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EXISTENCE OF SOLUTION FOR BIHARMONIC

SYSTEMS WITH INDEFINITE WEIGHTS
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(Communicated by Chérif Amrouche)

Abstract. In this article we deal with the existence questions to the nonlinear biharmonic sys-
tems. Using theory of monotone operators, we show the existence of a unique weak solution to
the weighted biharmonic systems. We also show the existence of a positive solution to weighted
biharmonic systems in the unit ball in R

n , using Leray Schauder fixed point theorem. In this
study we allow sign-changing weights.

1. Introduction

We consider the following biharmonic system⎧⎪⎪⎨
⎪⎪⎩

Δ2u = a(x)g(x, v) in Ω,
Δ2v = b(x)h(x, u) in Ω,
u = 0 = v on ∂Ω,
∂u
∂ν = 0 = ∂v

∂ν on ∂Ω,

(1.1)

where Ω ⊂ R
n is a smooth and bounded domain. The single fourth order nonlinear

equations arise in various physical phenomenon such as study of travelling waves in
suspension bridges [25], micro electro mechanical systems (MEMS) [29], radar imag-
ing [2], bending behaviour of a thin elastic rectangular plate [33], geometric and func-
tional design [4, 5, 31] etc. Consider the model problem

Δ2u = λg(u) inΩ,u = 0 =
∂u
∂ν

on ∂Ω, (1.2)

where g : R→R . The Existence of a solution to (1.2) was proved by F. Tomi [34] when
λ = 1, under monotonicity assumptions on nonlinearity g . Arioli et al. [3] proved the
existence of a regular as well as a singular solution to (1.2) when g(u) = eu and Ω is
the unit ball in R

n , using comparison principle and method of monotone iteration. Y.
Liu and Z. Wang [27] showed the existence of a non trivial solution to the following
problem

Δ2u = g(x,u) inΩ,u = 0 =
∂u
∂ν

on ∂Ω,
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with asymptotic linear nonlinearity in an open, smooth and bounded subset of R
n for

n � 5, using a variant of mountain pass theorem. H.C. Grunau [19] showed the exis-
tence of a solution to following problem{

Lu(x)+g(u) = f (x) inΩ,

u = 0 = Dαu for |α| � m−1 on∂Ω,
(1.3)

where L is a uniformly elliptic operator of order 2m . He proved the existence of a
classical solution using a local maximum principle when g satisfies sign condition,
tg(t) � 0. H.C. Grunau and G. Sweers [20] proved the existence of a classical solution
to the problem {

Lu(x)+g(x,u) = f (x) inΩ,

u = 0 = Dαu for |α| � m−1 on∂Ω,
(1.4)

where L is a uniformly elliptic operator of order 2m , using a local maximum principle
under some growth conditions on g . R. Wolfgang and T. Weth [37] considered (1.4)
with f = 0 and

L =

(
n

∑
i, j=1

ai j(x)
∂ 2

∂xi∂x j

)m

+ ∑
1�|α |�2m−1

bα(x)Dα +b0(x),

where
bα ∈ L∞(Ω), ai j ∈C2m−2,α(Ω).

They proved the existence of a solution when nonlinearity g is superlinear at origin and

lim
s→∞

g(x,s)
sq = h(x), lim

s→−∞

g(x,s)
|s|q = k(x),

where h,k ∈ C(Ω) are positive and q > 1 is subcritical, using degree theory. N. Lam
and G. Lu [24] discussed the following problem for polyharmonic operator{

(−Δ)mu = f (x,u) inΩ,

u = ∇u = . . . = ∇m−1u = 0 on∂Ω,
(1.5)

where Ω⊂R
2m and f is of exponential growth. They proved the existence of a nontriv-

ial solution to (1.5), using mountain pass theorem. Motivated by the above references,
in the present article we establish the existence of a unique weak solution to (1.1), with-
out monotonicity assumptions on g . To prove our result we follow the ideas introduced
in Section 7.6 [16].

Next, we consider the singular biharmonic system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δ2u = a(x)
g(x, v)
|x|4 in Ω,

Δ2v = b(x)
h(x, u)
|x|4 in Ω,

u = 0 = v on ∂Ω,

∂u
∂ν = 0 = ∂v

∂ν on ∂Ω,

(1.6)
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where
0 ∈ Ω ⊆ R

n, n � 5 and a,b ∈ L∞(Ω).

Consider the model problem{
Δ2u = μV (x) f (x,u)+g(x,u) in Ω,

u = 0 = ∂u
∂ν on ∂Ω,

(1.7)

where μ > 0 is a parameter and V is a singular potential. Y. Wang and Y. Shen [36]
showed the existence of a nontrivial solution for critical exponent

μ = μ∗ =
n2(n−4)2

16

and

V (x) =
1
|x|4 , f (x,u) = q(x)u, g(x,u) = u,

using a variational method. For μ > μ∗ the operator becomes unbounded and (1.7)
does not have any solution. For μ < μ∗ this problem was studied by H. Xiong and
Y.T. Shen [39] and references cited therein. Y.T. Shen and Y.X. Yao [32] proved the
existence of a solution to (1.7) in a new Hilbert space when

V (x) =
1
|x|4 , f (x,u) = u, g(x,u) = u,

using variational methods. N.T. Chung [12] established the existence of multiple solu-
tions to (1.7), when

