
\[
- \int_\Omega a_1(|\nabla u_n|^{p_1})|\nabla u_n|^{p_1-2} \nabla u_n \nabla u \, dx + o_n(1)
\]
\[
= \lambda_n \int_\Omega \frac{h_1(x)u_n}{(|f_n| + \varepsilon)^{\gamma_1}} \, dx + \lambda_n \int_\Omega k_1(x)|f_n|^{\alpha_1} u_n \, dx
\]
\[
- \lambda_n \int_\Omega \frac{h_1(x)u}{(|f_n| + \varepsilon)^{\gamma_1}} \, dx - \lambda_n \int_\Omega k_1(x)|f_n|^{\alpha_1} u \, dx = o_n(1),
\]

where we conclude

\[\|u_n - u\|_{1,p_1} = o_n(1). \]

Following the same arguments treated above we conclude that

\[\|u_n - u\|_{1,q_1} = o_n(1). \]

Then, perhaps for a subsequence,

\[\|u_n - u\|_{1,\beta_1} = o_n(1). \]

Analogously, \(v_n \rightharpoonup v\) in \(W_0^{1,\beta_2}(\Omega)\).

This shows that \(T\) is a compact operator. Its continuity follows in a similar way.

Because \(T(0,u,v) = (0,0)\), we may use Proposition 3.1 to get a continuum \(\mathcal{C} \subset \mathbb{R}^+ \times X\) of solutions of \(T(\lambda,u,v) = (u,v)\), i.e., \(T(\lambda,u,v)\) satisfies the equation
\[\begin{aligned}
&\left\{ \begin{array}{l}
-\text{div}(a_1(|\nabla u|^{p_1})|\nabla u|^{p_1-2}\nabla u) = \lambda \left[\frac{h_1(x)}{(e+|v|)^{\gamma_1}} + k_1(x)|v|^{\alpha_1} \right] \quad \text{in } \Omega, \\
-\text{div}(a_2(|\nabla v|^{p_2})|\nabla v|^{p_2-2}\nabla v) = \lambda \left[\frac{h_2(x)}{(e+|u|)^{\gamma_2}} + k_2(x)|u|^{\alpha_2} \right] \quad \text{in } \Omega,
\end{array} \right.

&u = v = 0 \text{ on } \partial \Omega.
\end{aligned} \]

So, if \((\lambda, 0, 0) \in \mathcal{C}\) then \(\lambda = 0\), that is, \(\mathcal{C} - \{(0, 0, 0)\}\) is constituted of nontrivial solutions.

Let us prove that for each \(\lambda > 0\) there is \((\lambda, u, v) \in \mathcal{C}\). Suppose, on the contrary, that there is \(\lambda^* > 0\) such that \((\lambda, u, v) \in \mathcal{C}\) implies \(\lambda \leq \lambda^*\). Thus \((\lambda, u, v)\) satisfies \((\tilde{P}_\lambda)\) and so

\[
\xi_0 \int_\Omega |\nabla u_n|^{p_1} \, dx + H(\xi_3)\xi_2 \int_\Omega |\nabla u_n|^{q_1} \, dx
\leq \lambda \int_\Omega \left[\frac{h_1(x)u}{(e+|v|)^{\gamma_1}} + k_1(x)|v|^{\alpha_1} \right] \, dx. \tag{3.2}
\]

Moreover, using the Hölder inequality and Sobolev’s embedding

\[
\int_\Omega \frac{h_1(x)u}{(e+|v|)^{\gamma_1}} \leq C_e \|h\|_{L^{p_1}} \|u\|_{1,\beta_1}
\]

and

\[
\int_\Omega k_1(x)|v|^{\alpha_1} \leq \|k_1\|_{L^{p_1-\alpha_1^{-1}}} \|v\|_{1,\beta_1}^{\alpha_1} \|u\|_{1,\beta_1}.
\]

