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EXISTENCE OF SOLUTION FOR BIHARMONIC
SYSTEMS WITH INDEFINITE WEIGHTS

GAURAV DWIVEDI

(Communicated by Chérif Amrouche)

Abstract. In this article we deal with the existence questions to the nonlinear biharmonic sys-
tems. Using theory of monotone operators, we show the existence of a unique weak solution to
the weighted biharmonic systems. We also show the existence of a positive solution to weighted
biharmonic systems in the unit ball in R”, using Leray Schauder fixed point theorem. In this
study we allow sign-changing weights.

1. Introduction

We consider the following biharmonic system

A*v = b(x)h(x, u) in Q, L1
u=0=v on dQ, (.1
=0 % on dQ,

where ©Q C R” is a smooth and bounded domain. The single fourth order nonlinear
equations arise in various physical phenomenon such as study of travelling waves in
suspension bridges [25], micro electro mechanical systems (MEMS) [29], radar imag-
ing [2], bending behaviour of a thin elastic rectangular plate [33], geometric and func-
tional design [4, 5, 31] etc. Consider the model problem

Au=2g(u) nQu=0= g—z on 0Q, (1.2)
where g: R — R. The Existence of a solution to (1.2) was proved by F. Tomi [34] when
A = 1, under monotonicity assumptions on nonlinearity g . Arioli et al. [3] proved the
existence of a regular as well as a singular solution to (1.2) when g(u) = ¢" and Q is
the unit ball in R”, using comparison principle and method of monotone iteration. Y.
Liu and Z. Wang [27] showed the existence of a non trivial solution to the following
problem

d
A’u =g(xu) inQu=0= % on dQ,
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with asymptotic linear nonlinearity in an open, smooth and bounded subset of R” for
n =5, using a variant of mountain pass theorem. H.C. Grunau [19] showed the exis-
tence of a solution to following problem

Lu(x)+g(u) = f(x) inQ, (L3)

u=0= D% for|at| <m—10n0Q, ’

where L is a uniformly elliptic operator of order 2m. He proved the existence of a

classical solution using a local maximum principle when g satisfies sign condition,

tg(t) = 0. H.C. Grunau and G. Sweers [20] proved the existence of a classical solution
to the problem

» (1.4)
u=0=D%for|o|] <m—1ondQ,

{Lu(x) +g(x,u) = f(x) inQ,

where L is a uniformly elliptic operator of order 2m, using a local maximum principle
under some growth conditions on g. R. Wolfgang and T. Weth [37] considered (1.4)
with f =0 and

. 5 m
L= (2 a,-,-(x)ﬁ) + 2 ba(x)DO‘—i—bo(x),

ij—=1 1<|of|<2m—1

where _
by € L7(Q), a;j € C*2%(Q).

They proved the existence of a solution when nonlinearity g is superlinear at origin and

im €5 ) tim 85 i,
s—oo g9 §—>—o0 ‘s|’1

where h,k € C(Q) are positive and ¢ > 1 is subcritical, using degree theory. N. Lam
and G. Lu [24] discussed the following problem for polyharmonic operator

{(—A)mu = f(x,u) inQ,

1.5
u=Vu=...=V"1ly=00n0Q, (15

where Q C R?” and f is of exponential growth. They proved the existence of a nontriv-
ial solution to (1.5), using mountain pass theorem. Motivated by the above references,
in the present article we establish the existence of a unique weak solution to (1.1), with-
out monotonicity assumptions on g. To prove our result we follow the ideas introduced
in Section 7.6 [16].

Next, we consider the singular biharmonic system

Azu:a(x)g(x’:) in Q,
X
h(x,u) .
2., 9
A%y = b(x) P in Q, (1.6)
u=0=v on JdQ,
g—c =0= g—\‘j on dQ,
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where
0cQCR" n>5anda,beL™(Q).