V (x) =
1
|x|4 , f (x,u) = a(x)u, g(x,u) = λb(x)h(u),

where a is sign changing, b is nonnegative, λ > 0 is a parameter and h is sublinear,
using a variant of three critical point theorem of G. Bonanno [7]. Yao et al. [40]
proved existence and nonexistence of a nontrivial solution to (1.7), using Mountain
Pass theorem and Hardy-Sobolev inequality, when

V (x) =
1
|x|s , f (x,u) = u|u|q−2, g(x,u) = u|u|2∗−2,

where

2 � q � 2∗(s) =
2(n− s)
n−4

� 2∗ =
2n

n−4
,

and 2∗ is the critical Sobolev exponent for the embedding H2(Rn) ↪→ L2∗(Rn). H. Xie
and J. Wang [38] considered the following p-biharmonic equation{

Δ(|Δu|p−2Δu)− μ|u|p−2

|x|2p = f (x,u) inΩ,

u = 0 = ∂u
∂ν = 0 on∂Ω.

(1.8)
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They proved the existence of a sign changing solution for μ < μnp using variational
method, where

μnp =
(

n(p−1)(n−2p)
p2

)p

is the best constant in Rellich inequality [28]. Motivated by the above references and
[16], we use theory of monotone operators to prove the existence of a unique weak
solution to the Problem (1.6).

Next, we consider the following biharmonic system⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λa(x) f (v) in B,
Δ2v = λb(x)g(u) in B,
u = 0 = v on ∂B,
∂u
∂ν = 0 = ∂v

∂ν on ∂B,

(1.9)

where, B denotes the unit ball in R
n with boundary ∂B , λ is a positive parameter, a,b :

Ω → R are sign changing, f ,g : [0,∞ ) → R are continuous with f (0) > 0,g(0) > 0.
P.-L. Lions [26] studied the existence of a positive solution to the Dirichlet problem

−Δu = λa(x) f (u), in Ω,

u = 0 on ∂Ω,
(1.10)

with weight function and nonlinearity satisfy a � 0, f � 0, respectively. Problem with
indefinite weights was studied by Brown et al. [8, 9], Cac at al. [10], D.D. Hai [21] and
references cited therein. Consider the following problem

−Δu = λa(x) f (u), in Ω,

−Δv = λb(x)g(v), in Ω,

u = 0 = v on ∂Ω.

(1.11)

R. Dalmasso [14] established the existence of a positive solution to (1.11) when,

a(x) = 1, b(x) = 1, λ = 1,

using Schauder fixed point theorem. D. G. de Figueiredo and B. Ru [15] proved the
existence of a nontrivial solution to (1.11), when

a(x) = 1, b(x) = 1, λ = 1, f (s) = sp, 0 < p <
2

n−2

and g is superlinear, using variational methods. Clément et al. [13] proved the existence
of a solution to (1.11) in an Orlicz-Sobolev space setting, when

a(x) = 1 = b(x) and λ = 1.

D.D. Hai and R. Shivaji [22] proved the existence of a positive solution to (1.11) with
a(x) = b(x) = 1, using method of sub and super solutions and Schauder fixed point
theorem. They also proved the uniqueness of the solution [23], when Ω is a ball in R

n .
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J. Tyagi [35] established the existence of a solution to (1.11) with indefinite weights by
method of monotone iteration and Schauder fixed point theorem. R. Chen [11] proved
the existence of a solution to (1.11) with indefinite weights by Leray-Schauder fixed
point theorem. Motivated by the above references, purpose of the present article is to
study the existence of positive solutions to (1.9) by using Leray-Schauder fixed point
theorem, following the ideas introduced by D.D. Hai [21].

In the present study we assume following hypotheses on nonlinearities and weights:
(H1) f ,g : [0,∞) → R are continuous with f (0) > 0,g(0) > 0.
(H2) There exists μ1 > 0 such that∫

B
G(x,y)a+(y)dy � (1+ μ1)

∫
B
G(x,y)a−(y)dy,∀x ∈ B.

(H3) There exists μ2 > 0 such that∫
B
G(x,y)b+(y)dy � (1+ μ2)

∫
B
G(x,y)b−(y)dy,∀x ∈ B,

where G(x,y) is the Green’s function of Δ2 associated with the Dirichlet boundary
conditions. Here a+,b+ are positive parts of a and b respectively while a− and b−
are the negative parts.

(H4) a,b ∈ L∞(Ω) , g and h satisfy Carathéodory property on Ω×R.

(H5) |g(x,s1)−g(x,s2)|� c1|s1−s2| and |h(x,s1)−h(x,s2)|� c2|s1−s2|, where
c1,c2 < λ1

M and λ1 denotes the principle eigenvalue of biharmonic operator with Dirich-
let boundary conditions and M = max{‖a‖∞,‖b‖∞}.

(H6) |g(x,s1)−g(x,s2)| � c1|s1 − s2|and |h(x,s1)−h(x,s2)| � c2|s1 − s2|, where
c1,c2 < 1

16M n2(n−4)2 , where M = max{‖a‖∞, ‖b‖∞}.
(H7) For n � 3 :

|g(x,s)| � r(x)+C(|s|)and |h(x,s)| � q(x)+C(|s|),
where q,r ∈ L1(Ω) and C(t) is a nonnegative continuous function of the variable t � 0.

(H8) For n = 4 :

|g(x,s)| � r(x)+ c1|s|q−1 and |h(x,s)| � q(x)+ c2|s|q−1,

where q,r ∈ L
q

q−1 (Ω), c1,c2 > 0, q � 1 is arbitrary.