So, from (3.2) we have

\[
\xi_0 \|u\|_{1,p_1}^{p_1} + H(\xi_3)\xi_2 \|u\|_{1,q_1}^{q_1} \leq C'_e \left[\|u\|_{1,\beta_1} + \|v\|_{1,\beta_2}^{\alpha_1} \|u\|_{1,\beta_1} \right]
\]

and

\[
\xi_0 \|v\|_{1,p_2}^{p_2} + H(\xi_3)\xi_2 \|v\|_{1,q_2}^{q_2} \leq C'_e \left[\|v\|_{1,\beta_2} + \|v\|_{1,\beta_2} \|u\|_{1,\beta_1}^{\alpha_2} \right],
\]

which yields
\[\xi_0 \|u\|_{1,p_1}^p + H(\xi_3)\xi_2 \|u\|_{1,q_1}^q + \xi_0 \|v\|_{1,p_2}^p + H(\xi_3)\xi_2 \|v\|_{1,q_2}^q \leq C_ε \left[\|u\|_{1,β_1}^α + \|v\|_{1,β_2}^α \|u\|_{1,β_1} + \|v\|_{1,β_2} + \|v\|_{1,β_2}^α \|u\|_{1,β_1}^α \right]. \]

If \(\|(u,v)\| \to +∞ \), it is enough to consider the cases:

(i) \(\|u\|_{1,p_1} \to +∞ \) and \(\|u\|_{1,q_1} \to +∞ \);

(ii) \(\|u\|_{1,p_1} \) is bounded and \(\|u\|_{1,q_1} \to +∞ \).

From the analysis of these two cases we conclude that \(\|u\|_{1,β_1} \) is bounded and analogously \(\|v\|_{1,β_2} \) is bounded, and thus \(C_ε \) is bounded, which is a contradiction. Making \(\lambda = 1 \) we have a solution \((u_ε, v_ε) \) to the problem \((P_ε) \). By the maximum principle, \(u_ε, v_ε \) are positive in \(Ω \). □

4. Proof of the Main Result

Proof Theorem 1 For each \(ε = \frac{1}{n} \), let \(u_\frac{1}{n} = u_\frac{1}{ε} \) and \(v_\frac{1}{n} = v_\frac{1}{ε} \) be the solution of problem \((P_\frac{1}{n}) \) obtained in the previous theorem, that is,

\[
\begin{align*}
-\text{div}(a_1(|\nabla u_\frac{1}{n}|^p_1)|\nabla u_\frac{1}{n}|^{p_1-2}_1}\nabla u_\frac{1}{n}) &= \frac{h_1(x)}{(\frac{1}{n} + |v_\frac{1}{n}|)^{γ_1}} + k_1(x)|v_\frac{1}{n}|^{α_1} \quad \text{in} \quad Ω, \\
-\text{div}(a_2(|\nabla v_\frac{1}{n}|^p_2)|\nabla v_\frac{1}{n}|^{p_2-2}_2\nabla v_\frac{1}{n}) &= \frac{h_2(x)}{(\frac{1}{n} + |u_\frac{1}{n}|)^{γ_2}} + k_2(x)|u_\frac{1}{n}|^{α_2} \quad \text{in} \quad Ω, \\
u_\frac{1}{n} = v_\frac{1}{n} = 0 \quad \text{on} \quad \partial Ω.
\end{align*}
\]

So, from the equation

\[-\text{div}(a_1(|\nabla u_\frac{1}{n}|^p_1)|\nabla u_\frac{1}{n}|^{p_1-2}_1)\nabla u_\frac{1}{n}) \geq \frac{h_1(x)}{(1 + |v_\frac{1}{n}|)^{γ_1}} + k_1(x)|v_\frac{1}{n}|^{α_1} \quad \text{in} \quad Ω,\]

\[\geq \frac{h_0}{(1 + |v_\frac{1}{n}|)^{γ_1}} + k_0|v_\frac{1}{n}|^{α_1},\]

where

\[h_0 = \min_{x \in Ω} h_1(x) \quad \text{and} \quad k_0 = \min_{x \in Ω} k_1(x).\]