Consider the model problem
A%u =V (x)f(x,u) +g(x,u) inQ, (1.7)
u=0= % on 9Q, '

where ¢ > 0 is a parameter and V is a singular potential. Y. Wang and Y. Shen [36]
showed the existence of a nontrivial solution for critical exponent

* nZ(n_4)2
T

and |
V(x)= P JOu) =q(x)u, g(x,u) =u,

using a variational method. For u > pu* the operator becomes unbounded and (1.7)
does not have any solution. For p < pu* this problem was studied by H. Xiong and
Y.T. Shen [39] and references cited therein. Y.T. Shen and Y.X. Yao [32] proved the
existence of a solution to (1.7) in a new Hilbert space when

V() = ﬁ Foru) = u, g(x,) = u,

using variational methods. N.T. Chung [12] established the existence of multiple solu-
tions to (1.7), when

Vi(x) = ﬁ [lxu) = a(xu, g(x,u) = Ab(x)h(u),

where « is sign changing, b is nonnegative, A > 0 is a parameter and / is sublinear,
using a variant of three critical point theorem of G. Bonanno [7]. Yao et al. [40]
proved existence and nonexistence of a nontrivial solution to (1.7), using Mountain
Pass theorem and Hardy-Sobolev inequality, when

1 _ _
V() = oo Sl =t o) = a2,

where 2 ) 5
n—s n

2<g<2(s) = 2= ——,

1 (s) n—4 n—4

and 2, is the critical Sobolev exponent for the embedding H?(R") «— L*(R"). H. Xie
and J. Wang [38] considered the following p-biharmonic equation

I)CIZ”

A(|Au|P~2Au) — ™2 = f(x,u) inQ, (L8)
u:O:g—C:Oon%}. .
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They proved the existence of a sign changing solution for u < p,, using variational

method, where
1y = (n(p— )(n —219))”
is the best constant in Rellich inequality [28]. Motivated by the above references and
[16], we use theory of monotone operators to prove the existence of a unique weak
solution to the Problem (1.6).
Next, we consider the following biharmonic system

Au—la() (v) in B,
v-lb( )g(u) in B,

u=0=v ondB, (1.9)
%:Oz%onaﬂ

where, B denotes the unit ball in R" with boundary 0B, A is a positive parameter, a,b :
Q — R are sign changing, f,g:[0,e0) — R are continuous with f(0) > 0,g(0) > 0.
P.-L. Lions [26] studied the existence of a positive solution to the Dirichlet problem

—Au=2La(x)f(u), inQ,

1.10
u=0 on dQ, ( )

with weight function and nonlinearity satisfy a > 0, f > 0, respectively. Problem with
indefinite weights was studied by Brown et al. [8, 9], Cac at al. [10], D.D. Hai [21] and
references cited therein. Consider the following problem
—Au=Aa(x)f(u), inQ,
—Av=Ab(x)g(v), in&, (1.11)
u=0=v on 0Q.
R. Dalmasso [14] established the existence of a positive solution to (1.11) when,

ax)=1,bx)=1,A=1,

using Schauder fixed point theorem. D. G. de Figueiredo and B. Ru [15] proved the
existence of a nontrivial solution to (1.11), when

ax)=1,bx)=1,A =1, f(s) =5, 0<p<i2

and g is superlinear, using variational methods. Clément et al. [13] proved the existence
of a solution to (1.11) in an Orlicz-Sobolev space setting, when

a(x)=1=b(x)and A = 1.

D.D. Hai and R. Shivaji [22] proved the existence of a positive solution to (1.11) with
a(x) = b(x) = 1, using method of sub and super solutions and Schauder fixed point
theorem. They also proved the uniqueness of the solution [23], when € is a ball in R”.
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J. Tyagi [35] established the existence of a solution to (1.11) with indefinite weights by
method of monotone iteration and Schauder fixed point theorem. R. Chen [11] proved
the existence of a solution to (1.11) with indefinite weights by Leray-Schauder fixed
point theorem. Motivated by the above references, purpose of the present article is to
study the existence of positive solutions to (1.9) by using Leray-Schauder fixed point
theorem, following the ideas introduced by D.D. Hai [21].

In the present study we assume following hypotheses on nonlinearities and weights:

(H1) f,g:[0,00) — R are continuous with f(0) > 0,g(0) > 0.

(H2) There exists t; > 0 such that

[ Gya* )y > (1+m) [ Glxya ()anvr B
B B

(H3) There exists up > 0 such that
/BG(x7y)b+ (y)dy = (1+ ) /B G(x,y)b™ (y)dy,Vx € B,

where G(x,y) is the Green’s function of A? associated with the Dirichlet boundary
conditions. Here a™,b™ are positive parts of @ and b respectively while ¢~ and b~
are the negative parts.

(H4) a,b € L*(Q), g and h satisfy Carathéodory property on Q x R.

(H5) [g(x,s1) —g(x,52)| < cils1 —s2| and |h(x,s1) —h(x,s2)| < c2|s1 — 52|, where
c1,02 < % and A; denotes the principle eigenvalue of biharmonic operator with Dirich-
let boundary conditions and M = max{||@||«, ||b|o }-

(H6) |g(x,s1) — g(x,50)| < c1|s1 —s2]and |h(x,s1) — h(x,52)| < cals) — 52|, where
c1,0 < 1agn*(n—4)2, where M = max{||al|«, ||b|}.