(H9) For n � 5 :

|g(x,s)| � r(x)+ c1|s| n+4
n−4 and |h(x,s)| � q(x)+ c2|s| n+4

n−4 ,

where q,r ∈ L
2n

n+4 , c1,c2 > 0.
We now state the main results that we prove in the next sections:
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THEOREM 1. Let (H4), (H5) hold, then (1.1) has a unique weak solution (u,v) ∈
H2

0 (Ω)×H2
0 (Ω) , provided

(i) n � 3 and (H7) hold.

(ii) n = 4 and (H8) hold.

(iii) n � 5 and (H9) hold.

THEOREM 2. Let (H4), (H6) and (H9) hold then (1.6) has a unique weak solution.

THEOREM 3. Let a,b be non zero continuous functions on B and (H1)-(H3) hold.
Then there exists a positive number λ ∗ , depending on weights a, b and nonlinearities
f ,g such that (1.9) has a positive solution for 0 < λ < λ ∗ .

REMARK 1. Theorem 1 holds for all space dimension under different growth con-
ditions on nonlinearities g and h , while Theorem 2 for singular system holds only for
n � 5.

REMARK 2. If we consider the polyharmonic system for m � 2⎧⎪⎪⎨
⎪⎪⎩

(−Δ)mu = a(x)g(x, v) in Ω,

(−Δ)mv = b(x)h(x, u) in Ω,

Dαu = 0 = Dαv, |α| � m−1, on ∂Ω,

(1.12)

then under the hypotheses of Theorem 1, (1.12) has unique weak solution (u,v) ∈
Hm

0 (Ω)×Hm
0 (Ω) .

REMARK 3. If we consider the polyharmonic system, for m � 2⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−Δ)mu = a(x)
g(x, v)
|x|2m in Ω,

(−Δ)mv = b(x)
h(x, u)
|x|2m in Ω,

Dαu = 0 = Dαv, |α| � m−1, on ∂Ω,

(1.13)

then under the hypotheses of Theorem 2, (1.13) has a unique weak solution (u,v) ∈
Hm

0 (Ω)×Hm
0 (Ω) .

REMARK 4. If we consider the polyharmonic system for m � 2⎧⎨
⎩

(−Δ)mu = λa(x) f (v) in B,
(−Δ)mv = λb(x)g(u) in B,
Dαu = 0 = Dαv, |α| � m−1, on ∂B,

(1.14)

then under the hypotheses of Theorem 3, there exists a positive number λ ∗ , depending
on weights a , b and nonlinearities f ,g such that (1.14) has a positive solution for
0 < λ < λ ∗ .
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We organize the article as follows: Section 2 deals with preliminaries. Section 3
deals with proofs of Theorem 1, 2, 3. In Section 4 we give some examples illustrating
main results.

2. Preliminaries

In this section we recall some definitions and results. Throughout this article Ω
denotes an open, smooth and bounded subset of R

n . Let m � 1 be an integer. We
denote by

Hm
0 (Ω) :=

{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all |α| � mandDαu = 0, on∂Ω,

for all |α| � m−1
}
.

Hm
0 (Ω) is a Hilbert space equipped with inner product

(u,v)Hm
0 (Ω) =

{∫
Ω ΔkuΔkvdx, m = 2k;∫
Ω ∇(Δku) ·∇(Δkv)dx, m = 2k+1.

and norm

‖u‖Hm
0 (Ω) =

⎧⎨
⎩

‖Δku‖L2(Ω), m = 2k;

‖∇(Δku)‖L2(Ω), m = 2k+1.

Throughout this article we denote ‖·‖H2
0 (Ω) by ‖·‖ and (· , ·)H2

0 (Ω) by (· , ·) .

DEFINITION 1. Principle eigenvalue λm,1 of polyharmonic operator with Dirich-
let boundary conditions, is defined as

λm,1 = inf
0 	=v∈Hm

0 (Ω)

‖v‖2
Hm

0 (Ω)

‖v‖2
L2(Ω)

. (2.1)

For details, see [17].

From the above definition for m = 2, we get

‖v‖L2(Ω) � 1√
λ2,1

‖v‖H2
0 (Ω), ∀v ∈ H2

0 (Ω). (2.2)

Throughout this article we denote λ2,1 by λ1 .

DEFINITION 2. (Strongly Monotone Operator [16]) Let H be a Hilbert space with
inner product 〈· , ·〉 and T : H → H . T is said to be strongly monotone if there exists
c > 0 such that

〈Tu1 −Tu2, u1−u2〉 � c‖u1−u2‖2, ∀u1,u2 ∈ H.
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REMARK 5. Let H be a Hilbert space with inner product 〈· , ·〉 , then H ×H is
also a Hilbert space with inner product defined by

〈(u1,v1),(u2,v2)〉H×H = 〈u1,u2〉+ 〈v1,v2〉.

DEFINITION 3. Let H be a Hilbert space with inner product 〈· , ·〉 and
L : H ×H → H ×H . L is said to be strongly monotone if there exists c > 0 such that
∀u1,u2,v1,v2 ∈ H we have

〈L(u1,v1)−L(u2,v2),(u1,v1)− (u2,v2)〉H×H � c
(‖u1−u2‖2 +‖v1− v2‖2) .

THEOREM 4. Let H be a real Hilbert space and S : H −→ H be continuous and
strongly monotone operator. Then for any h ∈ H the equation Tu = h has a unique
solution.

Proof. For proof we refer to Corollary 5.3.9 [16].