Since the function \(t \mapsto \frac{h_0}{(1 + t)^{γ_1}} + k_0t^{α_1} \) is continuous and bounded from below for \(t \geq 0 \) it attains a positive minimum \(m_1 \). So,

\[-\text{div}(a_1(|\nabla u_\frac{1}{n}|^p_1)|\nabla u_\frac{1}{n}|^{p_1-2}_1)\nabla u_\frac{1}{n}) \geq m_1.\]

Let \(z_1 \) the only positive solution of

\[
\begin{align*}
-\text{div}(a_1(|\nabla z_1|^p_1)|\nabla z_1|^p_1-2)\nabla z_1) &= m_1 \quad \text{in} \quad Ω, \\
z_1 &= 0 \quad \text{on} \quad \partial Ω.
\end{align*}
\]
Hence,
\[
\begin{aligned}
\begin{cases}
-\text{div}(a_1(|\nabla u_n|^{p_1})|\nabla u_n|^{p_1-2}\nabla u_n) \geq -\text{div}(a_1(|\nabla z_1|^{p_1})|\nabla z_1|^{p_1-2}\nabla z_1) \quad \text{in } \Omega, \\
u_n = z_1 \quad \text{on } \partial \Omega.
\end{cases}
\end{aligned}
\]

By Lemma 2, \(u_n \geq z_1 > 0 \) in \(\Omega \), for all \(n \in \mathbb{N} \). Similarly we prove that \(v_n \geq z_2 > 0 \) in \(\Omega \), for all \(n \in \mathbb{N} \), where \(z_2 \) satisfies
\[
\begin{aligned}
\begin{cases}
-\text{div}(a_2(|\nabla z_2|^{p_2})|\nabla z_2|^{p_2-2}\nabla z_2) = m_2 \quad \text{in } \Omega, \\
z_2 = 0 \quad \text{on } \partial \Omega.
\end{cases}
\end{aligned}
\]
and \(m_2 \) is the positive minimum of the function \(t \mapsto \frac{h_0}{(1+tt)^2} + k_0t^{\alpha_2} \).

Since
\[
\begin{aligned}
\begin{cases}
-\text{div}(a_i(|\nabla z_i|^{p_1})|\nabla z_i|^{p_1-2}\nabla z_i) = m_i \quad \text{in } \Omega, \\
z_i > 0 \quad \text{in } \Omega, \\
z_i = 0 \quad \text{on } \partial \Omega.
\end{cases}
\end{aligned}
\]
Moreover, by \((A_1)\) we can use the results in the paper by Serrin [15] about the \(L^\infty\) estimates and the results by Di Benedetto [7] and Tolksdorff [18], for the \(C^1\) regularity in order to conclude \(z_i \in C^1(\overline{\Omega}) \cap W_0^{1,p}(\Omega) \). By Lemma 3, we have that
\[
\frac{\partial z_i}{\partial \eta} < 0 \quad \text{on } \partial \Omega.
\]

Thus, for each \(x \in \Omega \) we get,
\[
u_n(x) \geq z_1(x) > Cd_x > 0 \quad \text{and} \quad v_n(x) \geq z_2(x) > Cd_x > 0,
\]
where \(d_x = \text{dist}(x, \partial \Omega) \) and \(C \) is a positive constant that does not depend on \(x \).