(H7)Forn<3:
|g(x, ) < r(x) + C(|s]) and[A(x, 5)| < g(x) +C(|s]),

where g, € L'(Q) and C(t) is a nonnegative continuous function of the variable ¢ > 0.
(H8)Forn=4:
19, 5)| < () +c1lsl® and |h(x, )| < g(x) +ealsl? ",

where ¢,r € LaT (Q), c1,¢0 >0, ¢ > 1 is arbitrary.
(H9)Forn>5:

ntd n+d
|g(x, )] < r(x) + cifs|=* and |h(x, 5)| < q(x) + cafs| 4,

2n
where g,r € L+, cy,co > 0.
We now state the main results that we prove in the next sections:
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THEOREM 1. Let (H4), (H5) hold, then (1.1) has a unique weak solution (u,v) €
H3(Q) x H3(Q), provided
(i) n<3 and (H7) hold.
(ii) n=4 and (H8) hold.
(iii) n>5 and (H9) hold.

THEOREM 2. Let (H4), (H6) and (H9) hold then (1.6) has a unique weak solution.

THEOREM 3. Let a,b be non zero continuous functions on B and (H1)-(H3) hold.
Then there exists a positive number A*, depending on weights a, b and nonlinearities
f,g such that (1.9) has a positive solution for 0 < A < A*.

REMARK 1. Theorem 1 holds for all space dimension under different growth con-
ditions on nonlinearities g and 4, while Theorem 2 for singular system holds only for
n=>s.

REMARK 2. If we consider the polyharmonic system for m > 2
(—A)"u = a(x)g(x,v) in Q,
(—A)"v =Db(x)h(x, u) in Q, (1.12)
D% =0=D%, o] <m—1, on 9Q,

then under the hypotheses of Theorem 1, (1.12) has unique weak solution (u,v) €
HJ'(Q) x HY'(LQ).

REMARK 3. If we consider the polyharmonic system, for m > 2

(—A)"u = a(x) g@y in Q,

(=AY = b(x) h|(;|’2r’:> in Q,

D% =0=D%, || <m—1, on dQ,

(1.13)

then under the hypotheses of Theorem 2, (1.13) has a unique weak solution (u,v) €
Hg'(Q) < Hg'(€2).

REMARK 4. If we consider the polyharmonic system for m > 2

(—=A)"u=Aa(x)f(v) in B,
(—A)"v = Ab(x)g(u) in B, (1.14)
D% =0=D%, |o| <m—1, on 9dB,

then under the hypotheses of Theorem 3, there exists a positive number A*, depending
on weights a, b and nonlinearities f,g such that (1.14) has a positive solution for
0<A<Ar.
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We organize the article as follows: Section 2 deals with preliminaries. Section 3
deals with proofs of Theorem 1, 2, 3. In Section 4 we give some examples illustrating
main results.

2. Preliminaries

In this section we recall some definitions and results. Throughout this article €
denotes an open, smooth and bounded subset of R”. Let m > 1 be an integer. We
denote by

HJ Q) == {u € L*(Q) : D"u € L*(Q) for all || < mand D%u = 0, on 9L,
forall o] <m—1}.

H{'(€2) is a Hilbert space equipped with inner product

JoAfurfvdx, m=2k;
(V) (@) =

Jo V(A u) -V (A dx, m =2k + 1.

and norm .
HA MHLZ(Q), m:2k,
H”HH(’)”(Q) = ‘

Throughout this article we denote H-HHg(Q) by ||-|| and (-, ')Hg(Q) by (-, ).

DEFINITION 1. Principle eigenvalue 4, ; of polyharmonic operator with Dirich-
let boundary conditions, is defined as

H"H%qg(g)
Iy = inf 0 @.1)
0#veHg' (Q) ”VHLZ(Q)
For details, see [17].
From the above definition for m = 2, we get
1 2
, Yv e Hy(Q). (2.2)

IVl 2 ) < ﬁ“v\\ﬂg(g)
Throughout this article we denote A, 1 by 4.