LEMMA 1. (Hardy- Rellich Inequality) For all u ∈ H2
0 (Ω) the Hardy Rellich in-

equality says, ∫
Ω
|Δu|2dx � n2(n−4)2

16

∫
Ω

u2

|x|4 dx, n � 5, (2.3)

where n2(n−4)2
16 is the best constant in (2.3) and it is never achieved in any domain

Ω ⊆ R
n.

For a proof, we refer to [30].
Next we state the Hardy-Rellich inequality for polyharmonic operators:

LEMMA 2. Let 0 < k < n
2 be an integer and u ∈Wk,2

0 (Ω). Then if k = 2m

∫
Ω

(Δmu)2 dx �
(

2m

∏
l=1

(n+4m−4l)2

4

)∫
Ω

u2

|x|4m dx. (2.4)

If k = 2m+1,

∫
Ω
|∇Δmu|2dx �

(
2m+1

∏
l=1

(n+4m+2−4l)2

4

)∫
Ω

u2

|x|4m+2 dx. (2.5)

For details, we refer to [1].

DEFINITION 4. (Carathéodory Property [16]) Let Ω be an open subset in R
n . A

function f : Ω×R → R is said to have Carathéodory property if
(i) for all y ∈ R the function x �→ f (x,y) is Lebesgue measurable on Ω .
(ii) for a.a.x ∈ Ω the function y �→ f (x,y) is continuous on R .



Differ. Equ. Appl. 6, No. 4 (2014), 495–516. 503

Next we define the weak solution for (1.1). Multiply first equation in (1.1) by φ ∈
C∞

c (Ω) and second equation by ψ ∈C∞
c (Ω) , where C∞

c (Ω) denotes the set of infinitely
differentiable function having compact support in Ω . Then on integrating using Green’s
theorem, we get ∫

Ω
ΔuΔφ dx =

∫
Ω

a(x)g(x,v)φ dx,∫
Ω

ΔvΔψ dx =
∫

Ω
b(x)h(x,u)φ dx,

for all φ ,ψ ∈C∞
c (Ω). Above equations can be rewritten as∫

Ω
ΔuΔφ dx−

∫
Ω

a(x)g(x,v)φ dx = 0, (2.6)∫
Ω

ΔvΔψ dx−
∫

Ω
b(x)h(x,u)φ dx = 0. (2.7)

Since C∞
c (Ω) is dense in H2

0 (Ω) therefore (2.6), (2.7) hold for each φ , ψ ∈ H2
0 (Ω)

respectively.

DEFINITION 5. (Weak Solution) (u,v)∈H2
0 (Ω)×H2

0 (Ω) is called weak solution
of (1.1) if(∫

Ω
(ΔuΔφ −a(x)g(x,v)φ )dx,

∫
Ω

(ΔvΔψ −b(x)h(x,u)ψ)dx

)
= 0,

for all φ , ψ ∈ H2
0 (Ω).

Let us consider the boundary value problem{
(−Δ)mu = f inΩ
Dαu = 0 on∂Ω, for |α| � m−1,

(2.8)

where f ∈ H−m(Ω) , the dual space of Hm
0 (Ω) .

It is well known that the exact form of Green’s function for (−Δ)m is not easily
determined, however T. Boggio explicitly calculated the Green’s function [6, 17], when
Ω is the unit ball in R

n (denoted by B). T. Boggio [6] proved the following:

LEMMA 3. The Green’s function for the Dirichlet problem (2.8) with Ω = B is
positive and given by

Gm,n(x,y) = km,n|x− y|2m−n
∫ ∣∣∣|x|y− x

|x|
∣∣∣/|x−y|

1
(v2 −1)m−1v1−ndv. (2.9)

The positive constant km,n is defined by

km,n =
1

4m−1nen ((m−1)!)2
, en =

πn/2

Γ(1+n/2)
,

where Γ(·) is the Gamma function.
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Using the Green’s function Gm,n(x,y) , solution for (2.8) can be expressed as

u(x) =
∫

Ω
Gm,n(x,y) f (y)dy. (2.10)

For details we refer to p.p. 48[17].
Throughout this article we denote G2,n(x,y) , the Green’s function for biharmonic

operator with Dirichlet boundary conditions by G(x,y) .

LEMMA 4. (Leray- Schauder fixed point theorem) Let X be a Banach space and
T : X −→ X a completely continuous (continuous and compact) operator. Suppose that
there exists a constant M > 0 , such that each solution (x,σ) ∈ X × [0,1] of

x = σTx,σ ∈ [0,1],x ∈ X

satisfies ‖x‖X � M. Then T has a fixed point.

Proof. For a proof, we refer to p.p. 280 [18].

3. Proofs of Main Results

3.1. Proof of Theorem 1

Proof. We want to find (u,v) ∈ H2
0 (Ω)×H2

0 (Ω) such that for all φ , ψ ∈ H2
0 (Ω) ,(∫

Ω
(ΔuΔφ −a(x)g(x,v)φ )dx,

∫
Ω

(ΔvΔψ −b(x)h(x,u)ψ)dx

)
= 0 (3.1)

(3.1) can be rewritten as
(Tu−S1v,Tv−S2u) = 0, (3.2)

where

(Tu,φ) =
∫

Ω
ΔuΔφ dx,

(S1v,ψ) =
∫

Ω
a(x)g(x,v)ψ dx,

(S2u,ψ) =
∫

Ω
b(x)h(x,u)ψ dx,

for all φ ,ψ ∈ H2
0 (Ω). Since T is just identity operator on H2

0 (Ω) , therefore, T is
continuous. Under the hypotheses (H7)− (H9) , S1 and S2 are also continuous. Thus
the operator