Hence,
\[
\int_{\Omega} \frac{h_1(x)u_n}{(\frac{1}{n} + v_n)^{\beta_1}} \leq \int_{\Omega} \frac{h_1(x)u_n}{v_n^{\beta_1}} \leq \int_{\Omega} \frac{h_1(x)u_n}{C d_x^{\beta_1}} \leq \overline{h} \int_{\Omega} \frac{u_n}{C d_x^{\beta_1}},
\]
where \(\overline{h} = \max_{x \in \Omega} h_1(x) \). We now use the Hardy–Sobolev inequality to get \(\frac{u_n}{d_x^{\beta_1}} \in L^r \) and
\[
\int_{\Omega} \frac{h_1(x)u_n}{(\frac{1}{n} + v_n)^{\beta_1}} dx \leq C_2 \| u_n \|_{1, \beta_1}.
\]
Since \(\alpha_1 \in (0, p_1 - 1) \) and using Hölder’s inequality with \(\frac{p_1}{\alpha_1} \) and \(\frac{p_1}{p_1 - \alpha_1} \) and Sobolev embedding we have
\[
\int v_n^{\alpha_1} u_n dx \leq C' \| u_n \|_{1, \beta_1} \| v_n \|_{1, \beta_2}^{\alpha_1}.
\]

Consequently, by using \((3.2)\) with \(\lambda = 1 \) and the previous two estimates we get that \(\| u_n \|_{1, \beta_1}, \| v_n \|_{1, \beta_2} \) are bounded. Thus, up to a subsequence, we have
\[
u_n \rightharpoonup u \quad \text{for some } u \in W_0^{1, \beta_1}(\Omega),
\]
\(u_n \to u \) in \(L^s(\Omega) \), for all \(1 \leq s < \beta_1^* \),

\(v_n \to v \) for some \(v \in W_0^{1,\beta_2}(\Omega) \),

\(v_n \to v \) in \(L^s(\Omega) \), for all \(1 \leq s < \beta_2^* \),

\(u_n(x) \to u(x) \) a.e. in \(\Omega \),

\(v_n(x) \to v(x) \) a.e. in \(\Omega \).

From the above a.e. convergence it can be proved that

\(u_n \to u \geq z_1 > 0 \) in \(W_{loc}^{1,\beta_1}(\Omega) \),

\(v_n \to v \geq z_2 > 0 \) in \(W_{loc}^{1,\beta_2}(\Omega) \)

and the following equalities

\[
\int_{\Omega} a_1(|\nabla u|^{p_1})|\nabla u|^{p_1-2}|\nabla u|\nabla \phi = \int_{\Omega} \frac{h_1(x)\phi}{v^{\gamma_1}} + \int_{\Omega} k_1(x)v^{\alpha_1} \phi, \quad \forall \phi \in C_0^\infty(\Omega),
\]

\[
\int_{\Omega} a_2(|\nabla v|^{p_2})|\nabla v|^{p_2-2}|\nabla v|\nabla \phi = \int_{\Omega} \frac{h_2(x)\phi}{u^{\gamma_2}} + \int_{\Omega} k_2(x)u^{\alpha_2} \phi, \quad \forall \phi \in C_0^\infty(\Omega).
\]

Using a density argument we have that \((u,v)\) is a solution for \((P)\) which concludes

the proof of the theorem. \(\Box\)

Acknowledgements. Francisco Julio S.A. Corrêa is on leave of absence from the
Universidade Federal de Campina Grande-Brazil.

REFERENCES

(Received March 25, 2014) (Revised July 12, 2014)

Julio S.A. Corrêa Universidade Federal do Pará
Programa de Pós-Graduação em Matemática e Estatística - PPGME, 66.075-110- Belém-Pará
Brazil
e-mail: fjsacorrea@gmail.com

Amanda Suellen S.C. Leão
Universidade Federal do Pará
Programa de Pós-Graduação em Matemática e Estatística - PPGME, 66.075-110- Belém-Pará
Brazil
e-mail: a.senacorrea@hotmail.com

Giovany M. Figueiredo
Universidade Federal do Pará
Programa de Pós-Graduação em Matemática e Estatística - PPGME, 66.075-110- Belém-Pará
Brazil
e-mail: giovany@ufpa.br