DEFINITION 2. (Strongly Monotone Operator [16]) Let H be a Hilbert space with
inner product (-,-) and T : H — H. T is said to be strongly monotone if there exists
¢ > 0 such that

(Tuy — Tug, uy —uz) = c||luy —u2H27 Yui,up € H.
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REMARK 5. Let H be a Hilbert space with inner product (-,-), then H x H is
also a Hilbert space with inner product defined by

((ur,v1), (u2,v2))Hxm = (U1, u2) + (v, v2).

DEFINITION 3. Let H be a Hilbert space with inner product {-,-) and
L:HxH— HXxH. L is said to be strongly monotone if there exists ¢ > 0 such that
Yuy,up,vi,vy € H we have

(L(uy,v1) — L(uz,v2), (u1,v1) = (u2,v2)) s = ¢ (|Juy — wa||* + v — V2H2) .

THEOREM 4. Let H be a real Hilbert space and S : H — H be continuous and
strongly monotone operator. Then for any h € H the equation Tu = h has a unique
solution.

Proof. For proof we refer to Corollary 5.3.9 [16].

LEMMA 1. (Hardy- Rellich Inequality) For all u € Hg (Q) the Hardy Rellich in-
equality says,

2(p — 4)2 2
/ |AufPdx > M/ L dx, n>s, 2.3)
Q 16 Q |x|

Z(n_4)2

where - 16 is the best constant in (2.3) and it is never achieved in any domain
QC R".

For a proof, we refer to [30].
Next we state the Hardy-Rellich inequality for polyharmonic operators:

LEMMA 2. Let 0 <k < 5 be an integer and u € Wé{’z(Q). Then if k =2m

2m 2 2
+4m—4l) u
Amaxs (T2 / dx. 2.4
s <ZHI 3 o T .
If k=2m+1,
2m+1 2 2
’ (n+4m+2-41) u
A|VAznu| dx > (lljll ) /g; |x|4m+2dx. (2.5)

For details, we refer to [1].

DEFINITION 4. (Carathéodory Property [16]) Let Q be an open subset in R". A
function f: Q xR — R is said to have Carathéodory property if
(i) for all y € R the function x — f(x,y) is Lebesgue measurable on Q.
(ii) for a.a.x € Q the function y — f(x,y) is continuous on R.
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Next we define the weak solution for (1.1). Multiply first equation in (1.1) by ¢ €
C () and second equation by y € C°(€2), where C°(€2) denotes the set of infinitely
differentiable function having compact supportin €. Then on integrating using Green’s
theorem, we get

/Aqu)dx— / a(x)g(x,v) dx,

/AvAlde— / b(x)h(x, 1) dx,

forall ¢,y € C°(Q). Above equations can be rewritten as
/ Aqu)dx—/ a(x)g(x,v)¢dx =0, (2.6)
/AvAl//dx /b (x,u)pdx=0. 2.7

Since C(Q) is dense in H3(Q) therefore (2.6), (2.7) hold for each ¢, y € H3(Q)
respectively.

DEFINITION 5. (Weak Solution) (u,v) € H3(Q) x H3(Q) is called weak solution
of (1.1) if

( /Q (AuAp —a(x)g(x,v)¢ ) dx, /Q (AvAY — b(x)h(x,u)y) dx) —0,

forall ¢, y € H3(Q).

Let us consider the boundary value problem

(—AY"u=f inQ os)
D% = 00ndQ, for|ot| <m—1, ’

where f € H™"(Q), the dual space of H{'(L2).

It is well known that the exact form of Green’s function for (—A)” is not easily
determined, however T. Boggio explicitly calculated the Green’s function [6, 17], when
Q is the unit ball in R” (denoted by B). T. Boggio [6] proved the following:

LEMMA 3. The Green’s function for the Dirichlet problem (2.8) with Q = B is
positive and given by

[l e
Gm7n(x7y) =k R / (V — 1)m v dy. (29)
1
The positive constant ky, , is defined by
1 7'[”/2
km7n = 55 €n = s
4m=lpe, ((m—1)!) I(1+n/2)

where T'(-) is the Gamma function.
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Using the Green’s function G, »(x,y), solution for (2.8) can be expressed as

u(x) = /Q G (6,) £ () d. (2.10)

For details we refer to p.p. 48[17].
Throughout this article we denote G ,(x,y), the Green’s function for biharmonic
operator with Dirichlet boundary conditions by G(x,y).

LEMMA 4. (Leray- Schauder fixed point theorem) Let X be a Banach space and
T : X — X a completely continuous (continuous and compact) operator. Suppose that
there exists a constant M > 0, such that each solution (x,0) € X x [0,1] of

x=0Tx,0€[0,1],xeX

satisfies ||x||x < M. Then T has a fixed point.