L(u,v) = (Tu−S1v,Tv−S2u) (3.3)

is continuous on H2
0 (Ω)×H2

0 (Ω) . Next we claim that L is strongly monotone. We set
H = H2

0 (Ω)×H2
0 (Ω), then

〈L(u1,v1)−L(u2,v2),(u1,v1)− (u2,v2)〉H
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= 〈L(u1,v1)−L(u2,v2),(u1 −u2,v1 − v2)〉H
= 〈(Tu1 −S1v1,Tv1−S2u1)− (Tu2−S1v2,Tv2−S2u2),(u1 −u2,v1 − v2)〉H
= (Tu1−Tu2,u1−u2)− (S1v1−S1v2,u1−u2)+ (Tv1−Tv2,v1− v2)

− (S2u1−S2u2,v1− v2)

= ‖u1−u2‖2 +‖v1− v2‖2−
∫

Ω
a(x)(g(x,v1)−g(x,v2))(u1 −u2)dx

−
∫

Ω
b(x)(h(x,u1)−h(x,u2))(v1− v2)dx

� ‖u1−u2‖2 +‖v1− v2‖2−
∫

Ω
|a(x)| |g(x,v1)−g(x,v2)| |u1 −u2|dx

−
∫

Ω
|b(x)| |h(x,u1)−h(x,u2)| |v1− v2|dx

� ‖u1−u2‖2 +‖v1− v2‖2−2Mc
∫

Ω
|v1− v2| |u1−u2|dx,

(by (H5), M=max{‖a‖∞,‖b‖∞}) ,
� ‖u1−u2‖2 +‖v1− v2‖2− Mc

λ1

(‖u1−u2‖2 +‖v1− v2‖2)
=
(

1− Mc
λ1

)(‖u1−u2‖2 +‖v1− v2‖2) .
Since by (H5) ,

(
1− Mc

λ1

)
> 0, therefore L is strongly monotone. Thus by Theorem 4,

Equation (3.2) has a unique solution, that is, (1.1) has a unique weak solution.

3.2. Proof of Remark 2

Proof. Define the operator T : Hm
0 (Ω) → Hm

0 (Ω) by

(Tu,φ) =
{∫

Ω ΔkuΔkvdx, m = 2k;∫
Ω ∇(Δku) ·∇(Δkv)dx, m = 2k+1.

Using this definition of T , rest of the proof is on the same lines as of the proof of
Theorem 1. For sake of brevity, we omit the details.

3.3. Proof of Theorem 2

Proof. We want to find (u,v) ∈ H2
0 (Ω)×H2

0 (Ω) such that for all φ , ψ ∈ H2
0 (Ω) ,

(∫
Ω

(
ΔuΔφ −a(x)

g(x,v)
|x|4 φ

)
dx,
∫

Ω

(
ΔvΔψ −b(x)

h(x,u)
|x|4 ψ

)
dx

)
= 0 (3.4)

This can be rewritten as

(Tu−S1v,Tv−S2u) = 0, (3.5)
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where

(Tu,φ) =
∫

Ω
ΔuΔφ dx,

(S1v,ψ) =
∫

Ω
a(x)

g(x,v)
|x|4 ψ dx,

(S2u,ψ) =
∫

Ω
b(x)

h(x,u)
|x|4 ψ dx,

for all φ ,ψ ∈ H2
0 (Ω). Since T is just identity operator on H2

0 (Ω) , therefore, T is
continuous. Under the hypothesis (H9) , S1 and S2 are also continuous. Thus the
operator

L(u,v) = (Tu−S1v,Tv−S2u) (3.6)

is continuous operator on H2
0 (Ω)×H2

0 (Ω) . Next we claim that L is strongly monotone.
We set H = H2

0 (Ω)×H2
0 (Ω), then

〈L(u1,v1)−L(u2,v2),(u1,v1)− (u2,v2)〉H
= 〈L(u1,v1)−L(u2,v2),(u1 −u2,v1 − v2)〉H
= 〈(Tu1 −S1v1,Tv1−S2u1)− (Tu2−S1v2,Tv2−S2u2),(u1 −u2,v1 − v2)〉H
= (Tu1−Tu2,u1−u2)− (S1v1−S1v2,u1−u2)+ (Tv1−Tv2,v1− v2)

− (S2u1−S2u2,v1− v2)

= ‖u1−u2‖2 +‖v1− v2‖2−
∫

Ω
a(x)(g(x,v1)−g(x,v2))

(u1 −u2)
|x|4 dx

−
∫

Ω
b(x)(h(x,u1)−h(x,u2))

(v1− v2)
|x|4 dx

� ‖u1−u2‖2 +‖v1− v2‖2−
∫

Ω
|a(x)| |g(x,v1)−g(x,v2)| |u1−u2|

|x|4 dx

−
∫

Ω
|b(x)| |h(x,u1)−h(x,u2)| |v1− v2|

|x|4 dx

� ‖u1−u2‖2 +‖v1− v2‖2−2Mc
∫

Ω

|v1− v2|
|x|2

|u1−u2|
|x|2 dx,

(by (H5), M=max{‖a‖∞,‖b‖∞}) ,

� ‖u1−u2‖2 +‖v1− v2‖2−2Mc

(∫
Ω

|v1− v2|2
|x|4 dx

) 1
2
(∫

Ω

|u1−u2|2
|x|4

) 1
2

dx

� ‖u1−u2‖2 +‖v1− v2‖2− 32Mc
n2(n−4)2‖v1− v2‖‖u1−u2‖, (from(2.3))

� ‖u1−u2‖2 +‖v1− v2‖2− 16Mc
n2(n−4)2

(‖u1−u2‖2 +‖v1− v2‖2)
=
(

1− 16Mc
n2(n−4)2

)(‖u1−u2‖2 +‖v1− v2‖2) .
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Since by (H6),
(
1− 16Mc

n2(n−4)2

)
> 0, therefore L is strongly monotone. Thus by Theo-

rem 4, Equation (3.5) has a unique solution, that is, (1.6) has a unique weak solution.