Proof. For a proof, we refer to p.p. 280 [18].

3. Proofs of Main Results

3.1. Proof of Theorem 1
Proof. We want to find (u,v) € H3(Q) x HZ(Q) such that for all ¢, y € H3(Q),

(/Q (AuAg — a(x)g(x,v)o )dx,/Q(AvAl//—b(x)h(x,u)l[/) dx) =0 (3.1)
(3.1) can be rewritten as
(Tu—Sv,Tv—Su) =0, (3.2)

where
(Tu,9) :/Aqu)dx,
Q

() = [ awslrva

(S, yr) = /Q b(x)h(x,u)wdx,

for all ¢,y € HZ(Q). Since T is just identity operator on HZ(Q), therefore, T is
continuous. Under the hypotheses (H7) — (H9), S; and S, are also continuous. Thus
the operator

L(u,v) = (Tu—Sv,Tv— Sru) (3.3)

is continuous on HZ(Q) x HZ(€). Next we claim that L is strongly monotone. We set
H = HZ(Q) x H}(Q), then

(L(u1,v1) — L(uz,v2), (u1,v1) — (u2,v2)) 1
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= (L(uy,v1) — L(ua,v2), (U1 —uz,vi —v2))m
= ((Tuy — Syv1,Tvy — Souy) — (Tup — S1va, Tvy — Soun), (uy — up,vi — vo) )
= (Tuy — Tup,uy —uz) — (Syvi — S1vo,uy —up) + (Tvy — Tva,vi — v2)

— (Sau1 — Sauz, vy —v2)

=||u1—u2||2+HVl—V2H2—/Qa(X)(g(x,V1)—g(x,\@))(ul—uz)dx
—/Qb(x)(h(x,ul)—h(x,uz))(vl—vz)dx

> Hul—u2||2+HVl—V2H2—/Q|G(X)||g(x,V1)—g(x,V2)||u1—uzldx
—/Q|b(x)||h(x,u1)—h(x,u2)||v1—vz|dx

> Hul—u2||2+ [lvi —V2H2—2MC/Q|V1 — vy |uy — up|dx,

(by (H5), M=max{]|al|e, |[[|-}),

Mc
> |luy — wa|* + [lvy — va > — m (J[uy — ||+ vy — V2||2)

Mc
= (l — )L—l) (||u1 — I/t2||2+ HV] _V2H2) .

Since by (HS), <1 — A{—f) > 0, therefore L is strongly monotone. Thus by Theorem 4,
Equation (3.2) has a unique solution, that is, (1.1) has a unique weak solution.

3.2. Proof of Remark 2
Proof. Define the operator T: Hj'(Q) — H['(Q) by

| Ja AfuAky dx, m = 2k;
(Tu,¢) = { fQV(AkM) .V(Akv)dx, m=2k+ 1.

Using this definition of T, rest of the proof is on the same lines as of the proof of
Theorem 1. For sake of brevity, we omit the details.

3.3. Proof of Theorem 2

Proof. We want to find (u,v) € H3(Q) x H3(Q) such that for all ¢, y € H3(Q),

(/Q (A“A(P —a(x)g(;c’:) o ) a’x,/Q (AVAI//— b(x)hgif) W) dx) —0 (34

This can be rewritten as

(Tu—Sv,Tv—Su) =0, (3.5)
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where
(Tu,¢) = /QAqu)dx,
svw) = [ a S yax

h(x,u)
Eiae

(s20,) = [ ()

for all ¢,y € HZ(Q). Since T is just identity operator on HZ(Q), therefore, T is
continuous. Under the hypothesis (H9), S; and S, are also continuous. Thus the
operator

L(u,v) = (Tu—Sv,Tv— Sru) (3.6)

is continuous operator on H3 (Q) x H3 (). Next we claim that L is strongly monotone.
We set H = H3(Q) x H3(Q), then

(L(uy,v1) — L(ug,v2), (uy,v1) — (u2,v2))
= (L(u1,v1) — L(uz,v2), (1 — u2,v1 = v2))u
= ((Tuy — Syvi, Tvy — Souy) — (Tup — Syva, Tvy — Soun), (ug — uz,vi —va)m
= (Tuy — Tup,u; —uz) — (Syvi — Syvo,uy —uz) + (Tvy — Tvp,vi — V)
— (Szul —Szuz,vl — Vz)

(u1 —up)

P dx

=l =2+ v = w2l = [ @) () - glr2)
~ | b)) - eV g

uy—uyp
> =l vy = valP = [ Jao) e — gl 2

— [0l ) ~ A ) =22
Q Jc[*

[vi —va| Jur —ua|
|x[? |x[?

> Hul—u2||2+Hvl—vQH2—2Mc/Q dx,

(by (H5), M=max{]|al«, [|b[|--}),

1 1
_ 2 2 _ 2\ 2
R R e et I R
o |y o |

32Mc

> [y — w2+ vr =2 — m“"l —val|[Jur — uz||, (from(2.3))
16Mc

> [y — w2+ vr =2 — eI (llur = wal* + [lvi = v2[1?)

16Mc 2 2
= (1= e (b =l =)
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Since by (H6), (1 — %) > 0, therefore L is strongly monotone. Thus by Theo-

rem 4, Equation (3.5) has a unique solution, that is, (1.6) has a unique weak solution.

3.4. Proof of Remark 3

Proof. On using Lemma 2, the proof is on the same lines as the proof of Theorem
2. For sake brevity, we omit the details.

3.5. Proof of Theorem 3
Let

C(B) x C(B) := {(u,v) : u,v are continuous on B}
with norm || (u,)||. = max (Ju(x)|, |v(x)|). Then (C(B) x C(B),||(-, )||=) is a Banach

XeB
space.

We assume that

J)=1(0), v<0;: g(u) =5(0), u<0.
To prove the main result we need the following lemma.
LEMMA 5. Let 0 < 8 < 1. Then there exists a positive number A such that for

0<A<A,
A’u=da"(x)f(v), inB,

A%v = Ab" (x)g(u), inB, (3.7)
u=0=v ondB,
du av
W =0= W on 3B,

(3.7) has a positive solution (1y,vy) with ||(ii3,v3)|| — 0 as A — 0 and

it (x) 2 A6 f(0)p1(x), x € B; 9 (x) 2 A28g(0)p2(x), x € B,
where
/ny yv)dy pa(x /nybJr

and G(x,y) is Green’s function for biharmonic operator with Dirichlet boundary con-
ditions defined by (2.9) .

Proof. The proof is adapted from [21]. Let A : C(B) x C(B) — C(B) x C(B) be
defined by

)= (& [ Gleya* ()02 [ Gl )b (s(u)dy)
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then A : C(B) x C(B) — C(B) x C(B) is completely continuous and fixed points of A
are solutions to (3.7). We shall apply Lemma 4 to prove that A has a fixed point for A
small.

Let € > 0 be such that

f(x) = 8£(0),8(x) > g(0),0<x<¢, (3.8)
this follows from the (H1). Now define

f(o)= Srg[gf;]f (s), &(t) = Srg[gﬁ]g(S)- (3.9)

Then f and § are continuous and non-decreasing. Let

h(t) = max{f(1),g(r)} (3.10)
Then £ is continuous.
Suppose that A < ———=——, then
[ pll-h(€)
h(e) 1
AN . — (3.11)
e 2A|plle

where ||p||e = max{|[p1|e, || p2 |}

(H1),(3.9) and (3.10) imply that /(0) > 0, and therefore
tim ") — e, (3.12)
t—0+ 1

Inequality (3.11) and (3.12) imply that there exists A; € (0,¢€) such that

h(Ay) 1
- . (3.13)
Ay 2Aplle

Now let (u,v) € C(B) x C(B) and 6 € (0,1) be such that (u,v) = OA(u,v). Then we
have
1 )| = max{ful]ee, [V}

S max{A[|piflef ([[vll=), Al p2lle-g([[utl|-0) }

< max{A||pilef (|, )I), Al p2lle-g ([l () ) }
max{A|plle-f (|| (), AP ll& (Il (u, v) 1) }
Alpllesh(ll(u,v)11)
which implies that ||(u,v)|| # A, . Note that Ay — 0 as A — 0. By Lemma 4, A has

a fixed point (i, ,v;) with ||(iiy,7;)]] <A, < €. Consequently, from (3.8) it follows
that

<
<

i3 (x) =2 A8 f(0)p1(x),x € B; 7 (x) > 18g(0)pa(x), x € B. (3.14)
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This completes the proof.
Proof of Theorem 3. Let

/ny dy,  qa(x) :/BG(XJ’)b (v)dy

It follows from (H2), (H3) and Lemma 5, that there exists four positive constants
o,00,7%,7% € (0,1) such that