3.4. Proof of Remark 3

Proof. On using Lemma 2, the proof is on the same lines as the proof of Theorem
2. For sake brevity, we omit the details.

3.5. Proof of Theorem 3

Let

C(B)×C(B) := {(u,v) : u,v are continuous on B}
with norm ‖(u,v)‖∞ = max

x∈B
(|u(x)|, |v(x)|) . Then (C(B)×C(B),‖(· , ·)‖∞) is a Banach

space.
We assume that

f (v) = f (0), v � 0; g(u) = g(0) , u � 0.

To prove the main result we need the following lemma.

LEMMA 5. Let 0 < δ < 1 . Then there exists a positive number λ such that for
0 < λ < λ ,

Δ2u = λa+(x) f (v), inB,

Δ2v = λb+(x)g(u), inB, (3.7)

u = 0 = v on ∂B,

∂u
∂ν

= 0 =
∂v
∂ν

on ∂B,

(3.7) has a positive solution (ũλ , ṽλ ) with ‖(ũλ , ṽλ )‖→ 0 as λ → 0 and

ũλ (x) � λ δ f (0)p1(x), x ∈ B; ṽλ (x) � λ δg(0)p2(x), x ∈ B,

where

p1(x) =
∫

B
G(x,y)a+(y)dy p2(x) =

∫
B
G(x,y)b+(y)dy

and G(x,y) is Green’s function for biharmonic operator with Dirichlet boundary con-
ditions defined by (2.9) .

Proof. The proof is adapted from [21]. Let A : C(B)×C(B) −→C(B)×C(B) be
defined by

A(u,v)(x) = (λ
∫

B
G(x,y)a+(y) f (v)dy,λ

∫
B
G(x,y)b+(y)g(u)dy)
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then A : C(B)×C(B) −→C(B)×C(B) is completely continuous and fixed points of A
are solutions to (3.7). We shall apply Lemma 4 to prove that A has a fixed point for λ
small.

Let ε > 0 be such that

f (x) � δ f (0),g(x) � δg(0), 0 � x � ε, (3.8)

this follows from the (H1). Now define

f̃ (t) = max
s∈[0,t]

f (s), g̃(t) = max
s∈[0,t]

g(s). (3.9)

Then f̃ and g̃ are continuous and non-decreasing. Let

h̃(t) = max{ f̃ (t), g̃(t)} (3.10)

Then h̃ is continuous.
Suppose that λ <

ε
‖p‖∞h̃(ε)

, then

h̃(ε)
ε

<
1

2λ‖p‖∞
, (3.11)

where ‖p‖∞ = max{‖p1‖∞,‖p2‖∞} .
(H1),(3.9) and (3.10) imply that h̃(0) > 0, and therefore

lim
t→0+

h̃(t)
t

= +∞. (3.12)

Inequality (3.11) and (3.12) imply that there exists Aλ ∈ (0,ε) such that

h̃(Aλ )
Aλ

=
1

2λ‖p‖∞
. (3.13)

Now let (u,v) ∈C(B)×C(B) and θ ∈ (0,1) be such that (u,v) = θA(u,v) . Then we
have

‖(u,v)‖ = max{‖u‖∞,‖v‖∞}
� max{λ‖p1‖∞ f̃ (‖v‖∞),λ‖p2‖∞g̃(‖u‖∞)}
� max{λ‖p1‖∞ f̃ (‖(u,v)‖),λ‖p2‖∞g̃(‖(u,v)‖)}
� max{λ‖p‖∞ f̃ (‖(u,v)‖),λ‖p‖∞g̃(‖(u,v)‖)}
� λ‖p‖∞h̃(‖(u,v)‖),

which implies that ‖(u,v)‖ 	= Aλ . Note that Aλ → 0 as λ → 0. By Lemma 4, A has
a fixed point (ũλ , ṽλ ) with ‖(ũλ , ṽλ )‖ � Aλ < ε . Consequently, from (3.8) it follows
that

ũλ (x) � λ δ f (0)p1(x),x ∈ B; ṽλ (x) � λ δg(0)p2(x), x ∈ B. (3.14)
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This completes the proof.
Proof of Theorem 3. Let

q1(x) =
∫

B
G(x,y)a−(y)dy, q2(x) =

∫
B
G(x,y)b−(y)dy.

It follows from (H2), (H3) and Lemma 5, that there exists four positive constants
α1,α2,γ1,γ2 ∈ (0,1) such that

q1(x)| f (s)| � γ1p1(x) f (0), for s ∈ [0,α1] , x ∈ B ,

q2(x)|g(s)| � γ2p2(x)g(0), for s ∈ [0,α2] , x ∈ B .

Let α = min{α1,α2} . Then

q1(x)| f (s)| � γ1p1(x) f (0), for s ∈ [0,α] , x ∈ B , (3.15)

q2(x)|g(s)| � γ2p2(x)g(0), for s ∈ [0,α] , x ∈ B . (3.16)

Fix δ ∈ (γ,1) , where γ = max{γ1,γ2} . Let h(0) = max{ f (0),g(0)} and let λ ∗
1 ,λ ∗

2 be
so small such that

‖ũλ‖∞ + λ δh(0)‖p‖∞ � α, forλ ∈ (0,λ ∗
1 ),

‖ṽλ‖∞ + λ δh(0)‖p‖∞ � α, forλ ∈ (0,λ ∗
2 ),

where ũλ and ṽλ are given by Lemma 5 and

| f (t)− f (s)| � f (0)
δ − γ1

2
, for t,s ∈ [−α,α], |t− s| � λ ∗

1 δh(0)‖p‖∞,

|g(t)−g(s)|� g(0)
δ − γ2

2
, for t,s ∈ [−α,α], |t − s| � λ ∗

2 δh(0)‖p‖∞.

Let λ ∗ = min{λ ∗
1 ,λ ∗

2 } . Then for λ ∈ (0,λ ∗) , we have

‖ũλ‖∞ + λ δh(0)‖p‖∞ � α, ‖ṽλ‖∞ + λ δh(0)‖p‖∞ � α (3.17)

and for t,s ∈ [−α,α], |t− s| � λ ∗δh(0)‖p‖∞ , we have

| f (t)− f (s)| � f (0)
δ − γ1

2
and |g(t)−g(s)|� g(0)

δ − γ2

2
. (3.18)

Now, let λ < λ ∗ . We look for a solution (uλ ,vλ ) to (1.9) of the form (ũλ +mλ , ṽλ +
wλ ) . Thus (mλ ,wλ ) solves the system

Δ2mλ = λa+(x)( f (ṽλ +wλ )− f (ṽλ ))−λa−(x) f (ṽλ +wλ ) in B,

Δ2wλ = λb+(x)(g(ũλ +mλ )−g(ũλ ))−λb−(x)g(ũλ +mλ ) in B,

mλ = 0 = wλ on ∂B,
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∂mλ
∂ν

= 0 =
∂wλ
∂ν

on ∂B.

For each (ψ ,φ) ∈C(B)×C(B) , let (m,w) be the solution of the system

Δ2m = λa+(x)( f (ṽλ + φ)− f (ṽλ ))−λa−(x) f (ṽλ + φ) in B,

Δ2w = λb+(x)(g(ũλ + ψ)−g(ũλ))−λb−(x)g(ũλ + ψ) in B,

m = 0 = w on∂B,

∂m
∂ν

= 0 =
∂w
∂ν

on∂B.

Then A : C(B)×C(B) →C(B)×C(B) is completely continuous. Let (m,w) ∈C(B)×
C(B) and θ ∈ (0,1) be such that

(m,w) = θA(m,w). (3.19)

Then
Δ2m = λ θa+(x)( f (ṽλ +w)− f (ṽλ ))−λ θa−(x) f (ṽλ +w) in B,

Δ2w = λ θb+(x)(g(ũλ +m)−g(ũλ))−λ θb−(x)g(ũλ +m) in B,

m = 0 = w on∂B,

∂m
∂ν

= 0 =
∂w
∂ν

on∂B.

Now, we claim that ‖(m,w)‖ 	= λ δh(0)‖p‖∞ .
Suppose to the contrary that ‖(m,w)‖ = λ δh(0)‖p‖∞ , then there are three possible
cases:
Case 1. ‖m‖∞ = ‖w‖∞ = λ δh(0)‖p‖∞ . Then from (3.17), we have

‖ṽλ +w‖∞ � ‖ṽλ‖∞ + λ δh(0)‖p‖∞ � α.

So ‖ṽλ‖∞ � α . Thus by (3.18), we obtain

| f (ṽλ +w)− f (ṽλ )| � f (0)
δ − γ1

2
(3.20)

and on the other hand, (3.19) implies

|m(x)| � λ p1(x) f (0)
δ − γ1

2
+ λ γ1p1(x) f (0)

= λ p1(x) f (0)
δ + γ1

2
< λ p1(x) f (0)δ
� λ δh(0)‖p‖∞, forx ∈ B,

which implies that
‖m‖∞ � λ δh(0)‖p‖∞,
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which is a contradiction.
Case 2. ‖w‖∞ < ‖m‖∞ = λ δh(0)‖p‖∞ . Then

‖ṽλ +w‖∞ < ‖ṽλ‖∞ + λ δh(0)‖p‖∞ � α.

Thus

| f (ṽλ +w)− f (ṽλ )| � f (0)
δ − γ1

2
.

Now using the similar arguments as Case 1, we get

‖m‖∞ < λ δh(0)‖p‖∞,

which is a contradiction.
Case 3. ‖m‖∞ < ‖w‖∞ = λ δh(0)‖p‖∞ . Using arguments similar to Case 2, we obtain

‖w‖∞ < λ δh(0)‖p‖∞,

which is a contradiction.
Thus the claim is proved.
By Lemma 4, A has a fixed point (m̃λ , w̃λ ) with

‖(m̃λ , w̃λ )‖ � λ δh(0)‖p‖∞.

Using Lemma 5, we obtain

uλ (x) � ũλ (x)−|m(x)|

� λ δ p1(x) f (0)−λ
δ + γ1

2
f (0)p1(x)

= λ
δ − γ1

2
f (0)p1(x)

> 0, x ∈ B.

Similarly, we can prove that ṽλ (x) > 0, x ∈ B . This completes the proof.