G ()| f(s) <npi1(x)f(0), forse[0,04], xE€B,
72(x)|g(s)| < 12p2(x)g(0), for s € [0,00], x € B.
Let o« = min{ oy, }. Then
Q1 ()|f () <np1(x)f(0), forse[0,a], xeB, (3.15)

q2(x)|g(s)] < p2(x)g(0), forse0,a], x€B. (3.16)

Fix 6 € (y,1), where y=max{y;,»}. Let 2(0) = max{f(0),g(0)} and let A;,A; be
so small such that

@]l +A8R(0)[Ipll <o, ford € (0,4),
2]l +2A8R(0)[pll <, ford € (0,4;),
where #i; and ¥, are given by Lemma 5 and

70~ £ < FO) 251 forns € [~ocal 5] < A{8h(0) ol

80 —5()| <5032, fors,s e [~oual i —s] < ASHO) -

Let A* = min{A;,A;}. Then for 4 € (0,A1%), we have

2]l + 28h(O)[pll < &, (7]l +ASRO) | <@ (.17)
and for 7,5 € [—o, o], |t —s| < A*8h(0)||p||-, we have
o— §—
0= F@I <fOZL and o) — g0 <8052 (3.18)

Now, let L < A*. We look for a solution (uy,v,) to (1.9) of the form (i) +my, V) +
wy ). Thus (my,w; ) solves the system

Pmy = Aa’ (0)(f(7a +wa) = (7)) = Aa (x)f (7 +wz) in B,

NPwy, = Ab" (x)(g(din +my) — (i) — Ab™ (x)g(iiy +my) in B,

my, =0=w, on dB,
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9mi _ o _ 9Wa
v adv
For each (y,¢) € C(B) x C(B), let (m,w) be the solution of the system
N'm=da* (x)(f(% + ) — f(72)) = Aa” (x)f(7 +¢) inB,
Aw=Ab" (x)(g(itz + W) — (@) = Ab™ (x)g(@; +y) in B,
m=0=w ondB,

om ow

M _0=2Y onoB.

3y 0 3y ond
Then A: C(B) x C(B) — C(B) x C(B) is completely continuous. Let (m,w) € C(B) x
C(B) and 6 € (0,1) be such that

on dB.

(m,w) = 0A(m,w). (3.19)

Then
A’m = 20a" (x)(f(5 +w) — f(72)) — A0a™ (x)f (¥, +w) inB,
A?w = A0b™ (x)(g(iiy +m) — g(iiy)) — AOb~ (x)g(iiy +m) in B,
m=0=w ondB,
dm aw
— =0= = ondB.
av av "
Now, we claim that || (m,w)|| £ A8h(0)||p]|e-
Suppose to the contrary that ||(m,w)|| = A8h(0)||p||-, then there are three possible
cases:
Case 1. ||m|< = ||W|l« = A8A(0)]|p||c. Then from (3.17), we have

192 4 Wlleo < [[P2 ]| + 28R(0) [Pl < &

So ||73 |l < . Thus by (3.18), we obtain

S—
/(5 +w) = £(52)] < (0) 51 (3:20)
and on the other hand, (3.19) implies
5 _
m(x)| < Api(x)£(0) =2 (x)£(0)
1)
= Ap1(0f(0) 5
< Api(x)£(0)8

< A6R(0)||p|le, forxe€ B,

which implies that
[[ml|es < A8R(0)]|p]|-e,
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which is a contradiction.
Case 2. ||w||e < ||m||c = A8R(0)||p]|e. Then

[ +wlleo < 92 ]| +A6R(0)[| plleo < 0.
Thus
0—m

72 +w) = £ < £(0) 25

Now using the similar arguments as Case 1, we get
[[mlles < A8R(0)[|pll-s,

which is a contradiction.
Case 3. ||m]| < ||W||<c = A0R(0)||p||-. Using arguments similar to Case 2, we obtain

[Wlleo < A8R(0)[|pllee

which is a contradiction.
Thus the claim is proved.
By Lemma 4, A has a fixed point (7, W, ) with

([ (7, wa )|l < ASR(0)|[plles-
Using Lemma 5, we obtain

uz (x) = it (x) = [m(x)]

5

> 28p1()£(0) ~ 221 0)pr (0
6_

=22 ) ()

>0, x€B.

Similarly, we can prove that ¥, (x) > 0, x € B. This completes the proof.

3.6. Proof of Remark 4

Proof. The proof is on the same lines as of the proof of Theorem 3. For sake of
brevity, we omit the details.