3.6. Proof of Remark 4

Proof. The proof is on the same lines as of the proof of Theorem 3. For sake of
brevity, we omit the details.

3.7. n × n SYSTEMS

Now we consider the following n×n system

Δ2u1 = λ1a1(x) f1(u2), in B,

Δ2u2 = λ1a2(x) f2(u3), in B,

... (3.21)
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Δ2un−1 = λn−1an−1(x) fn−1(un), in B,

Δ2un = λnan(x) fn(u1), in B,

u1 = u2 = . . . = un = 0, on ∂B,

∂u1

∂ν
=

∂u2

∂ν
= . . .

∂un

∂ν
= 0, on ∂B,

where ai(x) ∈ L∞(B) (i = 1,2, . . .n) may be sign changing in B and λ > 0 is a param-
eter.

We assume the following hypotheses:
(H10) fi : [0,∞) −→ R which is continuous and fi(0) > 0(i = 1,2, . . . ,n).
(H11) ai(i = 1,2, . . . ,n) is continuous on B and there exist ki > 1(i = 1,2, . . . ,n), such
that ∫

B
G(x,y)a+

i (y)dy � ki

∫
B
G(x,y)a−i (y)dy ∀x ∈ B,

where G(x,y) is defined earlier.
Formulate the integral equation

(u1,u2, . . . ,un) = A(u1,u2, . . . ,un)

where A : (C(B))n −→ (C(B))n is defined by

A(u1,u2, . . . ,un)(x) =
(

λ
∫

B
G(x,y)a1(y) f1(u2(y))dy, . . . ,

λ
∫

B
G(x,y)an(y) fn(u1(y))dy

)
.

(3.22)

THEOREM 5. Let (H10) and (H11) hold. Then there exists a positive number λ ∗ ,
depending on weights ai,(i = 1,2, . . . ,n) and nonlinearities fi, (i = 1,2, . . . ,n) such
that (3.21) has a positive solution for 0 < λ < λ ∗ .

Proof. The proof is on the same lines as the proof of Theorem 3. For sake of
brevity, we omit the details.

REMARK 6. Theorem 5 can be extended to n× n polyharmonic systems. The
proof requires arguments similar to the proof of Theorem 3. We leave it as an exercise
to an interested reader.
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4. Examples

EXAMPLE 1. Consider Ω = B , the unit ball in R
2 and a,b : Ω → R , defined by

a(x) =
{

1, |x| < 1
2

−1, |x| � 1
2

and b(x) =
{

1, |x| < 1
2

0, |x| � 1
2

. (4.1)

Define g,h : Ω×R→ R defined by

g(x,s) =
{

cs2 sinx, |s| < 1
0, |s| � 1

and h(x,s) =
{

cs2 cosx, |s| < 1
0, |s| � 1

,

where c < λ1 , λ1 is the principle eigenvalue of biharmonic operator defined by (2.1).
Then ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Δ2u = a(x)g(x,v) in Ω,

Δ2v = b(x)h(x,u) in Ω,

u = 0 = v on ∂Ω,
∂u
∂ν = ∂v

∂ν on ∂Ω,

(4.2)

has a unique weak solution.

Proof. Clearly, from (4.1), ‖a‖∞ = 1 = ‖b‖∞. It is easy to verify that g,h satisfy
(H1),(H2) and (H5), therefore, an application of Theorem 1 implies that the System
(4.2) has a unique weak solution.

EXAMPLE 2. Let Ω be the unit ball in R
n , n � 5. Consider the weights a,b

defined by (4.1). Define g,h : Ω×R → R as follows

g(x,s) =

{
c
(
sinx+ s

2(n+4)
n−4

)
, |s| < 1

0, otherwise.

and

h(x,s) =

{
c
(
cosx+ s

2(n+4)
n−4

)
, |s| < 1

0, otherwise
,

where c < 1
16n2(n−4)2 . Then

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δ2u = a(x)
g(x, v)
|x|4 in Ω,

Δ2v = b(x)
h(x, u)
|x|4 in Ω,

u = 0 = v on ∂Ω,
∂u
∂ν = ∂v

∂ν on ∂Ω,

(4.3)

has a unique weak solution.
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Proof. It is easy to verify that (H4) holds. Clearly M = max{‖a‖∞,‖b‖∞} = 1.
Since c < 1

16n2(n− 4)2 , therefore, (H6) holds. From the definition of g and h , it is
easy to see that (H9) holds. Therefore an application of Theorem 2 implies that the
System (4.3) has a unique weak solution.

EXAMPLE 3. Let Ω denotes the unit ball in R
n . Consider the functions a,b de-

fined as
a(x) = |x|2 and b(x) = |x|2, ∀x ∈ Ω.

Define functions f and g as follows

f (x) = x2 +1, g(x) = x2 +1, ∀x ∈ [0,∞ ) .

Then there exists a positive number λ ∗ such that for 0 < λ < λ ∗ system⎧⎪⎪⎨
⎪⎪⎩

Δ2u = λ |x|2(v2 +1) in Ω,
Δ2v = λ |x|2(u2 +1) in Ω,
u = 0 = v on ∂Ω,
∂u
∂ν = ∂v

∂ν on ∂Ω,

(4.4)

has a positive solution.

Proof. From definition of f and g , it is clear that (H1) holds. It is easy to verify
that (H2) , (H3) hold for any μ1 > 0 and μ2 > 0 respectively, therefore an application
of Theorem 3 implies that there exists a positive number λ ∗ such that for 0 < λ < λ ∗
(4.4) has a positive solution.
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