3.7. n x n SYSTEMS

Now we consider the following n x n system
A2u1 = llal(x)fl (uz), in B,
Auy = Map(x) f>(u3),  inB,

(3.21)
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Azunfl = Afnflanfl (x)fnfl (I/Ln), in B,
Auy, = A (x) fro(101), in B,
uy=uy=...=u, =0, on 0B,

du _duz _ Oty
dv adv T ov

=0, on 0B,

where a;(x) € L”(B) (i=1,2,...n) may be sign changing in B and A > 0 is a param-
eter.

We assume the following hypotheses:
(H10) f;:]0,00) — R which is continuous and f;(0) >0(i=1,2,...,n).
(H11) a;(i=1,2,...,n) is continuous on B and there exist k; > 1 (i=1,2,...,n), such
that

| 6yl 0y >k [ Gleyla; )y Vxe B,
B B

where G(x,y) is defined earlier.
Formulate the integral equation

(ur,up, ... un) =A(uy,un,... uy)

where A : (C(B))" — (C(B))" is defined by

Auy,ug, ... uy)(x) = (l/BG()@y)al(y)fl (ua(y))dy, ...,
(3.22)

Aéwa%wﬁwmw@)

THEOREM 5. Let (HI0) and (HI11) hold. Then there exists a positive number A,
depending on weights a;,(i = 1,2,....n) and nonlinearities f;, (i = 1,2,...,n) such
that (3.21) has a positive solution for 0 < A < A*.

Proof. The proof is on the same lines as the proof of Theorem 3. For sake of
brevity, we omit the details.

REMARK 6. Theorem 5 can be extended to n x n polyharmonic systems. The
proof requires arguments similar to the proof of Theorem 3. We leave it as an exercise
to an interested reader.
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4. Examples

EXAMPLE 1. Consider Q = B, the unit ball in R? and a,b:Q — R, defined by

L X< 1 X<
a(x)—{_h x| > andb(x)—{

0, x| > @D
Define g,h: Q x R — R defined by

B[ =] —
B[ =] —

2 2

csesinx, |s| < 1 cs“cosx, |s| <1
g(x,s):{o |‘SI>1 andh(x7s):{0 }SIZl 3

where ¢ < Ay, A; is the principle eigenvalue of biharmonic operator defined by (2.1).
Then
A’u = a(x)g(x,v) in Q,

A%y = b(x)h(x,u) in Q,
u=0=v on dQ,
g—"‘/ = % on dQ,

4.2)

has a unique weak solution.

Proof. Clearly, from (4.1), ||a]|< = 1 = ||b||~. It is easy to verify that g, & satisfy
(H1),(H2) and (HS), therefore, an application of Theorem 1 implies that the System
(4.2) has a unique weak solution.

EXAMPLE 2. Let Q be the unit ball in R”, n > 5. Consider the weights a,b
defined by (4.1). Define g,h: Q xR — R as follows

2(n+4)
c(sinx—l—s n—4 ), Is| <1
g(x,s) =

0, otherwise.
and
2(n+4)
h(x,s) = c<cosx+s = ) L lsl <1
0, otherwise
where ¢ < fn?(n—4)2. Then
) g(x, v)
A*u = a(x) 4x|4 in Q,
h(x,u) .
sz_ ( )W m 97 (43)

has a unique weak solution.



514

GAURAV DWIVEDI

Proof. Tt is easy to verify that (H4) holds. Clearly M = max{||al|e, ||D||«} = 1.

Since ¢ < f¢n*(n—4)?, therefore, (H6) holds. From the definition of g and A, it is
easy to see that (H9) holds. Therefore an application of Theorem 2 implies that the
System (4.3) has a unique weak solution.

EXAMPLE 3. Let Q denotes the unit ball in R”. Consider the functions a,b de-

fined as

a(x) = |x|> and b(x) = |x|?, Vx € Q.

Define functions f and g as follows

f(x) =x>+1, g(x) =x>+1, Vxe [0,00).

Then there exists a positive number A* such that for 0 < A < A* system

Au=Ax>(¥+1)inQ,
A%y = Alx(i® 4+ 1) in Q,
u=0=v ondQ,

9 — v on 9O

v~ dv ’

(4.4)

has a positive solution.

Proof. From definition of f and g, it is clear that (H1) holds. It is easy to verify

that (H2), (H3) hold for any u; >0 and up > 0 respectively, therefore an application
of Theorem 3 implies that there exists a positive number A* such that for 0 <A < A*
(4.4) has a positive solution.
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